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» La première de ces différences n'affecte en rien le phénomène; mais

les deux autres ont pour effet d'augmenter beaucoup la portion efficace

du solide de diffraction, qui détermine l'intensité lumineuse des différents

points du plan focal de la lunette dans l'intervalle voisin des limites géo-

métriques du corps obscur et du bord lumineux de l'astre.

» Le ligament noir doit donc être, dans ce cas, bien moins obscur que
dans celui d'un passage; et, en eftet, le Rapport de M. Gonnessiat contient

ces mots « Cette traînée obscure ne paraît point gêner sensiblement

l'observation. » Mais il doit, comme dans un passage de Vénus, être un

phénomène graduel; c'est ce que les deux observateurs ont constaté ils

l'ont tous deux noté» comme estompé sur les bords.

» Enfin, les dimensions et l'intensité de ce ligament doivent varier avec

l'ouverture de l'instrument employé ceci résulte encore des deux obser-

vations que j'analyse, car le ligament a paru au moins aussi foncé à

M. Marchand qu'à M. Gonnessiat, et c'est le contraire qui aurait dû avoir

lieu si l'ouverture de l'instrument n'avait point d'influence sur les dimen-

sions et l'intensité du ligament, puisque le verre noir dont se servait le

premier était beaucoup plus absorbant que celui qu'avait employé le

second.

» En résumé, ces observations montrent que l'apparence désignée sous

le nom de ligament noir n'est point spéciale aux passages des planètes infé-

rieures sur le disque du Soleil, qu'on la rencontre dans des cas où les lois

de la diffraction peuvent évidemment seules l'expliquer; et que, en con-

séquence, lors d'un passage de Vénus ou de Mercure, cette apparence, dite

jusqu'ici singulière, doit bien être considérée comme résultant de Tinter-,

férence des ondes lumineuses qui forment l'image focale et traitée comme

telle. ?

Je suppose que les fonctions P et P' sont rationnelles en x et en z; z étant

ANALYSE mathématique. – Sur une classe d'invariants relatifs aux équations

linéaires. Note de M. H. Poincaré, présentée par M. Hermite.

« Considérons deux équations différentielles linéaires
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e étant une fonction rationnelle de x seulement. Je suppose que les inté-

grales de cette équation soient partout régulières et sans logarithmes.
Parmi les infinis de 6, je distingue ceux pour lesquels la différence des

racines de l'équation déterminante n'est pas un entier et qui sont les points

singuliers proprement dits, et ceux pour lesquels cette différence est un

entier et que j'appellerai points singuliers apparents. Je supposerai que le

point oo est un point singulier, et qu'il y a, en outre, K points singuliers
à distance finie. Je dirai que deux équations de la forme (i) appartiennent
à la même classe si les points singuliers sont les mêmes et si, pour chacun

d'eux, la différence des racines de l'équation déterminante est la même à

un entier près. Je supposerai, pour éviter une discussion qui ne présente,

d'ailleurs, aucune difficulté, que cette différence est la même dans nos

deux équations pour chaque pointsingulier, et qu'elle est égale à 2 pour

chaque point apparent. Cela posé, toute classe se divisera en deux Sous-

classes, selon que le nombre des points apparents sera pair ou impair.
» Étant données deux équations de la même sous-classe, combien faudra-

t-il de conditions pour qu'elles soient de la même famille? En d'autres

termes, combien y aura-t-il d'invariants de famille en dehors de ceux qui
déterminent la classe? Il y en aura aR – 4«

y étant l'intégrale générale de la première, les Q étant des fonctions ra-

tionnelles de x et de z, et A une fonction quelconque de ces variables.

Supposons que les fonctions P et P' soient de degré déterminé, de façon

que leurs coefficients soient en nombre limité. Il y aura certaines fonctions

de ces coefficients qui auront la même valeur pour toutes les équations
d'une même famille. Je les appellerai invariants defamille.
» Pour montrer comment on peut déterminer et étudier les invariants

de famille, je vais prendre l'exemple simple de l'équation

Je dirai que ces deux équations sont de même famille, si l'intégrale générale
de la seconde peut se mettre sous la forme

défini en fonction de x par une relation algébrique



( i4o4 )

Je suppose 2 m= h – 3. On voit que § contient in + 2 paramètres arbi-
traires, c'est-à-dire a, d, c,, c2, cm. Considérons la fonction rationnelle
– $ -h <| Elle sera de degré 2, et elle aura 3 + m + h infinis doubles.
Combien faut-il de conditions pour qu'une fonction R de degré 2 et

ayant n infinis doubles puisse se mettre sous la forme <p2– – > <p étant ra-

tionnel? Il en faut n i, et ces conditions, ainsi que les coefficients de 9,
s'expriment très simplement en fonctions des coefficients de R. Ici nous
aurons donc 2-{-h~hm conditions, et, comme h d'entre elles sont satisfaites
d'elles-mêmes, nous satisferons aux autres à l'aide des m -+- 2 paramètres
arbitraires qui restent dans <j>.On résoudra donc l'équation

y étant l'intégrale générale de (i). Cette équation sera de même forme que
(i), elle sera de même famille que (i), et elle n'admettra qu'un point appa-
rent qui sera d. Les coefficients de cette équation seront les invariants de
famille cherchés.
» La question peut se traiter par la même analyse dans le cas le plus

général. Un problème se présente maintenant je suppose que les Kpoints
singuliers de (i) soient donnés; peut-on disposer des 2K – 4 invariants,

ce qui se ramène à un problème purement algébrique. Puis on formera
l'équation dont l'intégrale générale s'écrit

» Soit h le nombre des points apparents; si, outre les K points singuliers,
les h points apparents sont donnés, il restera, dans 0, des paramètres arbi-
traires au nombre de K 2. Il résulte de là que si h = K (mod 2), il y aura,
dans chaque famille, une équation canonique qui n'aura que K – 2 points
apparents, et si h == K + 1 (mod 2), il y en aura une infinité qui auront K i
points apparents.
» Soit, par exemple, K = 3, #==1 (mod 2); voyons comment on pourra

passer de l'équation (i) à une équation de même famille n'ayant qu'un
point apparent. Soient aif a2, ak les points singuliers, b^b2, bh les
points apparents. Posons
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de telle façon que le groupe de l'équation (i) soit quelconque? Cela n'est

pas évident a priori, mais la considération des fonctions zétafuchsiennes
permet de le démontrer. »

ANALYSE mathématique. – Sur les jonctions uniformes affectées de coupures.
Note de M. E. PICARD, présentée par M. Hermite.

« On sait que M. Weierstrass, dans son Mémoire célèbre sur les fonc-
tions uniformes, a donné la forme analytique de toute fonction ayant un
nombre fini de points singuliers essentiels et des pôles en nombre quel-
conque. Je me propose de montrer que toute cette théorie peut, avec des
modifications bien simples, être étendue aux fonctions uniformes possé-
dant un nombre fini de coupures que je supposerai rectilignes. Soit donc

f(z) une fonction restant uniforme, quand on ne traverse pas certains

segments de droite P<QO P2Q2, PwQrt (nous nous bornons au cas où
ces segments n'ont aucun point commun); tout point du plan en dehors de
ces segments sera pour la fonction un point ordinaire ou un pôle, et on ne
fait aucune hypothèse sur la nature des points de chacun des segments, qui
peuvent même être des lignes de points singuliers essentiels.
» Plaçons-nous d'abord dans le cas où /(.s) est continue pour tous les

points du plan en dehors des coupures; nous allons voir que/(.z) est alors
la somme de n fonctions ayant chacune dans tout le plan une seule cou-

pure, ce qui correspond à ce théorème de M. Weierstrass d'après lequel
une fonction ayant n points singuliers est la somme de n fonctions ayant
chacune un seul point de cette nature. Étudions dans ce but la forme

de/(z) dans le voisinage de la coupure P, Qo et supposons, pour simpli-
fier, que l'origine soit le milieu de ce segment de longueur 2c et que P, Qf
soit l'axe des quantités réelles. On démontrera de suite, en faisant usage
de la transformation

que la fonction, dans le voisinage de la coupure, peut se mettre sous la
forme

qui revient simplement au développement deLaurent; les A et les B sont des
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constantes, et l'on suppose Je radical pris de telle manière que z + \/22- t2

ait un module supérieur à c. Écrivons maintenant cette expression de la

manière suivante

h = «>

» La série
S y- fe

est convergente pour tous les points du
Âmi\z- \/a2 – c- )
M=0'

`

plan en dehors de la coupure P^. Désignons-la par f{{z). Quant à la

première partie

elle n'est convergente qu'à l'intérieur de toute ellipse ayant pour foyers

P4 et Qn et ne contenant aucune autre coupure; elle est d'ailleurs uni-

forme et continue dans cette région, et P\ Q, n'est pas pour elle une cou-

pure. On voit donc que l'on peut trouver une fonction <pt(z) ayant dans

tout le plan la seule coupure P^, et telle que la différence/(s) – <pt(z)

n'admet plus cette coupure. En raisonnant sur cette différence, comme

nous venons de raisonner sur /(z), nous trouverons une fonction <p2(*0

n'ayant dans tout le plan que la seule coupure P2Q2, et telle que la diffé-

rence/^) – <p4(z) – <p2(z) n'admette plus la coupure '[P2Q2> et, en conti-

nuant de cette manière on trouve en résumé

<pA(z)ne possédant dans tout le plan que la coupure PkQk et étant continue

pour tous-les autres points.
» Une seconde proposition nous est nécessaire pour pouvoir arriver à

la forme générale d'une fonction ayant n coupures et des pôles en nombre

quelconque c'est le théorème relatif à la décomposition en facteurs pri-

maires. On va voir que cetteextension peut se faire encore bien simplement.


