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Introduction.

It seems at first that the aberration of light and related optical and electrical phenom-
ena will provide us with a means of determining the absolute motion of the Earth, or
rather its motion with respect to the ether, as opposed to its motion with respect to other
celestial bodies. Fresnel pursued this idea, but soon recognized that the Earth’s motion
does not alter the laws of refraction and reflection. Analogous experiments, like that of
the water-filled telescope, and all those considering terms no higher than first order rela-
tive to the aberration, yielded only negative results; the explanation was soon discovered.
But Michelson, who conceived an experiment sensitive to terms depending on the square
of the aberration, failed in turn.

It appears that this impossibility to detect the absolute motion of the Earth by exper-
iment may be a general law of nature; we are naturally inclined to admit this law, which
we will call the Postulate of Relativity and admit without restriction. Whether or not this
postulate, which up to now agrees with experiment, may later be corroborated or dis-
proved by experiments of greater precision, it is interesting in any case to ascertain its
consequences.

An explanation was proposed by Lorentz and FitzGerald, who introduced the hypoth-
esis of a contraction of all bodies in the direction of the Earth’s motion and proportional
to the square of the aberration. This contraction, which we will call the Lorentzian con-
traction, would explain Michelson’s experiment and all others performed up to now. The

*Translated by Scott A. Walter from Rendiconti del Circolo Matematico di Palermo 21, 1906, 129–176.
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hypothesis would become insufficient, however, if we were to admit the postulate of rel-
ativity in full generality.1

Lorentz then sought to extend his hypothesis and to modify it in order to obtain perfect
agreement with this postulate. This is what he succeeded in doing in his article entitled
Electromagnetic phenomena in a system moving with any velocity smaller that that of
light (Proceedings of the Amsterdam Academy, May 27, 1904).

The importance of the question persuaded me to take it up in turn; the results I ob-
tained agree with those of Mr. Lorentz on all the significant points. I was led merely
to modify and extend them only in a few details; further on we will see the points of
divergence, which are of secondary importance.

Lorentz’s idea may be summed up like this: if we are able to impress a translation
upon an entire system without modifying any observable phenomena, it is because the
equations of an electromagnetic medium are unaltered by certain transformations, which
we will call Lorentz transformations. Two systems, one of which is at rest, the other in
translation, become thereby exact images of each other.

Langevin*) sought to modify Lorentz’s idea; for both authors, the moving electron
takes the form of a flattened ellipsoid. For Lorentz, two axes of the ellipsoid remain
constant, while for Langevin, ellipsoid volume remains constant. The two scientists also
showed that these two hypotheses are corroborated by Kaufmann’s experiments to the
same extent as the original hypothesis of Abraham (rigid-sphere electron).2

The advantage of Langevin’s theory is that it requires only electromagnetic forces, and
bonds; it is, however, incompatible with the postulate of relativity. This is what Lorentz
showed, and this is what I found in turn using a different method, which calls on principles
of group theory.

We must return therefore to Lorentz’s theory, but if we want to do this and avoid
intolerable contradictions, we must posit the existence of a special force that explains both
the contraction, and the constancy of two of the axes. I sought to determine this force, and
found that it may be assimilated to a constant external pressure on the deformable and
compressible electron, whose work is proportional to the electron’s change in volume.

If the inertia of matter is exclusively of electromagnetic origin, as generally admitted
in the wake of Kaufmann’s experiment, and all forces are of electromagnetic origin (apart
from this constant pressure that I just mentioned), the postulate of relativity may be es-
tablished with perfect rigor. This is what I show by a very simple calculation based on the
principle of least action.

But that is not all. In the article cited above, Lorentz judged it necessary to extend
his hypothesis in such a way that the postulate remains valid in case there are forces of
non-electromagnetic origin. According to Lorentz, all forces are affected by the Lorentz
transformation (and consequently by a translation) in the same way as electromagnetic
forces.

It was important to examine this hypothesis closely, and in particular to ascertain the
modifications we would have to apply to the laws of gravitation.

We find first of all that it requires us to assume that gravitational propagation is not
instantaneous, but occurs with the speed of light. One might think that this is reason
enough to reject the hypothesis, since Laplace demonstrated that this cannot be the case.3

In reality, however, the effect of this propagation is compensated in large part by a dif-
ferent cause, in such a way that no contradiction arises between the proposed law and

*Langevin was anticipated by Mr. Bucherer of Bonn, who earlier advanced the same idea. (See:
Bucherer, Mathematische Einführung in die Elektronentheorie, August, 1904. Teubner, Leipzig).
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astronomical observations.
Is it possible to find a law satisfying Lorentz’s condition, and reducing to Newton’s

law whenever the speeds of celestial bodies are small enough to allow us to neglect their
squares (as well as the product of acceleration and distance) with respect to the square of
the speed of light?

To this question we must respond in the affirmative, as we will see later.
Modified in this way, is the law compatible with astronomical observations?
It seems so on first sight, but the question will be settled only after an extended dis-

cussion.
Suppose, then, that this discussion is settled in favor of the new hypothesis, what

should we conclude? If propagation of attraction occurs with the speed of light, it could
not be a fortuitous accident. Rather, it must be because it is a function of the ether, and
then we would have to try to penetrate the nature of this function, and to relate it to other
fluid functions.

We cannot be content with a simple juxtaposition of formulas that agree with each
other by good fortune alone; these formulas must, in a manner of speaking, interpene-
trate. The mind will be satisfied only when it believes it has perceived the reason for this
agreement, and the belief is strong enough to entertain the illusion that it could have been
predicted.

But the question may be viewed from a different perspective, better shown via an
analogy. Let us imagine a pre-Copernican astronomer who reflects on Ptolemy’s system;
he will notice that for all the planets, one of two circles – epicycle or deferent – is traversed
in the same time. This fact cannot be due to chance, and consequently between all the
planets there is a mysterious link we can only guess at.

Copernicus, however, destroys this apparent link by a simple change in the coordinate
axes that were considered fixed. Each planet now describes a single circle, and orbital
periods become independent (until Kepler reestablishes the link that was believed to have
been destroyed).

It is possible that something analogous is taking place here. If we were to admit
the postulate of relativity, we would find the same number in the law of gravitation and
the laws of electromagnetism—the speed of light—and we would find it again in all
other forces of any origin whatsoever. This state of affairs may be explained in one of
two ways: either everything in the universe would be of electromagnetic origin, or this
aspect—shared, as it were, by all physical phenomena—would be a mere epiphenomenon,
something due to our methods of measurement. How do we go about measuring? The
first response will be: we transport objects considered to be invariable solids, one on top
of the other. But that is no longer true in the current theory if we admit the Lorentzian
contraction. In this theory, two lengths are equal, by definition, if they are traversed by
light in equal times.

Perhaps if we were to abandon this definition Lorentz’s theory would be as fully over-
thrown as was Ptolemy’s system by Copernicus’s intervention. Should that happen some
day, it would not prove that Lorentz’s efforts were in vain, because regardless of what one
may think, Ptolemy was useful to Copernicus.

I, too, have not hesitated to publish these few partial results, even if at this very mo-
ment the discovery of magneto-cathode rays seems to threaten the entire theory.

§ 1. — Lorentz Transformation.
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Lorentz adopted a certain system of units in order to do away with 4π factors in for-
mulas. I will do the same, and in addition, select units of length and time in such a way
that the speed of light equals 1. Under these conditions, and denoting electric displace-
ment f , g, h, magnetic intensity α, β, γ, vector potential F , G, H , scalar potential ψ,
charge density ρ, electron velocity ξ, η, ζ , and current u, v, w, the fundamental formulas
become:

u =
df

dt
+ ρξ =

dγ

dy
− dβ

dz
, α =

dH

dy
− dG

dz
, f = −dF

dt
− dψ

dx
,

dα

dt
=
dg

dz
− dh

dy
,

dρ

dt
+
∑ dρξ

dx
= 0,

∑ df

dx
= ρ,

dψ

dt
+
∑ dF

dx
= 0,

� = ∆− d2

dt2
=
∑ d2

dx2
− d2

dt2
, �ψ = −ρ, �F = −ρξ.


(1)

An elementary particle of matter of volume dxdydz is acted upon by a mechanical
force, the components of which are derived from the formula:

X = ρf + ρ(ηγ − ζβ). (2)

These equations admit a remarkable transformation discovered by Lorentz, which owes
its interest to the fact that it explains why no experiment can inform us of the absolute
motion of the universe. Let us put:

x′ = kl(x+ εt), t′ = kl(t+ εx), y′ = `y, z′ = `z, (3)

where ` and ε are two arbitrary constants, such that

k =
1√

1− ε2
.

Now if we put:

�′ =
∑ d2

dx′2
− d2

dt′2
,

we will have:
�′ = �`−2.

Let a sphere be carried along with the electron in uniform translation, and let the equation
of this mobile sphere be:

(x− ξt)2 + (y − ηt)2 + (z − ζt)2 = r2,

and the volume of the sphere be 4
3
πr3.4

The transformation will change the sphere into an ellipsoid, the equation of which is
easy to find. We thus deduce easily from (3):

x =
k

`
(x′ − εt′), t =

k

`
(t′ − εx′), y =

y′

`
, z =

z′

`
. (3′)

The equation of the ellipsoid then becomes:

k2(x′ − εt′ − ξt′ + εξx′)2 + (y′ − ηkt′ + ηkεx′)2 + (z′ − ζkt′ + ζkεx′)2 = `2r2.

This ellipsoid is in uniform motion; for t′ = 0, it reduces to

k2x′2(1 + ξε)2 + (y′ + ηkεx′)2 + (z′ + ζkεx′)2 = `2r2,
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and has a volume:
4

3
πr3

`3

k(1 + ξε)
.

If we want electron charge to be unaltered by the transformation, and if we designate
the new charge density ρ′, we will find:

ρ′ =
k

`3
(ρ+ ερξ). (4)

What will be the new velocity components ξ′, η′ and ζ ′? We should have:

ξ′ =
dx′

dt′
=
d(x+ εt)

d(t+ εx)
=

ξ + ε

1 + εξ
,

η′ =
dy′

dt′
=

dy

kd(t+ εx)
=

η

k(1 + εξ)
, ζ ′ =

ζ

k(1 + εξ)
,

whence:
ρ′ξ′ =

k

`3
(ρξ + ερ), ρ′η′ =

1

`3
ρη, ρ′ζ ′ =

1

`3
ρζ. (4′)

Here is where I must point out for the first time a difference with Lorentz. In my
notation, Lorentz put (l.c., page 813, formulas 7 and 8):

ρ′ =
1

k`3
ρ, ξ′ = k2(ξ + ε), η′ = kη, ζ ′ = kζ.

In this way we recover the formulas:

ρ′ξ′ =
k

`3
(ρξ + ερ), ρ′η′ =

1

`3
ρη, ρ′ζ ′ =

1

`3
ρζ;

although the value of ρ′ differs.
It is important to notice that the formulas (4) and (4′) satisfy the condition of continuity

dρ′

dt′
+
∑ dρ′ξ′

dx′
= 0.

To see this, let λ be an undetermined coefficient and D the Jacobian of

t+ λρ, x+ λρξ, y + λρη, z + λρζ (5)

with respect to t, x, y and z. It follows that:

D = D0 +D1λ+D2λ
2 +D3λ

3 +D4λ
4,

with D0 = 1, D1 =
dρ

dt
+
∑ dρξ

dx
= 0.

Let λ′ = `4ρ′;5 then the 4 functions

t′ + λ′ρ′, x′ + λ′ρ′ξ′, y′ + λ′ρ′η′, z′ + λ′ρ′ζ ′ (5′)

are related to the functions (5) by the same linear relationships as the old variables to the
new ones. Therefore, if we denote D′ the Jacobian of the functions (5′) with respect to
the new variables, it follows that:

D′ = D, D′ = D′0 +D′1λ
′ + · · ·+D′4λ

′4,
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and thereby:6

D′0 = D0 = 1, D′1 = `−4D1 = 0 =
dρ′

dt′
+
∑ dρ′ξ′

dx′
. Q.E.D.

Under Lorentz’s hypothesis, this condition would not be met since ρ′ has a different
value.

We will define the new vector and scalar potentials in such a way as to satisfy the
conditions

�′ψ′ = −ρ′, �′F ′ = −ρ′ξ′. (6)

From this we deduce:

ψ′ =
k

`
(ψ + εF ), F ′ =

k

`
(F + εψ), G′ =

1

`
G, H ′ =

1

`
H. (7)

These formulas differ noticeably from those of Lorentz, although the divergence stems
ultimately from the definitions employed.

New electric and magnetic fields are now chosen in order to satisfy the equations

f ′ = −dF
′

dt′
− dψ′

dx′
, α′ =

dH ′

dy′
− dG′

dz′
. (8)

It is easy to see that:

d

dt′
=
k

`

(
d

dt
− ε d

dx

)
,

d

dx′
=
k

`

(
d

dx
− ε d

dt

)
,

d

dy′
=

1

`

d

dy
,

d

dz′
=

1

`

d

dz

and we deduce thereby:

f ′ =
1

`2
f, g′ =

k

`2
(g + εγ), h′ =

k

`2
(h− εβ),

α′ =
1

`2
α, β′ =

k

`2
(β − εh), γ′ =

k

`2
(γ + εg).

 (9)

These formulas are identical to those of Lorentz.
Our transformation does not alter (1). In fact, the condition of continuity, as well as

(6) and (8) were already featured in (1) (neglecting the primes).
Combining (6) with the condition of continuity, we obtain:

dψ′

dt′
+
∑ dF ′

dx′
= 0. (10)

It remains for us to establish:

df ′

dt′
+ ρ′ξ′ =

dγ′

dy′
− dβ′

dz′
,

dα′

dt′
=
dg′

dz′
− dh′

dy′
,

∑ df ′

dx′
= ρ′

and it is easy to see that these are necessary consequences of (6), (8) and (10).
We must now compare forces before and after the transformation.
Let X , Y , Z be the force prior to the transformation, and X ′, Y ′, Z ′ the force after

the transformation, both forces being per unit volume. In order for X ′ to satisfy the same
equations as before the transformation, we must have:

X ′ = ρ′f ′ + ρ′(η′γ′ − ζ ′β′),
Y ′ = ρ′g′ + ρ′(ζ ′α′ − ξ′γ′),
Z ′ = ρ′h′ + ρ′(ξ′β′ − η′α′),
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or, replacing all quantities by their values (4), (4′) and (9), and in light of (2):

X ′ =
k

`5
(X + ε

∑
Xξ),

Y ′ =
1

`5
Y,

Z ′ =
1

`5
Z.


(11)

Instead of representing the components of force per unit volume by X1, Y1, Z1, we
now let these terms represent the force per unit electron charge, and we let X ′1, Y

′
1 , Z ′1

represent the latter force after transformation. It follows that:

X1 = f + ηγ − ζβ, X ′1 = f ′ + η′γ′ − ζ ′β′, X = ρX1, X ′ = ρX ′1,

and we obtain the equations:

X ′1 =
k

`5
ρ

ρ′
(X1 + ε

∑
X1ξ),

Y ′1 =
1

`5
ρ

ρ′
Y1,

Z ′1 =
1

`5
ρ

ρ′
Z1.


(11′)

Lorentz found (page 813, equation (10) with different notation):

X1 = `2X ′1 − `2ε(η′g′ + ζ ′h′),

Y1 =
`2

k
Y ′1 +

`2ε

k
ξ′g′,

Z1 =
`2

k
Z ′1 +

`2ε

k
ξ′h′.

 (11′′)

Before going any further, it is important to locate the source of this significant diver-
gence. It obviously springs from the fact that the formulas for ξ′, η′ and ζ ′ are not the
same, while the formulas for the electric and magnetic fields are the same.

If electron inertia is exclusively of electromagnetic origin, and if electrons are subject
only to forces of electromagnetic origin, then the conditions of equilibrium require that:

X = Y = Z = 0

inside the electrons.
According to (11), these relationships are equivalent to

X ′ = Y ′ = Z ′ = 0.

The electron’s equilibrium conditions are therefore unaltered by the transformation.
Unfortunately, such a simple hypothesis is inadmissible. In fact, if we assume ξ =

η = ζ = 0, the condition X = Y = Z = 0 leads necessarily to f = g = h =

0, and consequently, to
∑ df

dx
= 0, i.e., ρ = 0. Similar results obtain for the most

general case. We must then admit that in addition to electromagnetic forces there are
either non-electromagnetic forces or bonds. Therefore, we need to identify the conditions
that these forces or these bonds must satisfy for electron equilibrium to be undisturbed by
the transformation. This will be the object of an upcoming section.
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§ 9. — Hypotheses Concerning Gravitation.

In this way Lorentz’s theory would fully explain the impossibility of detecting abso-
lute motion, if all forces were of electromagnetic origin.

But there exist other forces to which an electromagnetic origin cannot be attributed,
such as gravitation, for example. It may in fact happen, that two systems of bodies pro-
duce equivalent electromagnetic fields, i.e., exert the same action on electrified bodies
and on currents, and at the same time, these two systems do not exert the same gravita-
tional action on Newtonian masses. The gravitational field is therefore distinct from the
electromagnetic field. Lorentz was obliged thereby to extend his hypothesis with the as-
sumption that forces of any origin whatsoever, and gravitation in particular, are affected
by a translation (or, if one prefers, by the Lorentz transformation) in the same manner as
electromagnetic forces.

It is now appropriate to enter into the details of this hypothesis, and to examine it more
closely. If we want the Newtonian force to be affected by the Lorentz transformation in
this fashion, we can no longer suppose that it depends only on the relative position of the
attracting and attracted bodies at the instant considered. The force should also depend on
the velocities of the two bodies. And that is not all: it will be natural to suppose that the
force acting on the attracted body at the instant t depends on the position and velocity of
this body at this same instant t, but it will also depend on the position and velocity of the
attracting body, not at the instant t, but at an earlier instant, as if gravitation had taken a
certain time to propagate.

Let us now consider the position of the attracted body at the instant t0, and let x0, y0,
z0 be its coordinates, and ξ, η, ζ its velocity components at this instant; let us consider also
the attracting body at the corresponding instant t0 + t, and let its coordinates be x0 + x,
y0 + y, z0 + z, and its velocity components be ξ1, η1, ζ1 at this instant.

First we should have a relationship

ϕ (t, x, y, z, ξ, η, ζ, ξ1, η1, ζ1) = 0 (1)

in order to define the time t. This relationship will define the law of propagation of
gravitational action (I do not constrain myself by any means to a propagation velocity
equal in all directions).

Now letX1, Y1, Z1 be the three components of the action exerted on the attracted body
at the instant t0;7 we want to express X1, Y1, Z1 as functions of

t, x, y, z, ξ, η, ζ, ξ1, η1, ζ1. (2)

What conditions must be satisfied?
1° The condition (1) should not be altered by transformations of the Lorentz group.
2° The components X1, Y1, Z1 should be affected by transformations of the Lorentz

group in the same manner as the electromagnetic forces designated by the same letters,
i.e., in accordance with (11′) of section 1.

3° When the two bodies are at rest, the ordinary law of attraction will be recovered.
It is important to note that in the latter case, the relationship (1) vanishes, because if

the two bodies are at rest the time t plays no role.
Posed in this fashion the problem is obviously indeterminate. We will therefore seek

to satisfy to the utmost other, complementary conditions.
4° Since astronomical observations do not seem to show a sensible deviation from

Newton’s law, we will choose the solution that differs the least with this law for small
velocities of the two bodies.
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5° We will make an effort to arrange matters in such a way that t is always negative.
Although we can imagine that the effect of gravitation requires a certain time in order to
propagate, it would be difficult to understand how this effect could depend on the position
not yet attained by the attracting body.

There is one case where the indeterminacy of the problem vanishes; it is the one where
the two bodies are in mutual relative rest, i.e., where

ξ = ξ1, η = η1, ζ = ζ1;

this is then the case we will examine first, by supposing that these velocities are constant,
such that the two bodies are engaged in a common uniform rectilinear translation.

We may suppose that the x−axis is parallel to this translation, such that η = ζ = 0,
and we will let ε = −ξ.

If we apply the Lorentz transformation under these conditions, after the transformation
the two bodies will be at rest, and it follows that:

ξ′ = η′ = ζ ′ = 0.

The components X1, Y1, Z1 should then agree with Newton’s law and we will have,
apart from a constant factor:

X ′1 = − x

r′3
, Y ′1 = − y

r′3
, Z ′1 = − z

r′3
, r′2 = x′2 + y′2 + z′2. (3)

But according to section 1 we have:

x′ = k(x+ εt), y′ = y, z′ = z, t′ = k(t+ εx),

ρ′

ρ
= k(1 + ξε) = k(1− ε2) =

1

k
,
∑

X1ξ = −X1ε,

X ′1 = k
ρ

ρ′
(X1 + ε

∑
X1ξ) = k2X1(1− ε2) = X1,

Y ′1 = k
ρ

ρ′
Y1 = kY1

Z ′1 = kZ1.

We have in addition:

x+ εt = x− ξt, r′2 = k2(x− ξt)2 + y2 + z2

and

X1 =
−k(x− ξt)

r′3
, Y1 =

−y
kr′3

, Z1 =
−z
kr′3

; (4)

which may be written:

X1 =
dV

dx
, Y1 =

dV

dy
, Z1 =

dV

dz
; V =

1

kr′
. (4′)

It seems at first that the indeterminacy remains, since we made no hypotheses con-
cerning the value of t, i.e., the transmission speed; and that besides, x is a function of t.
It is easy to see, however, that the terms appearing in our formulas, x − ξt, y, z, do not
depend on t.
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We see that if the two bodies translate together, the force acting on the attracted body
is perpendicular to an ellipsoid, at the center of which lies the attracting body.

To advance further, we need to look for the invariants of the Lorentz group.
We know that the substitutions of this group (assuming ` = 1) are linear substitutions

that leave unaltered the quadratic form

x2 + y2 + z2 − t2.

Let us also put:

ξ =
δx

δt
, η =

δy

δt
, ζ =

δz

δt
,

ξ1 =
δ1x

δ1t
, η1 =

δ1y

δ1t
, ζ1 =

δ1z

δ1t
;

we see that the Lorentz transformation will make δx, δy, δz, δt, and δ1x, δ1y, δ1z, δ1t
undergo the same linear substitutions as x, y, z, t.

Let us regard
x, y, z, t

√
−1,

δx, δy, δz, δt
√
−1,

δ1x, δ1y, δ1z, δ1t
√
−1,

as the coordinates of 3 points P , P ′, P ′′ in space of 4 dimensions. We see that the
Lorentz transformation is merely a rotation in this space about the origin, assumed fixed.
Consequently, we will have no distinct invariants apart from the 6 distances between the 3
points P , P ′, P ′′, considered separately and with the origin, or, if one prefers, apart from
the two expressions

x2 + y2 + z2 − t2, xδx+ yδy + zδz − tδt,

or the 4 expressions of like form deduced from an arbitrary permutation of the 3 points
P , P ′, P ′′.

But what we seek are invariants that are functions of the 10 variables (2). Therefore,
among the combinations of our 6 invariants we must find those depending only on these
10 variables, i.e., those that are 0th degree homogeneous with respect both to δx, δy, δz,
δt, and to δ1x, δ1y, δ1z, δ1t. We will then be left with 4 distinct invariants:∑

x2 − t2, t−
∑
xξ√

1−
∑
ξ2
,

t−
∑
xξ1√

1−
∑
ξ21
,

1−
∑
ξξ1√

(1−
∑
ξ2) (1−

∑
ξ21)

. (5)

Next let us see how the force components are transformed; we recall the equations
(11) of section 1, that refer not to the force X1, Y1, Z1 considered at present, but to the
force per unit volume: X , Y , Z.

We designate moreover
T =

∑
Xξ;

we will see that (11) can be written (` = 1):

X ′ = k(X + εT ), T ′ = k(T + εX),

Y ′ = Y, Z ′ = Z;

}
(6)
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in such a way thatX , Y , Z, T undergo the same transformation as x, y, z, t. Consquently,
the group invariants will be∑

X2 − T 2,
∑

Xx− Tt,
∑

Xδx− Tδt,
∑

Xδ1x− Tδ1t.

However, it is not X , Y , Z that we need, but X1, Y1, Z1, with

T1 =
∑

X1ξ.

We see that
X1

X
=
Y1
Y

=
Z1

Z
=
T1
T

=
1

ρ
.

Therefore, the Lorentz transformation will act in the same manner on X1, Y1, Z1, T1,
as on X , Y , Z, T , except that these expressions will be multiplied moreover by

ρ

ρ′
=

1

k(1 + ξε)
=
δt

δt′
.

Likewise, the Lorentz transformation will act in the same way on ξ, η, ζ , 1 as on δx,
δy, δz, δt, except that these expressions will be multiplied moreover by the same factor:

δt

δt′
=

1

k(1 + ξε)
.

Next we consider X , Y , Z, T
√
−1 as the coordinates of a fourth point Q; the invari-

ants will then be functions of the mutual distances of the five points

0, P, P ′, P ′′, Q

and among these functions we must retain only those that are 0th degree homogeneous
with respect, on one hand, to

X, Y, Z, T, δx, δy, δz, δt

(variables that can be replaced further byX1, Y1, Z1, T1, ξ, η, ζ , 1), and on the other hand,
with respect to8

δ1x, δ1y, δ1z, δ1t

(variables that can be replaced further by ξ1, η1, ζ1, 1).
In this way we find, beyond the four invariants (5), four distinct new invariants:∑

X2
1 − T 2

1

1−
∑
ξ2

,

∑
X1x− T1t√
1−

∑
ξ2

,

∑
X1ξ1 − T1√

1−
∑
ξ2
√

1−
∑
ξ21
,

∑
X1ξ − T1

1−
∑
ξ2

. (7)

The latter invariant is always null according to the definition of T1.
These terms being settled, what conditions must be satisfied?
1° The first term of (1), defining the velocity of propagation, has to be a function of

the 4 invariants (5).
A wealth of hypotheses can obviously be entertained, of which we will examine only

two:
A) We can have ∑

x2 − t2 = r2 − t2 = 0,
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from whence t = ±r, and, since t has to be negative, t = −r. This means that the velocity
of propagation is equal to that of light. It seems at first that this hypothesis ought to be
rejected outright. Laplace showed in effect that the propagation is either instantaneous or
much faster than that of light. However, Laplace examined the hypothesis of finite prop-
agation velocity ceteris non mutatis; here, on the contrary, this hypothesis is conjoined
with many others, and it may be that between them a more or less perfect compensation
takes place. The application of the Lorentz transformation has already provided us with
numerous examples of this.

B) We can have
t−
∑
xξ1√

1−
∑
ξ21

= 0, t =
∑

xξ1.

The propagation velocity is therefore much faster than that of light, but in certain cases t
could be positive, which, as we mentioned, seems hardly admissible.9 We will therefore
stick with hypothesis (A).

2° The four invariants (7) ought to be functions of the invariants (5).
3° When the two bodies are at absolute rest, X1, Y1, Z1 ought to have the values given

by Newton’s law, and when they are at relative rest, the values given by (4).
For the case of absolute rest, the first two invariants (7) ought to reduce to∑

X2
1 ,

∑
X1x,

or, by Newton’s law, to
1

r4
, −1

r
;

in addition, according to hypothesis (A), the 2d and 3rd invariants in (5) become:

−r −
∑
xξ√

1−
∑
ξ2
,
−r −

∑
xξ1√

1−
∑
ξ21
,

that is, for absolute rest,
−r, −r.

We may therefore admit, for example, that the first two invariants in (7) reduce to10

(1−
∑
ξ21)

2

(r +
∑
xξ1)

4 , −
√

1−
∑
ξ21

r +
∑
xξ1

,

although other combinations are possible.
A choice must be made among these combinations, and furthermore, we need a 3rd

equation in order to define X1, Y1, Z1. In making such a choice, we should try to come as
close as possible to Newton’s law. Let us see what happens when we neglect the squares
of the velocities ξ, η, etc. (still letting t = −r). The 4 invariants (5) then become:

0, −r −
∑

xξ, −r −
∑

xξ1, 1

and the 4 invariants (7) become:∑
X2

1 ,
∑

X1(x+ ξr),
∑

X1(ξ1 − ξ), 0.

Before we can make a comparison with Newton’s law, another transformation is re-
quired. In the case under consideration, x0 + x, y0 + y, z0 + z, represent the coordinates

12



of the attracting body at the instant t0 + t, and r =
√∑

x2. With Newton’s law we have
to consider the coordinates of the attracting body x0 + x1, y0 + y1, z0 + z1 at the instant
t0, and the distance r1 =

√∑
x2.

We may neglect the square of the time t required for propagation, and proceed, con-
sequently, as if the motion were uniform; we then have:

x = x1 + ξ1t, y = y1 + η1t, z = z1 + ζ1t, r(r − r1) =
∑

xξ1t;

or, since t = −r,

x = x1 − ξ1r, y = y1 − η1r, z = z1 − ζ1r, r = r1 −
∑

xξ1;

such that our 4 invariants (5) become:

0, −r1 +
∑

x(ξ1 − ξ), −r1, 1

and our 4 invariants (7) become:∑
X2

1 ,
∑

X1[x1 + (ξ − ξ1)r1],
∑

X1(ξ1 − ξ), 0.

In the second of these expressions I wrote r1 instead of r, because r is multiplied by ξ−ξ1,
and because I neglect the square of ξ.

For these 4 invariants (7), Newton’s law would yield

1

r41
, − 1

r1
−
∑
x1(ξ − ξ1)
r21

,

∑
x1(ξ − ξ1)
r31

, 0.

Therefore, if we designate the 2nd and 3rd of the invariants (5) as A and B, and the first
3 invariants of (7) as M , N , P , we will satisfy Newton’s law to first-order terms in the
square of velocity by setting:

M =
1

B4
, N =

+A

B2
, P =

A−B
B3

. (8)

This solution is not unique. Let C be the 4th invariant in (5); C − 1 is of the order of
the square of ξ, and it is the same with (A−B)2.

The solution (8) appears at first to be the simplest, nevertheless, it may not be adopted.
In fact, sinceM ,N , P are functions ofX1, Y1, Z1, and T1 =

∑
X1ξ, the values ofX1, Y1,

Z1 can be drawn from these three equations (8), but in certain cases these values would
become imaginary.

To avoid this difficulty we will proceed in a different manner. Let us put:

k0 =
1√

1−
∑
ξ2
, k1 =

1√
1−

∑
ξ21
,

which is justified by analogy with the notation

k =
1√

1−
∑
ξ2

featured in the Lorentz substitution.
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In this case, and in light of the condition −r = t, the invariants (5) become:

0, A = −k0(r +
∑

xξ), B = −k1(r +
∑

xξ1), C = k0k1(1−
∑

ξξ1).

Moreover, we notice that the following systems of quantities:

x, y, z, −r = t,

k0X1, k0Y1, k0Z1, k0T1,

k0ξ, k0η, k0ζ, k0,

k1ξ1, k1η1, k1ζ1, k1

undergo the same linear substitutions when the transformations of the Lorentz group are
applied to them. We are led thereby to put:

X1 = x
α

k0
+ ξβ + ξ1

k1
k0
γ,

Y1 = y
α

k0
+ ηβ + η1

k1
k0
γ,

Z1 = z
α

k0
+ ζβ + ζ1

k1
k0
γ,

T1 = −r α
k0

+ β +
k1
k0
γ.


(9)

It is clear that if α, β, γ are invariants, X1, Y1, Z1, T1 will satisfy the fundamental con-
dition, i.e., the Lorentz transformations will make them undergo an appropriate linear
substitution.

However, for equations (9) to be compatible we must have

X1ξ − T1 = 0,

which becomes, replacing X1, T1, Z1, T1 with their values in (9) and multiplying by k20:

− Aα− β − Cγ = 0. (10)

What we would like is that the values of X1, Y1, Z1 remain in line with Newton’s law
when we neglect (as above) the squares of velocities ξ, etc. with respect to the square of
the velocity of light, and the products of acceleration and distance.

We could select
β = 0, γ = −Aα

C
.

To the adopted order of approximation, we obtain

k0 = k1 = 1, C = 1, A = −r1 +
∑

x(ξ1 − ξ), B = −r1, x = x1 + ξ1t = x1 − ξ1r.

The 1st equation in (9) then becomes

X1 = α(x− Aξ1).

But if the square of ξ is neglected, Aξ1 can be replaced by −r1ξ1, or by −rξ1, which
yields:

X1 = α(x+ ξ1r) = αx1.
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Newton’s law would yield
X1 = −x1

r31
.

Consequently, we must select a value for the invariant α which reduces to − 1

r31
in the

adopted order of approximation, that is,
1

B3
. Equations (9) will become:

X1 =
x

k0B3
− ξ1

k1
k0

A

B3C
,

Y1 =
y

k0B3
− η1

k1
k0

A

B3C
,

Z1 =
z

k0B3
− ζ1

k1
k0

A

B3C
,

T1 = − r

k0B3
− k1
k0

A

B3C
.


(11)

We notice first that the corrected attraction is composed of two components: one
parallel to the vector joining the positions of the two bodies, the other parallel to the
velocity of the attracting body.

Remember that when we speak of the position or velocity of the attracting body, this
refers to its position or velocity at the instant the gravitational wave takes off; for the
attracted body, on the contrary, this refers to the position or velocity at the instant the
gravitational wave arrives, assuming that this wave propagates with the velocity of light.

I believe it would be premature to seek to push the discussion of these formulas fur-
ther; I will therefore confine myself to a few remarks.

1° The solutions (11) are not unique; we may, in fact, replace the the global factor
1

B3

by
1

B3
+ (C − 1)f1 (A, B, C) + (A−B)2f2 (A, B, C),

where f1 and f2 are arbitrary functions of A, B, C. Alternatively, we may forgo setting β
to zero, but add any complementary terms to α, β, γ that satisfy condition (10) and are of
second order with respect to the ξ for α, and of first order for β and γ.

2° The first equation in (11) may be written:

X1 =
k1
B3C

[
x
(

1−
∑

ξξ1

)
+ ξ1

(
r +

∑
xξ
)]

(11′)

and the quantity in brackets itself may be written:

(x+ rξ1) + η(ξ1y − xη1) + ζ(ξ1z − xζ1), (12)

such that the total force may be separated into three components corresponding to the
three parentheses of expression (12); the first component is vaguely analogous to the
mechanical force due to the electric field, the two others to the mechanical force due to

the magnetic field; to extend the analogy I may, in light of the first remark, replace
1

B3

in (11) by
C

B3
, in such a way that X1, Y1, Z1 are linear functions of the attracted body’s

velocity ξ, η, ζ , since C has vanished from the denominator of (11′).
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Next we put:

k1(x+ rξ1) = λ, k1(y + rη1) = µ, k1(z + rζ1) = ν,

k1(η1z − ζ1y) = λ′, k1(ζ1x− ξ1z) = µ′, k1(ξ1y − xη1) = ν ′;

}
(13)

and since C has vanished from the denominator of (11′), it will follow that:

X1 =
λ

B3
− ην ′ − ζµ′

B3
,

Y1 =
µ

B3
− ζλ′ − ξν ′

B3
,

Z1 =
ν

B3
− ξµ′ − ηλ′

B3
;


(14)

and we will have moreover:

B2 =
∑

λ2 −
∑

λ′2. (15)

Now λ, µ, ν, or
λ

B3
,
µ

B3
,
ν

B3
, is an electric field of sorts, while λ′, µ′, ν ′, or rather

λ′

B3
,
µ′

B3
,
ν ′

B3
is a magnetic field of sorts.

3° The postulate of relativity would compel us to adopt solution (11), or solution (14),
or any solution at all among those derived on the basis of the first remark. However, the
first question to ask is whether or not these solutions are compatible with astronomical
observations. The deviation from Newton’s law is of the order of ξ2, i.e., 10000 times
smaller than if it were of the order of ξ, i.e., if the propagation were to take place with the
velocity of light, ceteris non mutatis; consequently, it is legitimate to hope that it will not
be too large. To settle this question, however, would require an extended discussion.

Paris, July, 1905.

H. Poincaré

Translator’s notes
1See Michelson and Morley (1887), FitzGerald (1889), and Lorentz (1892).
2Kaufmann (1903).
3See Laplace (1776), reedited in Secrétaires perpétuels de l’Académie des sciences (1891, 201–275),

and the discussion by Gillispie et al. (1997, 34).
4The original reads: “ 4

3πr
2”.

5The original reads: “λ′ = `2ρ′”.
6The original reads: “D′1 = `−2D1”.
7The original reads: “à l’instant t”.
8The original reads “δ1x, δ1y, δ1z, 1.”
9The original reads “t pourrait être négatif.”

10The original has (4) instead of (7).
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