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“» La premiére de ces différences n’affecte en rien le phénoméne; mais
- les deux autres ont pour effet d’augmenter beaucoup la portion efficace
du solide de diffraction, qui détermine P'intensité lumineuse des différents
points du plan focal de la lunette dans Vintervalle voisin des limites géo-
métriques du corps obscur et du bord lumineux de Vastre.
~ » Le ligament noir doit donc étre, dans ce cas, bien moins obscur que
dans celui d’un passage; et, en eftet, le Rapport de M, Gonnessiat contient
ces mots : « Cette trainée obscure ne parait point géner sensiblement
P’observation. » Mais il doit, comme dans un passage de Vénus, étre un
phénoméne graduel; c’est ce que les deux observateurs ont constaté : ils
I’ont tous deux noté comme estompé sur les bords.

» Enfin, les dimensions et I'intensité de ce ligament doivent varier avec
Pouverture de I'instrument employé : ceci résulte encore des deux obser-
vations que j'analyse, car le ligament a paru au moins aussi foncé a
M. Marchand qu’a M. Gonnessiat, et c'est le contraire qui aurait dit avoir
lieu si 'ouverture de Vinstrument n’avait point d’influence sur les dimen-
sions et l'intensité du ligament, puisque le verre noir dont se servait le
premier était beaucoup plus absorbant que celui qu’avait employé le
second. v i

» En résumé, ces observations montrent que I'apparence désignée sous
Te nom de ligament noir v’est point spéciale aux passages des planétes infé-
rieures sur le disque du Soleil, qu’on la rencontre dans des cas ou les lois
de la diffraction peuvent évidemment seules I'expliquer; et que, en con-
séquence, lors d’'un passage de Vénus ou de Mercure, cette apparence, dite
jusqu’ici singuliére, doit bien étre considérée comme résultant de I'inter-.
férence des ondes lumineuses qui forment I'image focale et traitée comme
telle. » - )

ANALYSE MATHEMATIQUE. — Sur une classe d’invariants relatifs aux équations
linéaires. Note de M. H. Poixcarg, présentée par M. Hermite.

« Considérons deux équations différentielles linéaires
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Je suppose que les fonctions P et P’ sont rationnelles en x et en z; z étant
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défini en fonction de 2 par une relation algébrique

fl®, 5) =o.
Te dirai que ces deux équations sont de méme famille, si intégrale générale
de la seconde peut se mettre sous la forme

=1 ¥ d/n——‘z'y ([],
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7 ¢tant intégrale générale de la premiére, les Q étant des fonctions ra-
tionnelles de et de z, et A une fonction quelconque de ces variables.
Supposons que les fonctions P et P’ soient de degré déterminé, de fagon
que leurs coefficients soient en nombre limité. Il y aura certaines fonctions
de ces coefficients qui auront la méme valeur pour toutes les équations
d’une méme famille. Je les appellerai invariants de famille.

» Pour montrer comment on peut déterminer et étudier les invariants
de famille, je vais prendre I'exemple simple de 'équation

2

(1) ‘ % +0y=o,

6 étant une fonction rationnelle de x seulement. Je suppose que les inté-
grales de cette équation soient partout réguliéres et sans logarithmes.
Parmi les infinis de 6, je distingue ceux pour lesquels la différence des
racines de I’équation déterminante n’est pas un entier et qui sont les points
singuliers proprement dits, et ceux pour lesquels ceite différence est un
entier et que j'appellerai points singuliers apparents. Je supposerai que le
point oo est un point singulier, et qu’il y a, en outre, K points singuliers
a distance finie, Je dirai que deux équations de la forme (1) appartiennent
4 ]a méme classe si les points singuliers sont les mémes et si, pour chacun
d’eux, la différence des racines de I’équation déterminante est la méme a
un entier preés. Je supposerai, pour éviter une discussion qui ne présente,
d’ailleurs, aucune difficulté, que ceite différence est la méme dans nos
deux équations pour chaque point singulier, et qu’elle est égale & 2 pour
chaque point apparent. Cela posé, toute classe se divisera en deux sous-
classes, selon que le nombre des points apparents sera pair ou impair.

» Etant données deux équations de la méme sous-classe, combien faudra-
t-il de conditions pour qu’elles soient de la méme famille? En d’autres
termes, combien y aura-t-il d’invariants de famille en dehors de ceux qui
déterminent la classe? Il y en aura 2K — 4.
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» Soit 2le nombre des points apparents; si, outre les K points singuliers,
les & points apparents sont donnés, il restera, dans 6, des paramétres arbi-
traires au nombre de K -- 2. Il résulte de 13 que si =K (mod 2), il y aura,
dans chaque famille, une équation canonique quin’aura que K — 2 points
apparents, et si =K -1 (mod 2), il y en aura une infinité qui auront K —
points apparents.

» Soit, par exemple, K = 3, A=1(mod 2); voyons comment on pourra
passer de I'équation (1) & une équation de méme famille n’ayant qu’un
point apparent. Soient a,, a,, ..., a les points singuliers, b,, b,, ..., b, les
points apparents. Posons

(2 —by)(x—b,)...(2 — by) {2 —d)

$= (2 —a, ) {x— ) (e —ay) (2 — ¢ )* (@ — ) (2 —ep)?

Je suppose 2m =% — 3. On voit que ¢ contient m + 2 paramétres arbi-
traires, c'est-a-dire o, d, ¢,, ¢,, ..., c,. Considérons la fonction rationnelle
— 0 + ¢. Elle sera de degré — 2, et elle aura 3 4 m + h infinis doubles.
Combien faut-il de conditions pour qu’une fonction R de degré — 2 et

s . . d. ’
ayant z infinis doubles puisse se mettre sous la forme ¢? — CTZ, ¢ étant ra-

tionnel? Il en faut n — 1, et ces conditions, ainsi que les coefficients de o,
s’expriment trés simplement en fonctions des coefficients de R. Ici nous
aurons donc 2 + % + m conditions, et, comme % d’entre elles sont satisfaites
d’elles-mémes, nous satisferons aux autres 4 I'aide des m - 2 paramétres
arbitraires qui restent dans ¢. On résoudra donc I’équation

d .
P—L=—0+4,

ce qui se ramene 2 un probléme purement algébrique. Puis on formera
I'équation dont I'intégrale générale s’écrit \

ﬁ (W + 2

J étant Pintégrale générale de (1). Cette équation sera de méme forme que
(1), elle sera de méme famille que (1), et elle n’admettra qu’un point appa-
rent qui sera d. Les coefficients de cette équation seront les invariants de
famille cherchés.

» La question peut se traiter par la méme analyse dans le cas le plus
général. Un probléme se présente maintenant : je suppose que les K points
singuliers de (1) soient donnés; . peut-on disposer des 2K — 4 invariants,
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de telle fagon que le groupe de I'équation (1) soit quelconque? Cela n’est
pas évident a priori, mais la considération des fonctions zétafuchsiennes
permet de le démontrer. »

ANALYSE MATHEMATIQUE. — Sur les fonctions uniformes affectées de coupures.
Note de M. E. Picarp, présentée par M. Hermite.

« On sait que M. Weierstrass, dans son Mémoire célébre sur les fonc-
tions uniformes, a donné la forme analytique de toute fonction ayant un
nombre fini de points singuliers essentiels et des poles en nombre quel-
conque. Je me propose de montrer que toute cette théorie peut, avec des
modifications bien simples, étre étendue aux fonctions uniformes possé-
dant un nombre fini de coupures que je supposerai rectilignes. Soit donc
J(z) une fonction restant uniforme, quand on ne traverse pas certains
segments de droite P,Q,, P,Q,, ..., P,Q, (nous nous bornons au cas ol
ces segments n’ont aucun point commun); tout point du plan en dehors de
ces segments sera pour la fonction un point ordinaire ou un pole, et on ne
fait aucune hypothése sur la nature des points de chacun des segments, qui
peuvent méme étre des lignes de points singuliers essentiels.

» Plagons-nous d’abord dans le cas oli f(z) est continue pour tous les
points du plan en dehors des coupures; nous allons voir que f(z) est alors
la somme de » fonctions ayant chacune dans tout le plan une seule cou-
pure, ce qui corréspoud a ce théoréme de M. Weierstrass d’aprés lequel
une fonction ayant 7 points singuliers est la somme de n fonctions ayant
chacune un seul point de cette nature. Etudions dans ce but la forme
de f(z) dans le voisinage de la coupure P, Q,, et supposons, pour simpli-
fier, que I'origine soit le milieu de ce segment de longueur 2¢ et que P, Q,
soit axe des quantités réelles. On démontrera de suite, en faisant usage
de la transformation

<2
2Z::t+-77

que la fonction, dans le voisinage de la coupure, peut se mettre sous la
forme ‘

n=ow n=o

S(z)= Y MlsyE =)'+ ¥ e

n=0 n=0

qui revientsimplement au développement de Laurent; les A et les B sont des
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constatites, et Yon suppose le radical pris de telle maniére que z -+ z*— ¢*

ait un module supérieur a c. Ecrivons maintenant cette expressmn de la
maniére sunivante :

z,):'EmAnRZ—i- 42"") (z_\/z‘2 ¢ ” 2 +\/Z2*—02)

en posant )
C,= B,— A,c*".

n=w

C
= (z +ya2— &)
plan en dehors de la coupure P,Q,. Désignons-la par ¢,(z). Quant & la
premiére partie

» La série est convergente pour tous les points du

2 z—l—\,/z'*’—— )+ (z— 2* — 0—5)"],

elle nest convergen(e qu’a Tintérieur de toute ellipse ayant pour foyers
P, et Q,, et ne contenant aucune autre coupure elle est d’ailleurs uni-
forme et continue dans cette reglon, et P, Q, n’est pas pour elle une cou-
pure. On voit donc que T'on peut trouver une fonction ¢,(z) ayant dans
tout le plan la seule coupure P,Q,, et telle que la différence f(z) — ¢,(2)
n’admet plus cette coupure. En raisonnant sur cette différence, comme
nous venons de raisonner sur f(z), nous trouverons une fonction ¢.(z)
n’ayant dans tout le plan que la seule coupure P,Q,, et telle que la diffé-
rence f(z) — ¢,(2) — ¢,(z) n’admette plus la coupure P,Q,, et, en conti-
nuant de cette maniére, on trouve en résumé ’ ‘

=Y (el

¢x(2) ne possédant dans tout le plan que la coupure P;Q; et étant continue
pour tous-les autres points.

» Une seconde proposition nous est nécessaire pour pouvoir arriver &
la forme générale d’une fonction ayant 7 coupures et des poles en nombre
quelconque : c’est le théoréme relatif 4 la décomposition en facteurs pri-
maires. On va voir que cette extension peutse faire encore bien simplement.



