Complément à l'analysis situs.

by Poincaré, H.

in: Rendiconti del Circolo Matematico di

Palermo, (page(s) 285 - 343)

Milano

Terms and Conditions

The Goettingen State and University Library provides access to digitized documents strictly for noncommercial educational, research and private purposes and makes no warranty with regard to their use for other purposes. Some of our collections are protected by copyright. Publication and/or broadcast in any form (including electronic) requires prior written permission from the Goettingen State- and University Library.

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's online system to access or download a digitized document you accept there Terms and Conditions.

Reproductions of material on the web site may not be made for or donated to other repositories, nor may be further reproduced without written permission from the Goettingen State- and University Library

For reproduction requests and permissions, please contact us. If citing materials, please give proper attribution of the source.

Contact:

Niedersaechsische Staats- und Universitaetsbibliothek Digitalisierungszentrum 37070 Goettingen Germany

Email: gdz@sub.uni-goettingen.de

COMPLÉMENT À L'ANALYSIS SITUS;

Par M. H. Poincaré, à Paris.

Adunanza del 26 marzo 1899.

SI.

Introduction.

Dans le Journal de l'École Polytechnique (volume du centenaire de la fondation de l'École, 1894) j'ai publié un mémoire intitulé Analysis situs, où j'étudie les variétés de l'espace à plus de trois dimensions et les propriétés des nombres de Betti. C'est à ce mémoire que se rapporteront les renvois que je serai amené à faire fréquemment dans la suite, en mentionnant seulement le titre Analysis situs.

Dans ce mémoire se trouve énoncé le théorème suivant: Pour toute variété fermée, les nombres de Betti également distants des extrêmes, sont égaux.

Le même théorème a été énoncé par M. Picard dans sa Théorie des fonctions algébriques de deux variables.

M. Heegaard vient de revenir sur ce même problème dans un travail très remarquable, publié en langue danoise, sous le titre « Forstudier til en topologisk teori för de algebraiske Sammenhäng » (Copenhague, det Nordiske Forlag Ernst Bojesen, 1898). D'après lui, le théorème en question est inexact et les démonstrations sont sans valeur.

Avant d'examiner les objections de M. Heegaard, il convient de faire une distinction. Il y a deux manières de définir les nombres de Betti.

Considérons une variété V que je supposerai, par exemple, fermée; soient v_1, v_2, \ldots, v_n , n variétés à p dimensions, faisant partie de V. Je suppose qu'on ne puisse pas trouver de variété à p+1 dimensions, faisant partie de V et dont v_1, v_2, \ldots, v_n constituent la frontière complète; mais que, si on leur adjoint une $(n+1)^{\rm ème}$ variété à p dimensions, que j'appellerai v_{n+1} et qui fera partie de V, on puisse trouver une variété à p+1 dimensions, faisant partie de V, dont $v_1, v_2, \ldots, v_n, v_{n+1}$ constituent la frontière complète et cela de quelque manière que l'on ait choisi la $(n+1)^{\rm ème}$ variété v_{n+1} . Dans ce cas, on dit que le nombre de Betti est égal à n+1 pour les variétés à p dimensions.

C'est la définition adoptée par Betti.

Mais on peut donner une seconde définition.

Supposons que l'on puisse trouver dans V une variété à p+1 dimensions, dont v_1, v_2, \ldots, v_n constituent la frontière complète; j'exprimerai ce fait par la relation suivante:

$$v_1 + v_2 + \ldots + v_n \sim 0$$

que j'appellerai une homologie.

Il pourra se faire que sur la frontière complète de notre variété à p+1 dimensions, une même variété v_1 se retrouve plusieurs fois; dans ce cas, elle figurera dans le premier membre de l'homologie avec un coefficient, qui devra être un nombre entier.

D'après cette définition, on peut additionner les homologies, les soustraire les unes des autres, les multiplier par un nombre entier.

Nous conviendrons également qu'il est permis de diviser une homologie par un nombre entier, quand tous les coefficients sont divisibles par cet entier. Par conséquent, s'il y a une variété à p+1 dimensions, dont la frontière complète sera constituée par 4 fois la variété v_1 , nous conviendrons qu'on peut écrire non seulement l'homologie :

mais encore l'homologie:

$$v_{\cdot} \sim 0;$$

de sorte que cette homologie signifie qu'il y a des variétés à p+1 dimensions, qui admettent pour frontière complète la variété v_1 ou un certain nombre de fois cette variété.

L'homologie

$$2v_1 + 3v_2 \sim 0$$

signifie qu'il y a des variétés à p+1 dimensions, qui ont pour frontière complète 2 fois v_1 et 3 fois v_2 , ou 4 fois v_1 et 6 fois v_2 , ou 6 fois v_1 et 9 fois v_2 , etc.

Telles sont les conventions que j'ai adoptées dans l'Analysis situs, page 19.

Je dirai que plusieurs variétés sont indépendantes, si elles ne sont pas liées par aucune homologie à coefficients entiers.

Si alors il y a n variétés indépendantes à p dimensions, le nombre de Betti, d'après la seconde définition, est égal à n+1.

Cette seconde définition, qui est celle que j'ai adoptée dans l'Analysis situs, ne concorde pas avec la première.

Le théorème énoncé plus haut, et critiqué par M. Heegaard, est vrai pour les nombres de Betti, définis de la seconde manière, et faux pour les nombres de Betti, définis de la première manière.

C'est ce que prouve l'exemple cité par M. Heegaard, page 86. Si l'on adopte la première définition, on a:

$$P_{\scriptscriptstyle \rm I}=2$$
, $P_{\scriptscriptstyle 2}=1$

et par conséquent

$$P_{\scriptscriptstyle 2} < P_{\scriptscriptstyle 1}$$
.

Si l'on adopte, au contraire, la seconde définition, on trouve :

$$P_{\scriptscriptstyle \rm I}={\scriptscriptstyle \rm I},\ P_{\scriptscriptstyle \rm I}={\scriptscriptstyle \rm I},$$

et par conséquent

$$P_{\cdot} = P_{\cdot}$$

conformément au théorème énoncé.

C'est ce que prouvait également un exemple que j'ai cité, moimême, dans l'Analysis situs. C'est le 3^{ème} exemple, page 51. Mais en renvoyant à cet exemple et à cette page de l'Analysis situs, je dois signaler une faute d'impression, qui pourrait gêner le lecteur (*).

Au lieu de

$$ABB'A' \equiv DD'C'C$$

il faut lire

$$ABB'A' \equiv C'CDD';$$

au lieu de

$$AB \equiv B'D' \equiv C'A'$$

il faut lire

$$AB \Longrightarrow B'D' \Longrightarrow C'C.$$

Nous avons formé (page 66) les équivalences fondamentales, qui s'écrivent de la façon suivante:

$$2C_{1} \equiv 2C_{2} \equiv 2C_{3} \equiv 0$$
, $4C_{1} \equiv 0$;

nous pouvons en déduire les homologies:

$$4C_1 \sim 4C_2 \sim 4C_3 \sim 0.$$

Comme, d'après notre convention, on peut diviser ces homologies par 4, nous arrivons au système suivant d'homologies fondamentales:

$$C_{1} \sim C_{2} \sim C_{3} \sim 0.$$

Si alors $P_{_{\rm I}}$ et $P_{_{\rm 2}}$ sont les nombres de Betti, définis de la seconde manière, on trouve

$$P_{r} = P_{r} = r$$
.

^(*) Je profite de l'occasion pour signaler un autre erratum de l'Analysis situs. Au bas de la page 102, il faut lire: « ou plus précisément les deux v_{q+1} , auxquelles v_q appartiendra, appartiendront aux mêmes v_{q+1} , aux mêmes v_{q+3} , ..., aux mêmes v_p ; de telle façon que la suppression de v_q et l'annexion mutuelle des deux v_{q+1} , ne changera rien aux v_{q+2} , aux v_{q+3} , ..., aux v_p ».

Mais l'égalité entre les nombres P_1 et P_2 ne subsisterait pas si on avait adopté la première définition, qui est celle de Betti; nous aurions toujours $P_2 = 1$, mais nous n'aurions plus $P_1 = 1$.

En effet, il n'y a pas de variété à deux dimensions qui ait pour frontière complète la ligne fermée $C_{\scriptscriptstyle \rm I}$, sans quoi nous aurions l'équivalence $C_{\scriptscriptstyle \rm I}\equiv {\rm o}$.

Ce qui est vrai seulement, c'est qu'il y a une variété à deux dimensions, admettant pour frontière 4 fois la ligne C_1 . Donc P_1 n'est pas égal à 1.

Revenons au théorème d'après lequel les nombres de Betti, également distants des extrèmes, sont égaux.

La démonstration que j'en ai donnée dans l'Analysis situs, semble s'appliquer également bien aux deux d'finitions des nombres de Betti; elle doit donc avoir un point faible, puisque les exemples qui précèdent, montrent suffisamment que le théorème n'est pas vrai pour la première définition.

M. Heegaard s'en est bien rendu compte; mais je ne crois pas que sa première objection soit fondée.

Après avoir cité la façon dont je définis les variétés V_1, V_2, \ldots, V_p (Analysis situs, page 43), par les équations $\Phi = 0$, $F_i^* = 0$, il ajoute (page 70) « Enhver af Mangfoldighederne V skulde altsau kunne være den fulstaendige Skoering mellem p Mangfoldigheder af h-1 Dimensioner i U». Cela n'est pas exact, car, outre mes égalités, j'ai un certain nombre d'inégalités, que j'ai introduites au début du mémoire et que j'ai négligé d'écrire de nouveau dans la suite; mes variétés ne sont donc pas des intersections complètes.

La seconde objection est, au contraire, fondée. « Naar omvendt, dit M. Heegaard, Homologien $\sum V_i \sim$ 0 ikke finder Sted, saa i U' kan legges en lukket Kurve V', saa at

$$\sum N(V', V_i) \neq 0$$

men det er ikke sikkert, at denne Kurve kan udskæres af nogen Mangfoldighed V ». C'est lå, en effet, le véritable point faible de la démonstration.

Rend. Circ. Matem., t. XIII, parte 1a.—Stampato il 13 giugno 1899.

Il est donc nécessaire de revenir sur la question, et c'est l'objet du présent travail.

Souvent, pour simplifier les démonstrations, j'ai envisagé seulement le cas des variétés fermées à 3 dimensions, contenues dans l'espace à 4 dimensions. On pourrait facilement les étendre au cas général.

J'envisage, donc, dans la suite, une variété V fermée, mais pour calculer ses nombres de Betti, je la suppose divisée en variétés plus petites, de façon à former un polyèdre, au sens donné à ce mot à la page 100 de l'Analysis situs.

§ II.

Schéma d'un polyèdre.

Considérons, donc, comme à la page 100 de l'Analysis situs, un polyèdre à p dimensions, c'est-à-dire une variété V à p dimensions, divisée en variétés v_p ; les frontières des v_p seront les v_{p-1} , celles des v_{p-1} seront les v_p , ..., celles des v_p (sommets).

J'appellerai α_i le nombre des v_i .

Soient a_1^q , a_2^q , ..., $a_{\alpha_q}^q$ les différentes v_q .

Soit a_1^q une des variétés v_q et a_1^{q-1} une des variétés v_{q-1} , qui lui sert de frontière. Étudions les rapports de a_1^q et de a_1^{q-1} .

Soient

(1)
$$F_{x} = F_{2} = \dots = F_{n-q} = F_{n-q+1} = 0, \quad \varphi_{\gamma} > 0$$

les égalités et les inégalités qui définissent a_1^{q-1} , d'après la première définition des variétés (Analysis situs, page 4).

Les relations qui définissent a_1^q pourront se mettre sous la forme :

(2)
$$F_1 = F_2 = \ldots = F_{n-q} = 0$$
, $F_{n-q+1} > 0$, $\varphi_r > 0$.

Dans ce cas, nous dirons que la relation de a_1^q et de a_1^{q-1} est directe.

Cette relation deviendrait *inverse*, si l'une de ces deux variétés était remplacée par la variété opposée; elle redeviendrait directe, si chacune des deux variétés était remplacée par la variété opposée.

On sait qu'une variété est remplacée par la variété opposée (Analysis situs, page 15), quand on permute deux des fonctions F (qui, égalées à zéro, donnent les équations qui définissent la variété), ou qu'on change le signe de l'une d'elles.

Ainsi les deux variétés

$$F_1 = F_2 = F_3 = 0;$$
 $F_1 = F_2 = 0,$ $F_3 > 0;$ $F_1 = F_2 = F_3 = 0;$ $F_1 = F_3 = 0,$ $F_2 < 0;$ $F_1 = F_2 = F_3 = 0;$ $F_2 = F_3 = 0,$ $F_3 > 0;$

sont en relation directe; tandis que les deux variétés

$$F_{1} = F_{2} = F_{3} = 0;$$
 $F_{1} = F_{2} = 0,$ $F_{3} < 0;$ $F_{1} = F_{2} = F_{3} = 0;$ $F_{1} = F_{3} = 0,$ $F_{2} > 0;$

sont en relation inverse.

Cela posé, soit $\mathfrak{s}_{i,j}^q$ un nombre qui sera égal à o, si a_j^{q-1} n'est pas frontière de a_i^q ; à + 1, si a_j^{q-1} est frontière de a_i^q et en relation directe avec a_i^q ; et, enfin, à - 1, si a_j^{q-1} est frontière de a_i^q , mais en relation inverse avec a_i^q .

Nous conviendrons d'écrire la congruence

$$a_i^q \equiv \sum_j \varepsilon_{i,j}^q a_j^{q-1},$$

qui nous fait connaître les frontières de a_i^q .

L'ensemble des congruences (3), relatives aux différentes v_p , v_{p-1} , ..., v_o de V, constitue ce qu'on peut appeler le schéma d'un polyèdre.

On peut se poser deux questions:

- 1° Un schéma étant donné, existera-t-il toujours un polyèdre, qui y corresponde?
 - 2° Deux polyèdres qui ont même schéma, sont-ils homéomorphes? Sans aborder, pour le moment, ces deux questions, cherchons

quelques-unes des conditions auxquelles doit satisfaire un schéma, pour qu'un polyèdre y puisse correspondre.

Considérons l'une des v_{p-1} , a_1^{p-1} par exemple; cette variété devra séparer, l'une de l'autre, deux des v_p et deux seulement; de sorte que, parmi les nombres

$$\varepsilon_{i,i}^{p}$$
,

il y en aura un qui sera égal à +1, un qui sera égal à -1 et tous les autres seront égaux à 0.

Ce n'est pas tout; envisageons l'une quelconque des v_q , a_i^q par exemple, et une quelconque des v_{q-2} , a_k^{q-2} par exemple.

De deux choses, l'une : ou bien a_k^{q-2} n'appartiendra pas à a_i^q , et dans ce cas tout les produits

$$\varepsilon_{i,j}^q \varepsilon_{j,k}^{q-1}$$

seront nuls, car si a_j^{q-1} n'appartient pas à a_i^q , le premier facteur est nul; si, au contraire, a_j^{q-1} appartient à a_i^q , la variété a_k^{q-2} ne peut pas appartenir à a_j^{q-1} (sans quoi, elle appartiendrait à a_i^q , contrairement à l'hypothèse), et le second facteur doit être nul.

Ou bien a_k^{q-2} appartiendra à a_i^q ; mais alors nous pourrons raisonner sur la variété a_i^q , comme nous raisonnions tout à l'heure sur la variété V, et nous conclurons que a_k^{q-2} doit séparer, l'une de l'autre, deux des variétés v_{q-1} , qui appartiennent à a_i^q , et deux seulement: soient a_i^{q-1} et a_i^{q-1} .

Parmi les produits (4) il n'y en aura que deux qui ne seront pas nuls, à savoir

$$\varepsilon_{i,i}^q \, \varepsilon_{i,k}^{q-1}, \qquad \varepsilon_{i,2}^q \, \varepsilon_{2,k}^{q-1}.$$

Pour tous les autres, en effet, ou bien a_j^{q-1} n'appartiendra pas à a_i^q , ou bien a_k^{q-2} n'appartiendra pas à a_j^{q-1} .

Ces deux produits sont d'ailleurs égaux : l'un à +1, l'autre à -1. On aura donc dans tous les cas:

$$\sum_{j} \varepsilon_{i,j}^{q} \varepsilon_{j,k}^{q-i} = 0.$$

Nous avons de même

$$\sum_{i} \varepsilon_{i,i}^{p} = 0,$$

et, plus généralement, quel que soit k:

$$\sum_{i} \varepsilon_{i,k}^{p} = 0.$$

La relation (5^{bis}) peut être regardée, à un certain point de vue, comme un cas particulier de la relation (5).

Soit P la portion de l'espace à p+1 dimensions, limitée par le polyèdre V; alors la frontière complète de P se composera des diverses variétés v_p , qui, par leur ensemble, forment V; nous pourrons donc écrire, au sens de la congruence (3),

$$P \equiv \sum_{i} a_{i}^{p},$$

ou encore

$$P = \sum_{i} \varepsilon_{o,i}^{t+1} a_{i}^{t},$$

où les nombres $\varepsilon_{0,i}^{p+1}$ seront tous, par définition, égaux à 1.

A ce compte, la relation (5bis), qui peut s'écrire

$$\sum_{i} \varepsilon_{\circ,i}^{p+1} \varepsilon_{i,k}^{p} = 0,$$

n'est plus qu'un cas particulier de la relation (5).

Nous avons, ensuite, chaque v_1 qui a pour limites deux v_0 , et deux seulement, ce qui nous donne des congruences (3) de la forme:

$$a_i^{\scriptscriptstyle \mathrm{I}} \equiv a_j^{\scriptscriptstyle \mathrm{O}} - a_k^{\scriptscriptstyle \mathrm{O}},$$

et une relation analogue à (5) et (5bis):

$$\sum_{i} \varepsilon_{i,j}^{\mathrm{I}} = \mathrm{o},$$

qui rentrerait encore dans la forme (5), en convenant de faire tous les ε^{o} égaux à + 1.

D'autre part, envisageons l'une des a_i^q , toutes les a_j^{q+1} auxquelles elle sert de frontière; toutes les a_k^{q+2} , auxquelles ces a_j^{q+1} servent de frontières et ainsi de suite. L'ensemble de toutes ces variétés constituera ce que nous avons appelé un aster (Analysis situs, page 106).

Nous avons vu (loc. cit., page 107) que le polyèdre qui correspond à un aster, doit être simplement connexe. Ainsi une condition pour qu'un polyèdre puisse correspondre à un schéma donné, c'est que les polyèdres qui correspondent aux différents asters, d'après la convention de la page 107 de l'*Analysis situs*, soient tous simplement connexes.

Considérons maintenant une des a_i^q , toutes les a_j^{q-1} qui lui servent de frontières, les a_k^{q-2} qui servent de frontières à ces a_j^{q-1} et ainsi de suite. Cet ensemble de variétés constituera un polyèdre à q dimensions; nous supposerons que ce polyèdre soit simplement connexe.

Ce n'est plus là une condition nécessaire pour qu'un polyèdre puisse correspondre au schéma; c'est simplement une condition que, sauf avis contraire, nous supposerons remplie.

Pour éclairer ces définitions par quelques exemples, voyons d'abord quel est le schéma du tétraèdre généralisé, défini à la page 105 (Analysis situs).

Les faces de ce tétraèdre seront définies par les n + 1 équations:

(6)
$$x_1 = 0, \quad x_2 = 0, \dots, x_n = 0$$
 $x_1 + x_2 + \dots + x_n = 1.$

On obtiendra les a_i^q en supprimant q+1 de ces équations; pour définir le sens de la variété a_i^q , nous supposerons qu'on supprime ces q+1 équations, mais sans changer l'ordre des n-q équations restantes.

Cela posé, considérons la relation de a_i^q et de a_j^{q-1} et cherchons à déterminer le nombre $\varepsilon_{i,j}^q$.

D'abord, pour que a_j^{q-1} appartienne à a_i^q , il faut que a_j^{q-1} soit définie par les n-q équations qui définissent a_i^q , auxquelles on devra adjoindre une $(n-q+1)^{\rm enc}$ équation, prise parmi les équations (6). S'il n'est pas ainsi, le nombre $\epsilon_{i,j}^q$ sera nul.

Supposons, donc, que a_j^{q-1} soit obtenu en supprimant les q équations qui occupent les

$$\alpha_1, \alpha_2, \ldots, \alpha_q$$

rangs.

Supposons que a_i^q soit obtenue en supprimant, en outre, la $\beta^{\text{ème}}$ équation; alors le nombre $\epsilon_{i,j}^q$, dont la valeur absolue sera toujours égale à 1, aura même signe que le produit :

$$(\beta - \alpha_1)(\beta - \alpha_2) \dots (\beta - \alpha_n)$$

Il est aisé de vérifier alors que la relation (5) a lieu.

Considérons, en effet, la variété a_k^{q-2} , obtenue en supprimant les équations de rang $\alpha_1, \alpha_2, \ldots, \alpha_{q-1}$ et la variété a_i^q , obtenue en supprimant, en outre, les équations de rang β et γ . (Il est clair que si a_i^q ne s'obtenait pas en supprimant les mêmes équations que pour a_k^{q-2} , plus deux autres, tous les produits $\epsilon_{i,i}^q$ $\epsilon_{i,k}^{q-1}$ seraient nuls).

Dans ce cas, tous ces produits seront encore nuls, sauf deux:

$$\mathbf{\varepsilon}_{i,1}^q \, \mathbf{\varepsilon}_{1,k}^{q-1}$$
 et $\mathbf{\varepsilon}_{i,2}^q \, \mathbf{\varepsilon}_{2,k}^{q-1}$,

qui correspondront aux deux variétés a_1^{q-1} et a_2^{q-2} , obtenues respectivement en supprimant les équations de rang $\alpha_1, \alpha_2, \ldots, \alpha_{q-1}, \beta$ et celles de rang $\alpha_1, \alpha_2, \ldots, \alpha_{q-1}, \gamma$.

Alors les quatre nombres

$$\boldsymbol{\varepsilon}_{i-1}^q$$
, $\boldsymbol{\varepsilon}_{1,k}^{q-1}$, $\boldsymbol{\varepsilon}_{i,2}^q$, $\boldsymbol{\varepsilon}_{2,k}^{q-1}$

auront respectivement même signe que:

$$(\gamma - \beta)(\gamma - \alpha_1)(\gamma - \alpha_2) \dots (\gamma - \alpha_{q-1}),$$

$$(\beta - \alpha_1)(\beta - \alpha_2) \dots (\beta - \alpha_{q-1}),$$

$$(\beta - \gamma)(\beta - \alpha_1)(\beta - \alpha_2) \dots (\beta - \alpha_{q-1}),$$

$$(\gamma - \alpha_1)(\gamma - \alpha_2) \dots (\gamma - \alpha_{q-1}).$$

On vérifie ainsi que les deux produits, qui ne sont pas nuls, sont égaux et de signe contraire.

C. Q. F. D. (*)

§ III.

Nombres de Betti réduits.

Je m'en vais chercher, maintenant, les nombres de Betti, relatifs à un polyèdre, mais afin d'éviter l'équivoque, dont j'ai signalé plus haut la possibilité, je conviendrai de définir ces nombres de la seconde manière, c'est-à-dire que P_q — I sera le nombre de variétés fermées à q dimensions, que l'on peut tracer sur notre polyèdre V et qui sont linéairement indépendantes, je veux dire, qui ne sont liées par aucune homologie à coefficients entiers, au sens de l'Analysis situs, page 18.

Mais je me proposerai d'abord de déterminer le nombre $P_q'-1$ des variétés à q dimensions, fermées et linéairement indépendantes, que l'on peut tracer sur notre polyèdre V, mais en nous bornant à celles qui sont des combinaisons des variétés v_q .

Le nombre P_q sera, alors, ce que j'appellerai le nombre de B et ti réduit.

Les variétés à q dimensions, qui sont des combinaisons des v_q , pourront évidemment être représentées par :

$$\sum_{i} \lambda_{i} a_{i}^{q},$$

les λ_i étant des coefficients entiers et les lettres a_i^q continuant à désigner les différentes variétés v_q .

Quelle est d'abord la condition pour que la variété $\sum_i \lambda_i a_i^q$ soit fermée?

Pour cela, cherchons quelles sont les variétés v_{q-1} , qui forment les frontières de cette variété. Pour les trouver, il suffit évidemment de remplacer a_i^q par sa valeur donnée par la congruence (3).

^(*) Le polyèdre ainsi défini, ainsi que tout polyèdre à n dimensions, limité par n+1 variétés planes, s'appellera tétraèdre généralisé rectiligne. J'appellerai tétraèdre généralisé toute variété homéomorphe à un tétraèdre généralisé rectiligne.

Cet ensemble de variétés frontières sera donc donné par la formule :

$$\sum_{i} \sum_{j} \lambda_{i} \, \varepsilon_{i,j}^{q} \, a_{j}^{q-1}.$$

Pour que la variété $\sum_{i} \lambda_{i} a_{i}^{q}$ soit fermée, il suffit, donc, que l'on ait identiquement :

$$\sum_{i}\sum_{j}\lambda_{i}\varepsilon_{i,j}^{q}a_{j}^{q-1}=0,$$

c'est-à-dire que, quel que soit j, on ait:

$$\sum_{i} \lambda_{i} \, \varepsilon_{i,j}^{q} = \mathrm{o}.$$

En d'autres termes, la variété $\sum_{i} \lambda_{i} a_{i}^{q}$ sera fermée, si l'on a :

$$(7, q) \qquad \sum_{i} \lambda_{i} a_{i}^{q} \Longrightarrow 0,$$

en vertu des congruences (3, q); j'appelle ainsi celles des congruences (3), qui lient les a_i^q aux a_i^{q-1} .

Cherchons maintenant les homologies qui peuvent exister entre les variétés a_i^q . On obtiendra toutes ces homologies, en combinant celles que l'on peut obtenir de la façon suivante.

Considérons la congruence:

(8)
$$a_k^{q+1} \equiv \sum_i \varepsilon_{k,i}^{q+1} a_i^q,$$

qui, d'après la convention que nous venons de faire, est une congruence (3, q+1); remplaçons le signe \equiv par \sim , et le premier membre par zéro; il viendra:

$$(9, q) \qquad \sum_{i} \varepsilon_{k,i}^{q+1} a_i^q \sim 0.$$

Cette homologie aura évidenment lieu, puisque, par définition, elle exprime, comme la congruence (8), que les a_i^q forment la frontière complète de a_k^{q+1} .

Rend. Circ. Matem., t. XIII, parte 1^a.—Stampato il 14 giugno 1899.

Nous démontrerons plus loin (\S 6), qu'il n'y en a pas d'autres. Je désigne cette homologie par (9, q) pour marquer qu'elle a lieu entre les a^q .

Je dis que si l'homologie (9, q) a lieu, la congruence

(10, q)
$$\sum_{i} \varepsilon_{k,i}^{q+1} a_{i}^{q} \equiv 0$$

sera une conséquence des congruences (3, q).

Remplaçons, en effet, les a_i^q par leurs valeurs, données par ces congruences (3, q); il viendra:

$$\sum_{i} \varepsilon_{k,i}^{q+1} a_{i}^{q} \Longrightarrow \sum_{i} \sum_{j} \varepsilon_{k,i}^{q+1} \varepsilon_{i,j}^{q} a_{j}^{q-1}.$$

Le second membre est identiquement nul en vertu des relations (5).

Cela posé, soit α_q le nombre des variétés a_i^q ; soit α_q' le nombre de ces variétés qui restent distinctes, si l'on ne regarde pas comme distinctes des variétés liées par une homologie de la forme (9, q); soit α_q'' le nombre de ces variétés qui restent distinctes, si l'on ne regarde pas comme distinctes des variétés liées par une congruence de la forme (7, q).

Il résulte de ces définitions:

1° qu'il y a $\alpha_q - \alpha'_q$ homologies distinctes de la forme (9, q); 2° qu'il y a $\alpha_q - \alpha''_q$ congruences distinctes de la forme (7, q); 3° que

$$\alpha_q' \geq \alpha_q'';$$

car si plusieurs a_i^q sont liées par une homologie de la forme (9, q), elles seront liées également par la congruence (10, q) correspondante.

Enfin le nombre cherché P_q' — 1 est égal à

$$\alpha'_q - \alpha''_q$$
,

car les variétés fermées de la forme $\sum_{i} \lambda_{i} a_{i}^{q}$, réellement distinctes, sont en nombre égal à celui des congruences (7, q), c'est-à-dire au nombre de $\alpha_{q} - \alpha_{q}^{r}$.

Le nombre P_q' — I est le nombre de ces variétés qui restent

distinctes, en ne regardant pas comme distinctes celles qui sont liées par une homologie (9, q). Or le nombre de ces homologies est $\mathbf{z}_q - \mathbf{z}_q'$; nous avons donc:

$$P_q'-1=(\mathbf{x}_q-\mathbf{x}_q'')-(\mathbf{x}_q-\mathbf{x}_q')=\mathbf{x}_q'-\mathbf{x}_q''$$
 C. Q. F. D.

Soient a_1^q , a_2^q , ..., a_i^q des variétés v_q , au nombre de i et

$$a_{1}^{q} \equiv \sum_{i,j} \epsilon_{1,j}^{q} a_{j}^{q-1},$$

$$a_{2}^{q} \equiv \sum_{i,j} \epsilon_{2,j}^{q} a_{j}^{q-1},$$

$$\vdots$$

$$a_{i}^{q} \equiv \sum_{i,j} \epsilon_{i,j}^{q} a_{j}^{q-1}$$

les congruences (3) correspondantes. Formons les homologies correspondantes:

$$\sum \varepsilon_{i,j}^q a_j^{q-i} \sim 0, \quad \sum \varepsilon_{2,j}^q a_j^{q-i} \sim 0, \ldots, \sum \varepsilon_{i,j}^q a_j^{q-i} \sim 0.$$

La condition nécessaire et suffisante pour que ces homologies soient distinctes, c'est que l'on n'ait entre les i variétés a_1^q , a_2^q , ..., a_i^q aucune congruence de la forme:

$$\lambda_{1} a_{1}^{q} + \lambda_{2} a_{2}^{q} + \ldots + \lambda_{i} a_{i}^{q} \equiv 0.$$

Le nombre des homologies distinctes est donc égal au nombre des a_i^q distinctes, en tenant compte des congruences (7, q). Donc :

$$\alpha_{q-1} - \alpha_{q-1} = \alpha_q''$$

ou

$$\alpha_{q-1} = \alpha'_{q-1} + \alpha''_{q}.$$

Nous aurons d'autre part

$$\alpha_{o}^{'}=1.$$

Si, en effet, on peut aller d'un sommet quelconque ao à un autre

sommet quelconque a_i° , en suivant des arêtes (c'est-à-dire si le polyèdre est d'un seul tenant), on aura l'homologie :

$$a_i^{\circ} \sim a_i^{\circ}$$

c'est-à-dire qu'il n'y aura qu'un seul sommet distinct, en tenant compte des homologies.

Envisageons maintenant la congruence (3bis)

$$P \Longrightarrow \sum a_i^p$$
;

l'homologie correspondante s'écrit:

$$\sum a_i^p \sim 0$$
,

et il n'y a pas d'autre homologie (9, p). Donc

$$\alpha_p = \alpha_p' + 1$$
.

De plus, le polyèdre étant d'un seul tenant, une seule des combinaisons $\sum \lambda_i a_i^p$ pourra être fermée, c'est le polyèdre lui-même dans son entier, représenté par la formule $\sum a_i^p$.

Nous aurons donc une seule congruence de la forme (7, p):

$$\sum a_i^p \Longrightarrow 0.$$

Done

$$\alpha_p = \alpha_p'' + 1, \quad \alpha_p' = \alpha_p''.$$

Nous avons donc la série d'équations:

$$lpha_{0}' \equiv 0,$$
 $lpha_{0} \equiv lpha_{0}' + lpha_{1}'', \qquad lpha_{1}' - lpha_{1}'' \equiv P_{1}' - 1,$
 $lpha_{1} \equiv lpha_{1}' + lpha_{2}'', \qquad lpha_{2}' - lpha_{2}'' \equiv P_{2}' - 1,$
 $lpha_{1} \equiv lpha_{1}' + lpha_{p}'', \qquad lpha_{p-1}' - lpha_{p-1}'' \equiv P_{p-1}' - 1,$
 $lpha_{p-1} \equiv lpha_{p-1}' + lpha_{p}'', \qquad lpha_{p-1}' - lpha_{p}'' \equiv 0,$

d'où l'on tire aisément:

$$\alpha_{p} - \alpha_{p-1} + \alpha_{p-2} - \ldots \pm \alpha_{1} \mp \alpha_{0} = 1 - (P'_{p-1} - 1) + \ldots + (P'_{2} - 1) \pm (P'_{1} - 1) \mp 1,$$

tout à fait analogue à la formule:

$$\alpha_{p} - \alpha_{p-1} + \alpha_{p-2} - \ldots \pm \alpha_{1} \mp \alpha_{0} = \mathbf{I} - (P_{p-1} - \mathbf{I}) + \ldots + (P_{2} - \mathbf{I}) \pm (P_{1} - \mathbf{I}) \mp \mathbf{I},$$

que nous avons trouvée dans l'Analysis situs, page 121.

S IV.

Subdivision des Polyèdres.

Considérons un polyèdre V, à p dimensions, avec ses diverses variétés :

$$a_i^p$$
, a_i^{r-1} , ..., a_i^r , a_i^o .

Supposons que l'on subdivise chacune des variétés a_i^p en plusieurs autres, que j'appellerai les b_i^p ; soient ensuite b_i^{p-1} les variétés à p-1 dimensions, qui servent de frontière aux b_i^p ; soient b_i^{p-2} les variétés à p-2 dimensions, qui servent de frontières aux b_i^{p-1} ; ... et, enfin, b_i^o les variétés à o dimensions (sommets), qui servent de frontières aux b_i^1 (arêtes).

On aura ainsi un nouveau polyèdre V', qui sera dérivé du polyèdre V, au sens que j'ai attaché à ce mot à la page 101 de l'Analysis situs.

On peut supposer, d'ailleurs, que si une variété v_{q-1} , simplement ou multiplement connexe, sert de frontière à deux variétés b_j^q et b_k^q , elle ne forme pas forcément une seule des variétés b_i^{q-1} , mais peut être elle-même subdivisée en plusieurs variétés b_i^{q-1} . Dans ce cas, pour reprendre la terminologie des pages 102 et 103 de l'Analysis situs, ces variétés b_i^{q-1} seront irrégulières et les variétés b_i^{q-2} , qui les séparent les unes des autres, seront singulières.

Cela posé, recherchons une classification des variétés b_i^q .

Si une variété b_i^q ne fait pas partie d'une des variétés a_j^q , elle fera partie d'une des variétés a_j^{q+1} , ou d'une des variétés a_j^{q+2} , ..., ou, tout au moins, d'une des variétés a_i^p .

Peut-elle faire partie à la fois de deux variétés a_i^m et a_k^m ?

D'après la façon dont la subdivision a été supposée faite, en ajoutant toujours de nouvelles frontières, sans en supprimer jamais, cela ne pourra arriver que si ces deux variétés a_j^m et a_k^m sont contigües et ont une frontière commune a_k^{m-1} , et si b_i^q fait partie de cette frontière a_k^{m-1} .

Je suppose alors que b_i^q fasse partie de a_j^h , et ne fasse partie d'aucune variété a_k^m , où m < h. La variété a_j^h existe toujours et l'on a $h \ge q$; de plus, la variété a_j^h est unique, c'est-à-dire que b_i^q ne peut faire partie à la fois de deux variétés différentes a_j^h et a_k^h .

Si donc je conviens de ranger dans une même classe toutes les variétés b_i^q , qui font partie de la variété a_j^b , sans faire partie d'aucune des variétés a_k^m , où m < b, toute variété b_i^q fera partie d'une classe et d'une seule.

Je pourrai alors représenter b_i^q par une notation à quatre indices

$$b_i^q = B(q, h, j, k);$$

l'indice q indique le nombre des dimensions de b_i^q ; les indices h et j indiquent que b_i^q fait partie de la classe a_j^h ; et l'indice k sert à distinguer les unes des autres les différentes variétés d'une même classe. On a $b \ge q$.

Nous aurons, alors, pour définir le polyèdre V et sa subdivision: 1° Les congruences (3, q), relatives au polyèdre V, que j'écrirai:

$$a_i^q \equiv \sum_j \varepsilon_{i,j}^q a_j^{q-1}.$$

2° Les équations qui donnent la subdivision de la variété a_i^q :

(1, q, i)
$$a_i^q = \sum_k B(q, q, i, k)$$
.

3° Les congruences analogues aux congruences (3), mais relatives

au polyèdre V'; je les écrirai:

(2, q, h, j, k)
$$B(q, h, j, k) = \sum \zeta B(q - 1, h', j', k')$$
.

Les ζ sont des nombres égaux à ± 1 , ou à 0; ils dépendent des sept indices q, h, j, k, h', j', k', de sorte que je les écrirai, quand cela sera nécessaire, sous la forme:

$$\zeta(q, h, j, k, h', j', k')$$
.

Sous le signe \sum , les indices b', j', k' peuvent prendre toutes les valeurs. Observons, cependant, que les B(q-1), qui servent de frontière à B(q, h, j, k), doivent, comme B(q, h, j, k), faire partie de a_j^h ; mais pourront faire partie d'autres variétés $a_j^{b'}$, d'un nombre moindre de dimensions, mais faisant partie de a_j^h . On aura donc

$$b' \leq b$$
, $b' \geq q - 1$.

D'ailleurs si h' = h, on aura j' = j.

Pour que les relations (1), (2), (3) puissent définir une véritable subdivision, elles doivent satisfaire à certaines conditions.

Les relations (1, q, i), (3, q, i) donnent

$$\sum_{k} B(q, q, i, k) \equiv \sum_{i} \varepsilon_{i,j}^{q} a_{j}^{q-1}.$$

Si dans le premier membre je remplace B(q, q, i, k) par sa valeur, tirée de (2, q, q, i, k), et a_j^{q-1} par sa valeur tirée de (1, q-1, j), les deux membres devront devenir identique; voilà une première condition, qui est évidente; elle n'est d'ailleurs pas suffisante.

§ V.

Influence de la subdivision sur les nombres de Betti réduits.

Soit $\sum \alpha B(q, h, j, k)$ une combinaison des variétés b_i^q , qui représente une variété fermée à q dimensions, de telle sorte que l'on

ait, avec nos notations,

(1)
$$\sum \alpha B(q, h, j, k) \equiv 0, \qquad (h \geq q)$$

Parmi les variétés b_i^q qui figurent dans le premier membre de (1), réunissons celles qui appartiennent à une même classe. Soit

$$S \propto B(q, h, j, k)$$

l'ensemble de celles qui appartiennent à la classe a_j^h ; le signe de sommation S signifie, donc, qu'on ne prend que les variétés d'une même classe, tandis que le signe \sum signifie qu'on les prend toutes.

On aura alors:

(2)
$$S \propto B(q, h, j, k) \equiv \sum \beta B(q - 1, h', j', k'),$$

c'est-à-dire que la variété à q-1 dimensions $\sum \beta B(q-1,h',j',k')$ forme la frontière complète de la variété à q dimensions

$$S \propto B(q, h, j, k)$$
.

Les variétés $a_j^{b'}$ doivent appartenir à la frontière de a_j^b , ou se confondre avec a_j^b ; en effet, B(q-1,b',j',k') appartient à $a_j^{b'}$ et, d'autre part, à l'une des B(q,b,j,k), qui fait lui-même partie de a_j^b , si donc $a_j^{b'}$ ne faisait pas partie de a_j^b , B(q-1,b',j',k') ferait partie d'une variété a_k^m , partie commune à a_j^b et $a_j^{b'}$, et qui aurait moins de b' dimensions. Cela est contraire à la définition que nous avons donnée des classes.

D'autre part $a_{j}^{b'}$ ne peut pas se confondre avec a_{j}^{b} . Soit, en effet,

$$S_{1} \alpha_{1} B(q, h_{1}, j_{1}, k_{1}) = \sum \alpha B(q, h, j, k) - S \alpha B(q, h, j, k)$$

l'ensemble des variétés qui figurent dans le premier membre de (1), et qui n'appartiennent pas à la classe a_j^b ; on aura évidemment:

$$S_1 \alpha_1 B(q, h_1, j_2, k_1) \equiv -\sum \beta B(q - 1, h', j', k').$$

Donc B(q-1, h', j', k') doit faire partie à la fois de $a_{j'}^{h'}$, et de l'une des $B(q, h_1, j_1, k_1)$, et, par conséquent, de l'une des $a_{j1}^{h_1}$, différentes de a_{j}^{h} . Si donc $a_{j'}^{h'}$ se confondait avec a_{j}^{h} ,

$$B(q-1, b', j', k') = B(q-1, b, j, k)$$

devrait appartenir à une variété a_k^m , partie commune à a_j^h et $a_{j1}^{h_1}$. De deux choses, l'une : ou bien a_j^h ne ferait pas partie de $a_{j1}^{h_1}$, et alors on aurait encore m < h, ce qui serait encore contraire à la définition des classes; ou bien a_j^h ferait partie de $a_{j1}^{h_1}$, et alors on aurait $h_i > h$. Supposons que j'ai choisi la classe a_j^h , qui correspond au plus grand nombre h. Alors on ne pour a pas avoir $h_i > h$, et $a_j^{h_i}$ devra appartenir à la frontière de a_j^h .

La congruence (2) entraîne l'homologie

(3)
$$\sum \beta B(q-1, h', j', k') \sim 0;$$

comme, d'autre part, a_j^b est simplement connexe et que toutes les variétés B(q-1,b',j',k') sont situées sur la frontière de a_j^b , le premier membre de (3), représentant une variété fermée à q-1 dimensions, située sur cette frontière, formera la frontière complète d'une variété à q dimensions

$$\sum \gamma B(q, b^{\prime\prime}, j^{\prime\prime}, k^{\prime\prime}),$$

également située sur la frontière de a_j^h . (Il y aurait exception si l'on avait h=q). De sorte qu'on aura la congruence

(4)
$$\sum \beta B(q-1, b', j', k') \equiv \sum \gamma B(q, b'', j'', k'').$$

D'ailleurs, comme B(q, h'', j'', k'') est sur la frontière de a_j^h , il en sera de même de $a_{j''}^{h''}$; car si B(q, h'', j'', k'') fait partie à la fois de $a_{j''}^{h''}$ et d'une variété $a_{j'}^{h'}$, faisant partie de la frontière de a_j^h ; ou bien $a_{j''}^{h''}$ ne fait pas partie de $a_{j'}^{h'}$, et alors B devrait faire partie de a_k^m , où m < h'', et nous avons vu que cela était impossible.

Rend. Circ. Matem., t. XIII, parte 1a.—Stampato il 14 giugno 1899.

306

On a done

$$b^{\prime\prime} < b$$
.

Les congruences (2) et (4) donnent

$$S \propto B(q, h, j, k) \equiv \sum \gamma B(q, h'', j'', k''),$$

et, comme toutes les variétés qui figurent dans cette congruence, font partie de a_j^b , ou de sa frontière, comme, d'autre part, a_j^b est simplement connexe, on aura l'homologie

$$S \propto B(q, h, j, k) \sim \sum \gamma B(q, h'', j'', k'').$$

On peut, donc, remplacer, dans le premier membre de (1), l'ensemble des termes $S \propto B(q, h, j, k)$ par l'ensemble des termes

$$\sum \gamma B(q, b'', j'', k'').$$

Si on opère de même pour toutes les classes correspondantes à une même valeur de h, la plus grande de toutes, on aura remplacé le premier membre de (1) par

$$\sum \alpha_2 B(q, h_2, j_2, k_2),$$

où la plus grande valeur de h₂ sera plus petite que la plus grande valeur de h. On aura, d'ailleurs, l'homologie

$$\sum \alpha B(q, h, j, k) \sim \sum \alpha_2 B(q, h_2, j_2, k_2).$$

En continuant de la sorte, on pourra diminuer encore la plus grande valeur de h. On ne sera arrêté que quand on aura partout b=q.

On peut donc, finalement, remplacer le premier membre de (1) par :

$$\sum \alpha_o B(q, q, j_o, k_o),$$

et on aura d'ailleurs:

(5)
$$\sum \alpha B(q, h, j, k) \sim \sum \alpha_o B(q, q, j_o, k_o)$$

(6)
$$\sum \alpha_{o} B(q, q, j_{o}, k_{o}) \equiv 0.$$

Cela posé, dans le premier membre de (6) prenons les congruences qui appartiennent à une classe déterminée $a_{j_0}^b$; soit :

$$S \propto_{\alpha} B(q, q, j_{\alpha}, k_{\alpha}).$$

Nous aurons:

(7)
$$S\alpha_{o}B(q, q, j_{o}, k_{o}) \equiv \sum \beta_{o}B(q - 1, k'_{o}, j'_{o}, k'_{o})$$

Nous verrions, comme plus haut, que $a_{j_o}^{b_o'}$ doit faire partie de la frontière de $a_{j_o}^q$, d'où $b_o' < q$ (et, comme $b_o' \ge q - 1$).

Soit alors:

(8)
$$a_{io}^{q} = \sum B(q, q, j_{o}, k_{o})$$

l'équation (1, q, j_o), qui définit la subdivision de la variété $a_{j_o}^q$, et soient $B(q, q, j_o, 1)$ et $B(q, q, j_o, 2)$ deux variétés, figurant dans le second membre de (8); je dis qu'elles devront figurer dans le premier membre de (6) avec le même coefficient α_o .

Supposons, d'abord, que ces deux variétés soient limitrophes; parmi les variétés à q-1 dimensions qui leur serviront de frontière commune, il y en aura, au moins, une qui n'appartiendra pas à la frontière de a_{jo}^q , qui fera, par conséquent, partie de la classe a_{jo}^q .

Soit $B(q-1, q, j_o, 1)$ cette variété: elle n'appartiendra pas à aucune autre des variétés $B(q, q, j_o, k)$.

Soit alors

$$B(q, q, j_o, 1) \equiv \varepsilon b_i^{q-1}$$

$$B(q, q, j_o, 2) \equiv \varepsilon b_i^{q-1}$$

$$B(q, q, j_o, k) \equiv \varepsilon b_i^{q-1} \qquad (k > 2)$$

les congruences $(2, q, q, j_o, 1)$, $(2, q, q, j_o, 2)$, $(2, q, q, j_o, k)$, qui nous font connaître les frontières des variétés $B(q, q, j_o)$. Voyons avec quel coefficient ε la variété $B(q-1, q, j_o, 1)$ figurera dans ces congruences.

D'après ce que nous venons de voir, ce sera avec le coefficient — 1 dans la première, avec le coefficient — 1 dans la seconde, avec le coefficient o dans les autres.

Soient donc α_1 et α_2 les valeurs des coefficients α_0 , correspondantes aux deux variétés $B(q, q, j_0, 1)$ et $B(q, q, j_0, 2)$.

La combinaison des congruences (9) nous fournira une congruence

(10)
$$S\alpha_{o}B(q, q, j_{o}, k_{o}) \equiv \varepsilon b_{i}^{q-1},$$

qui devra être identique à (7), et le coefficient ε , avec lequel figurera $B(q-1, q, j_0, 1)$ dans le second membre de (10), sera évidemment $\alpha_1 - \alpha_2$. Mais $B(q-1, q, j_0, 1)$ ne peut pas figurer dans le second membre de (7), puisque nous avons vu que dans ce second membre on doit avoir $b'_0 = q - 1$. Donc on doit avoir $\alpha_1 - \alpha_2 = 0$.

Ainsi les deux variétés $B(q, q, j_o, 1)$ et $B(q, q, j_o, 2)$ devront avoir même coefficient α_o , si elles sont limitrophes. Cela sera encore vrai, si elles ne le sont pas, parce que a_{jo}^q étant d'un seul tenant, on pourra passer d'une de ces variétés à l'autre par une suite d'autres variétés analogues, chacune d'elles étant limitrophe de celle qui la précède.

Donc le coefficient a est le même pour toutes nos variétés. D'où:

$$S\alpha_{o}B(q, q, j_{o}, k_{o}) = \alpha_{o}\sum B(q, q, j_{o}, k_{o}) = \alpha_{o}a_{jo}^{q}$$

La congruence (6) et l'homologie (5) peuvent donc s'écrire:

(5^{bis})
$$\sum \alpha B(q, h, j, k) \sim \sum \alpha_o a_{jo}^q$$

$$\sum \alpha_{o} a_{jo}^{q} \equiv 0.$$

Si un nombre quelconque de congruences de la forme (1) sont distinctes, c'est-à-dire si aucune combinaison linéaire de leurs premiers

membres n'est pas homologue à 0, je dis que les congruences (6^{bis}) seront également distinctes, et réciproquement.

En effet la comparaison des relations (1), (5^{bis}) et (6^{bis}) montre que si l'on a

$$\sum \alpha B(q, h, j, k) \sim 0,$$

on aura également

$$\sum \alpha_{\rm o} a_{j\rm o}^q \sim 0$$
,

et réciproquement.

Il résulte de là que si les a_i^q et les b_i^q sont simplement connexes, les nombres de Betti réduits sont les mêmes pour les deux polyèdres V et V'.

Soit maintenant W une variété quelconque, fermée, à q dimensions, située sur V. On peut toujours construire un polyèdre V', dérivé de V, au sens de la page 101 de l'Analysis situs, et tel que W soit une combinaison des b_i^q .

Nous devons donc conclure que: si les a_i^q sont simplement connexes, les nombres de Betti réduits, relatifs au polyèdre V, sont identiques aux nombres de Betti proprement dits, définis de la seconde manière.

§ VI.

Retour sur les démonstrations du § III.

Nous avons à revenir ici sur un point essentiel du raisonnement qui précède. J'ai dit plus haut qu'il n'y avait d'autre homologie que les homologies (9, q), obtenues au \S 3. Cela n'est pas évident, cela ne serait pas même toujours vrai, si nous ne supposions pas les a_i^q simplement connexes.

Démontrons-le d'abord pour un polyèdre P, dans l'espace à 4 dimensions.

Considérons un certain nombre de variétés v_2 ou a_i^2 , appartenant à ce polyèdre; je les appellerai ses faces, de même que les a_i^3 , les a_i^4 et les a_i^6 de ce polyèdre P pourront s'appeler ses cases, ses arêtes et ses sommets.

Supposons que l'on ait entre ces faces a_i^2 une homologie

$$\sum a_i^2 \sim 0.$$

Cette homologie signifie qu'il existe une variété à 3 dimensions, V, faisant partie de P, et admettant $\sum a_i^2$ comme frontière complète. Je dis que V se compose d'un certain nombre de cases de P.

Si, en effet, un point d'une case appartient à V, il en sera de même de tout autre point de cette case, car on peut aller du premier point au second, sans rencontrer aucune face et, par conséquent, sans rencontrer la frontière de V et sans sortir de V.

Le théorème est donc évident en ce qui concerne les polyèdres de l'espace à 4 dimensions et les homologies entre les faces.

Soit maintenant une homologie entre les arêtes:

$$\sum b_{i} \sim 0$$
,

les b_i étant un cetain nombre d'arêtes $a_i^{\rm t}$. Cela veut dire qu'il existe une variété à 2 dimensions, V, dont $\sum b_i$ est la frontière complète.

Je désignerai par $V(a_i^k)$ l'ensemble des points communs à V et à a_i^k .

Les $V(a_i^3)$ seront des variétés à 2 dimensions, dont la frontière sera formée soit par quelques-unes des arêtes b_1 , soit par les $V(a_i^2)$, les a_j^2 étant les faces qui servent de frontière à la case a_i^3 . On ne peut, en effet, sortir de $V(a_i^3)$ qu'en sortant de V par sa frontière, c'est-à-dire, en traversant une des b_1 , ou qu'en sortant de a_i^3 par sa frontière, c'est-à-dire en traversant une face a_j^2 , et, comme on reste sur V, en traversant une des lignes $V(a_i^2)$.

La variété totale V est formée de l'ensemble des $V(a_i^2)$.

Considérons maintenant $V(a_i^2)$; nous devons distinguer deux cas:

1° ou bien aucune des arêtes b_i n'appartient à a_i^2 . Nous ne pourrons alors sortir de $V(a_i^2)$, qu'en sortant de a_i^2 , c'est-à-dire en traversant une des arêtes $a_j^{\rm t}$; la frontière de $V(a_i^2)$ est donc formée par les $V(a_j^{\rm t})$.

 2° ou bien une (ou plusieurs) arête b_i fait partie de a_i^2 ; dans ce cas elle fera également partie de $V(a_i^2)$; mais il pourra se faire que $V(a_i^2)$ se compose, outre l'arête b_i , d'autres lignes; ces lignes auront pour frontières des points $V(a_i^1)$, ou des points situés sur b_i . Ces points situés sur b_i , et où les autres lignes, dont se compose $V(a_i^2)$, viennent se terminer sur l'arête b_i , seront ce que j'appellerai des points nodaux.

Dans tous les cas $V(a_i^2)$ sera une ligne ou un ensemble de lignes; si, en effet, $V(a_i^2)$ était une surface, c'est que a_i^2 , ou une portion de cette face, ferait partie de V. Mais j'ai le droit de déformer V, pourvu que je ne change pas sa frontière $\sum b_i$; je puis toujours, par une déformation infiniment petite, éviter qu'une région de a_i^2 fasse partie de V.

Pour la même raison je puis toujours supposer que $V(a_i^i)$ se réduit à un ou plusieurs points, sauf si a_i^i est l'une des arêtes b_i , auquel cas $V(a_i^i)$ sera cette arête elle-même.

Cela posé, je puis déformer V:

1° de manière que tous les $V(a_i^1)$ [autres que $V(b_i)$] soient des sommets. Soit a_j^0 un sommet de a_i^1 . Soit M l'un des points dont se compose $V(a_i^1)$; autour du point M et sur V décrivons une petite courbe fermée C. Soit K l'aire infiniment petite découpée sur V par cette courbe C. Construisons une sorte de manchon, infiniment délié, entourant l'arête a_i^1 et passant par C. Par le sommet a_j^0 je mêne une surface quelconque S; elle viendra découper sur le manchon une courbe fermée très petite C'. Soit K' la portion de la surface S limitée par C; soit K' la surface du manchon comprise entre K'. On figurera ainsi une sorte de tambour, dont K' sera la surface latérale, K' et K' les deux bases.

Considérons alors la variété

$$V' = V - K + H + K'.$$

Cette variété aura même frontière que V; mais elle ne coupera plus a_i^1 en M, puisqu'on a supprimé la portion K de V, où se trouvait ce point M. En revanche, H ne coupera pas l'arête a_i^1 , et K' coupera cette arête en a_i^0 .

En opérant de même sur tous les points d'intersection de V et de a_i^{T} , on amènerait tous ces points à coincider avec a_i^{O} .

2º de manière que tous les points nodaux soient des sommets.

Soit, en effet, a_i^2 une face passant par l'arête b_i ; l'intersection de V et a_i^2 comprendra, outre b_i , d'autres lignes; soit c l'une de ces lignes, venant se terminer sur b_i en un point nodal D. Soient a_j^o et a_k^o les deux sommets de b_i . Par b_i je fais passer une surface S, faisant partie de P et ne coupant pas a_i^2 . Comme a_j^o et a_k^o sont sur la frontière de V, je joins ces deux points par une ligne L, située sur V et s'écartant peu de b_i . Cette ligne s'écartant peu de b_i , je puis mener par L une autre surface S', qui ne passera pas par b_i , mais qui coupera S suivant une ligne L', très peu différente de b_i . Ces trois lignes L, b_i et L' auront mêmes extrémités a_i^o et a_k^o .

Soit V_1 la portion de V, comprise entre L et b_1 ; soit S_1 la portion de S, comprise entre L' et b_1 , et S_1 la portion de S', comprise entre L et L'.

Je remplace V par

$$V' = V - V_{\scriptscriptstyle \rm I} + S_{\scriptscriptstyle \rm I} + S_{\scriptscriptstyle \rm I}.$$

V' a mêmes frontières que V, mais $V'(a_i^2)$ ne présente plus de points nodaux, en dehors de a_j^o et a_k^o ; car si une ligne analogue à c venait aboutir à un point nodal, situé entre a_j^o et a_k^o , la portion de cette ligne c, voisine de ce point nodal, devrait se trouver sur S_i , ce qui est impossible, puisque S ne coupe pas a_i^2 .

En résumé: nous pouvons toujours supposer que les $V(a_i^2)$ sont des lignes, dont les extrémités sont des sommets de a_i^2 .

Soit alors L une des lignes, dont se compose $V(a_i^2)$, ayant pour extrémités deux sommets a_j^o et a_k^o de a_i^2 . On peut aller de a_j^o à a_k^o , en suivant le périmètre de a_i^2 ; soit $\sum a_m^1$ l'ensemble des arêtes de a_i^2 , comprises entre a_j^o et a_k^o . Comme la face a_i^2 est supposée simplement connexe, la ligne L la divisera en deux parties. Soit Q l'une de ces parties, comprise entre L et $\sum a_m^1$.

Soient a_p^3 et a_q^3 les deux cases séparées par a_i^2 . Par les arêtes $\sum a_m^i$ je fais passer une surface S, peu différente de la face a_i^2 et située toute entière dans la case a_p^3 ; par les mêmes arêtes je fais passer une seconde

surface S', peu différente de a_i^2 et située dans la case a_q^3 ; ces deux surfaces S et S' couperont V, suivant deux lignes L_1 et L_1' , peu différentes de L, et ayant pour extrémités a_j° et a_k° . Soit S_1 la portion de S comprise entre $\sum a_m^{\rm T}$ et L_1 ; soit S_1 la portion de S' comprise entre $\sum a_m^{\rm T}$ et L_1' ; soit V_1 la portion de V comprise entre L_1 et L_1' ; c'est sur V_1 que se trouvera L.

Soit maintenant

$$V' = V - V_1 + S_1 + S_1.$$

V' a mêmes frontières que V; V' ne passe plus par L, mais en revanche passe par les arêtes $\sum a_m^{\rm t}$.

En opérant de la même manière pour toutes les lignes telles que L, on voit qu'on peut toujours supposer que tous les $V(u_i^2)$ se réduisent à des combinaisons d'arêtes.

Comme les frontières de $V(a_i^3)$ sont ou des b_i ou des $V(a_j^2)$, on voit que les frontières des $V(a_i^3)$ sont des combinaisons d'arêtes de P, et, bien entendu, toutes ces arêtes doivent appartenir à a_i^3 . Ainsi donc $V(a_i^3)$ est une surface simplement ou multiplement connexe, limitée par une ou plusieurs lignes fermées, qui, elles-mêmes, sont des combinaisons d'arêtes de a_i^3 .

Comme la case a_i^3 est simplement connexe, ces lignes fermées subdiviseront la surface de cette case en un certain nombre de régions, et comme ces lignes fermées sont des combinaisons d'arêtes de a_i^3 , ces régions seront des combinaisons des faces de a_i^3 .

On pourra toujours trouver une combinaison de ces régions, qui aura mêmes frontières que $V(a_i^3)$. Supposons, par exemple, que la frontière de $V(a_i^3)$ se compose de trois lignes fermées L, L_1 , L_2 ; la ligne L divisera la surface de a_i^3 en deux régions R et R'; les lignes L_1 et L_2 diviseront de même cette surface en deux régions R_1 et R'_1 , ou R_2 et R'_2 . Je suppose qu'en parcourant L dans un certain sens, on ait à sa gauche $V(a_i^3)$, et R et R' à sa droite; je suppose de même qu'en parcourant L_1 et L_2 dans un sens convenable, on ait à sa gauche $V(a_i^3)$ et R_1 , ou $V(a_i^3)$ et R_2 .

Alors la variété $R+R_1+R_2$ aura même frontière que $V(a_i^3)$; on pourra donc remplacer $V(a_i^3)$ par $R+R_1+R_2$.

Rend. Circ. Matem., t. XIII, parte 1a.—Stampato il 15 giugno 1899. 40

En opérant de la même manière sur tous les $V(a_i^3)$, on aura remplacé V par une autre variété, qui aura même frontière $\sum b_i$, et qui sera une combinaison de faces de P.

Le théorème est donc démontré en ce qui concerne les polyèdres de l'espace à 4 dimensions et les homologies entre les arêtes.

On le démontrerait de même pour un polyèdre quelconque.

ፍ VII.

Polyèdre réciproque.

Soit P un polyèdre dans l'espace à 4 dimensions; ce polyèdre sera subdivisé en un certain nombre de variétés v_3 , que j'appellerai ses cases, et que je désignerai par a_i^3 . Ces cases seront separées les unes des autres par des variétés v_2 ou a_i^2 , que j'appellerai les faces; ces faces auront pour frontières des variétés v_1 , ou a_i^1 , que j'appellerai les arêtes, et les extrémités des arêtes seront des points v_0 ou a_i^0 , que j'appellerai les sommets.

Je supposerai, bien entendu, que les cases et les faces sont simplement connexes.

Marquons, à l'intérieur de chaque case a_i^3 , un point $P(a_i^3)$; à l'intérieur de chaque face a_i^2 , un point $P(a_i^2)$; sur chaque arête a_i^1 , un point $P(a_i^4)$; chaque arête se trouvera ainsi partagée en deux parties par le point $P(a_i^4)$.

Joignons par des lignes le point $P(a_i^2)$ à chacun des sommets de la face a_i^2 et à chacun des points $P(a_j^1)$, correspondant aux diverses arêtes a_j^1 de la face a_i^2 . Toutes ces lignes devront être tracées sur la face a_i^2 . Cette face sera ainsi partagée en triangles, et le nombre de ces triangles sera double du nombre des arêtes de a_i^2 . Nous ferons de même pour toutes les autres faces.

Considérons maintenant une case a_i^3 ; décomposons en triangles T toutes les faces a_j^2 de cette case, ainsi que nous venons de le dire. Construisons des triangles curvilignes, ayant pour sommet commun le point $P(a_i^3)$ et pour bases les différents côtés des différents triangles T. La case a_i^3 sera ainsi décomposée en tétraèdres, ayant $P(a_i^3)$ pour sommet commun et pour bases les différents triangles T.

Nous distinguerons six sortes de lignes (qui seront les arêtes de nos tétraèdres):

celles de la \mathbf{I}^{ere} sorte joindront un sommet a_i^{o} à un point $P(a_j^{\text{I}})$; chaque arête sera ainsi formée de deux lignes de la \mathbf{I}^{ere} sorte;

celles de la 2^{de} sorte joindront un point $P(a_i^3)$ à un point $P(a_i^2)$;

Les lignes de la 2^{de} sorte peuvent s'accoupler deux à deux de deux manières :

1° Ce que j'appellerai la ligne b_i^1 sera formée de deux lignes de la 2^{de} sorte, joignant un même point $P(a_i^2)$ à deux points $P(a_j^3)$ et $P(a_k^3)$, correspondant aux deux cases a_j^3 et a_k^3 séparées par la face a_i^2 . Il y aura donc autant de lignes b_i^4 que de faces a_i^2 .

 $\mathbf{2}^{o}$ Ce que j'appellerai une ligne c sera formée de deux lignes de la $\mathbf{2}^{de}$ sorte, joignant un même point $P(a_{i}^{3})$ à deux points $P(a_{j}^{2})$ et $P(a_{k}^{2})$, correspondant à deux faces a_{j}^{2} et a_{k}^{2} de la case a_{j}^{3} .

Il nous faut définir des surfaces que j'appellerai les surfaces b_i^2 .

Soit une arête quelconque a_i^t et le point $P(a_i^t)$. Supposons que les faces qui passent par a_i^t , soient successivement:

$$a_1^2, a_2^2, \ldots, a_n^2,$$

et que les cases, auxquelles appartient a_i^1 , soient successivement:

$$a_1^3, a_2^3, \ldots, a_n^3,$$

de telle façon que a_1^2 sépare a_1^3 de a_2^3 , a_2^2 sépare a_2^3 de a_3^3 , ..., et, qu'enfin, a_q^2 sépare a_q^3 de a_1^3 . Convenons, pour plus de symétrie, de désigner indifféremment la case a_1^3 par a_1^3 ou a_{q+1}^3 .

Décomposons chaque case en tétraèdres, et envisageons en particulier les tétraèdres qui admettent pour sommet le point $P(a_i^i)$. Considérons les 2q triangles curvilignes :

$$P(a_k^1) P(a_k^3) P(a_k^2), P(a_k^1) P(a_{k+1}^3) P(a_k^3). \quad (k = 1, 2, ..., q)$$

L'ensemble de ces 2q triangles formera un certain polygone que j'appellerai b_i^2 , et qui aura pour frontière l'ensemble des lignes

$$b_1^{\scriptscriptstyle \rm I}$$
, $b_2^{\scriptscriptstyle \rm I}$, ..., $b_q^{\scriptscriptstyle \rm I}$

Définissons maintenant les volumes b_i^3 ; le volume b_i^3 sera l'ensemble des tétraèdres qui admettent pour sommet le point a_i^0 ; ce volume sera un polyèdre à 3 dimensions, simplement connexe, qui aura pour frontière l'ensemble des surfaces b_k^2 , correspondant aux arêtes a_k^1 , qui aboutissent au point a_i^0 .

La juxtaposition des volumes b_i^3 constituera un nouveau polyèdre P', que j'appellerai le polyèdre réciproque de P, et qui aura pour cases le b_i^3 , pour faces les b_i^2 , pour arêtes les b_i^4 , pour sommets les points $b_i^6 = P(a_i^3)$.

A chaque case b_i^3 de P' correspondra un sommet $a_i^{\rm o}$ de P, where $a_i^{\rm o}$ is a sommet $b_i^{\rm o}$ is a somme

De plus, au sens du \S II, il y aura la même relation, par exemple, entre l'arête b_i^1 et la face b_j^2 , qu'entre la face a_i^2 et l'arête a_j^1 .

Si donc les congruences caractéristiques du polyèdre P s'écrivent:

$$a_i^3 \equiv \sum_j \varepsilon_{i,j}^3 a_i^2, \quad a_i^2 \equiv \sum_j \varepsilon_{i,j}^2 a_i^2, \quad a_i^2 \equiv \sum_j \varepsilon_{i,j}^2 a_j^0,$$

celles du polyèdre P' s'écriront:

$$b_i^3 \equiv \sum_j \varepsilon_{i,j}^{\scriptscriptstyle \mathrm{I}} b_j^{\scriptscriptstyle 2}, \quad b_i^2 \equiv \sum_j \varepsilon_{i,j}^{\scriptscriptstyle 2} b_j^{\scriptscriptstyle 1}, \quad b_i^{\scriptscriptstyle \mathrm{I}} \equiv \sum_j \varepsilon_{i,j}^{\scriptscriptstyle 3} b_j^{\scriptscriptstyle 0}.$$

Considérons maintenant une ligne c, formée de deux lignes de la seconde sorte, joignant un même point $P(a_i^3)$ à deux points $P(a_j^2)$ et $P(a_k^2)$.

Soient a_m^o et a_l^o deux sommets, appartenant respectivement tous deux à la case a_l^3 . Soient d et d' les deux lignes de la $3^{\rm eme}$ sorte qui joignent respectivement $P(a_j^2)$ à a_m^o , et $P(a_k^2)$ à a_p^o .

Comme a_m^0 et u_p^0 appartiennent à une même case a_i^3 , on pourra aller de l'un de ces sommets à l'autre, en suivant une ligne brisée formée d'arêtes u_q^1 appartenant à u_i^3 .

Soit $\sum a_q^{\tau}$ cette ligne brisée, dont les extrémités sont a_m° et a_p° ; l'ensemble des lignes $c - d - \sum a_q^{\tau} + d'$ sera une ligne fermée, ce que j'exprimerai par la congruence :

$$c \equiv d + \sum a_q^{\mathbf{r}} - d'.$$

Comme a_i^3 est simplement connexe, cette ligne fermée sera la frontière d'une variété à 2 dimensions, intérieure à a_i^3 , ce que j'exprimerai par l'homologie:

$$c \sim d + \sum a_q^{\mathrm{t}} - d'$$
.

Réciproquement: soit $\sum a_q^1$ une ligne brisée, formée d'arêtes appartenant toutes à a_i^3 , et dont les extrémités sont les sommets a_m^0 et a_p^0 ; ces deux sommets appartiendront respectivement à deux faces a_i^2 et a_k^2 , faisant toutes deux partie de a_i^3 . Soient les trois lignes :

$$c = P(a_i^2) P(a_i^3) + P(a_i^3) P(a_k^2), \quad d = P(a_i^2) a_m^0, \quad d' = P(a_k^2) a_k^0.$$

On aura encore

$$c \sim d + \sum a_q^{\scriptscriptstyle \text{I}} - d'$$
.

Soit maintenant a_i° un sommet appartenant à deux faces a_j° et a_k° . Soient les deux lignes de la 3^{eme} sorte :

$$d_j = P(a_j^2) a_i^\circ, \quad d_k = P(a_k^2) a_i^\circ.$$

Nous pouvons tracer une ligne L, s'écartant infiniment peu du sommet a_i° , et allant d'un point de a_i° à un point de a_k° .

Supposons, pour fixer les idées, que cette ligne traverse trois cases et qu'elle rencontre successivement la face a_j^2 , la case a_j^3 , la face a_m^2 , la case a_m^3 , la face a_p^2 , la case a_p^3 , et enfin la face a_k^2 .

Construisons les trois lignes c:

$$c_{j} = P(a_{j}^{2}) P(a_{j}^{3}) + P(a_{j}^{3}) P(a_{m}^{2}),$$
 $c_{m} = P(a_{m}^{2}) P(a_{m}^{3}) + P(a_{m}^{3}) P(a_{p}^{2}),$
 $c_{p} = P(a_{p}^{2}) P(a_{p}^{3}) + P(a_{p}^{3}) P(a_{p}^{2}),$

et les deux lignes de la 3eme sorte:

$$d_m = P(a_m^2) a_i^0, \quad d_p = P(a_p^2) a_i^0.$$

On aura:

$$c_j \equiv d_j - d_m$$
, $c_m \equiv d_m - d_p$, $c_p \equiv d_p - d_k$;

et comme les trois cases a_j^3 , a_m^3 , a_p^3 sont simplement connexes:

$$c_j \sim d_j - d_m$$
, $c_m \sim d_m - d_p$, $c_p \sim d_p - d_k$,

et enfin:

$$c_j + c_m + c_p \sim d_j - d_k.$$

On peut donc toujours trouver une ligne brisée, formée de lignes c et homologue à $d_j - d_k$, d_j et d_k étant des lignes de la 3^{ème} sorte, aboutissant à un même sommet.

Cela posé, soit

$$\sum b_i^{\scriptscriptstyle \rm I} \equiv {\rm o}$$

une congruence entre les arêtes b_i^{i} du polyèdre P'.

La ligne brisée $\sum b_i^1$ est évidemment formée d'un nombre pair de lignes de la $2^{\rm emc}$ sorte, et en parcourant cette ligne brisée, on rencontrera successivement q faces

$$a_1^2$$
, a_2^2 , ..., a_q^2 ,

pour revenir à la face a_1^2 , que je désignerai également par a_{q+1}^2 ; et on rencontrera q cases

$$a_1^3, a_2^3, \ldots, a_p^3,$$

pour révenir à la case a_1^3 , que je désignerai également par a_{q+1}^3 , de sorte que la face a_k^2 séparera la case a_k^3 de la case a_{k+1}^3 .

Notre congruence s'écrit alors:

$$\sum [P(a_k^3) P(a_k^2) + P(a_k^2) P(a_{k+1}^3)] \equiv 0,$$

ou, ce qui revient au même,

$$\sum_{k=1}^{n} \left[P(a_{k+1}^2) P(a_k^3) + P(a_k^3) P(a_k^2) \right] = 0.$$

Soit alors a_k° un sommet de la face a_k° , appartenant, par conséquent, à la fois aux cases a_k° et a_{k+1}° .

Soit d_k la ligne de la 3^{ème} sorte $P(a_k^2)a_k^0$; nous venons de voir qu'il existe une ligne brisée A_k , formée d'arêtes appartenant à la case a_k^3 , et telle que l'on ait l'homologie:

$$P(a_{k-1}^2)P(a_k^3) + P(a_k^3)P(a_k^2) \sim d_{k-1} + A_k - d_k$$

En additionnant toutes ces homologies, le premier membre se réduit à :

$$\sum [P(a_{k-1}^2)P(a_k^3) + P(a_k^3)P(a_k^2)] = \sum b_i^1;$$

les lignes de la $3^{\text{ème}}$ sorte d_k disparaissent, et il reste :

$$\sum b_i^{\scriptscriptstyle {
m I}} \sim \sum A_k$$
 ,

et par conséquent

$$\sum b_i^{\mathrm{t}} \equiv \sum A_k \equiv \mathrm{o}.$$

Donc, à toute congruence $\sum b_i^* \equiv$ o entre les arêtes de P', correspond une congruence $\sum A_k \equiv$ o entre les arêtes de P, et telle que l'on ait :

$$\sum b_i^i \sim \sum A_k$$
.

Si donc on a $\sum b_i' \sim$ o, on aura $\sum A_k \sim$ o, et réciproquement. Soit maintenant

$$\sum A_k \equiv 0$$

une congruence entre les arêtes de P; supposons que A_k soit une ligne brisée formée d'arêtes appartenant à la case a_k^3 .

Le premier membre de la congruence (2) se composera de q

semblables lignes brisées:

$$A_{\scriptscriptstyle 1}, A_{\scriptscriptstyle 2}, \ldots, A_{\scriptscriptstyle q},$$

et je désignerai indifféremment A_1 par A_2 ou A_{q+1} , et A_q par A_0 ou A_q . Soient a_{k+1}^o et a_k^o les deux extrémités de la ligne A_k ; le sommet a_k^o appartiendra à la fois aux cases a_k^3 et a_{k+1}^3 ; soit a_k^2 la face de a_k^3 , et a_{k+1}^2 la face de a_{k+1}^3 , auxquelles appartient a_k^o .

Soient les lignes de la 3^{ème} sorte

$$d_k = P(a_k^2) a_k^0, \quad d_{k+1} = P(a_{k+1}^2) a_k^0,$$

et d'autre parte:

$$c_k = P(a_k^2) P(a_k^3) + P(a_k^3) P(a_k^{-2}).$$

Nous avons vu que

$$A_k \sim -d_k + c_k + d'_k.$$

D'autre part, les lignes d_{k+t} et d_k aboutissent à un même sommet a_k° ; nous avons vu également que l'on peut trouver une combinaison C_k de lignes c, telle que l'on ait

$$C_k \sim d'_k - d_{k-1}$$
.

En additionnant toutes ces homologies, je trouve:

$$\sum A_k \sim \sum c_k + \sum C_k$$
,

et par conséquent:

$$\sum c_k + \sum C_k \equiv 0.$$

Le premier membre de cette dernière congruence est une combinaison de lignes c, ou, ce qui revient au même, une combinaison d'arêtes b_i^1 du polyèdre P', de sorte que je puis poser :

$$\sum c_k + \sum C_k = \sum b_i^{\mathrm{r}},$$

ďoù

$$\sum A_k \sim \sum b_i^{\mathrm{r}}$$
.

En résumé: à toute congruence entre les arêtes de P, correspond une congruence entre celles de P', et réciproquement, et la condition nécessaire et suffisante pour que le premier membre de l'une des congruences soit homologue à zéro, c'est que l'autre le soit.

En d'autres termes, le nombre des congruences distinctes entre les arêtes est le même pour P et P', en ne considérant pas des congruences comme distinctes, quand une combinaison linéaire des premiers membres de ces congruences est homologue à zéro.

En d'autres termes encore, le nombre de Betti réduit, relatif aux arêtes de P, est égal au nombre de Betti réduit, relatif aux arêtes de P'.

On pourrait arriver au même résultat, en remarquant que l'on peut construire un polyèdre qui serait, à la fois, dérivé du polyèdre P et dérivé du polyèdre réciproque P', et en appliquant le théorème du \S 5.

Nous verrons plus loin, au § 10, que cette proposition peut être présentée sous une autre forme.

D'autre part, cela peut permettre, plus simplement qu'au § 5, de démontrer que les nombres de Betti réduits sont égaux aux nombres de Betti proprement dits.

En effet la définition du polyèdre P' comporte un certain arbitraire: ses sommets b_i^o ne sont assujettis qu'à être intérieurs aux cases a_i^3 de P. Dans ces conditions, on peut évidemment choisir toujours le polyèdre P' de façon qu'une ligne fermée quelconque soit une combinaison des b_i^1 .

§ VIII.

Démonstration du théorème fondamental.

Soit N_1 le nombre des arêtes de notre polyèdre P, N_2 le nombre des faces, N_3 celui des cases. Formons un tableau d'après les règles suivantes.

Rend. Circ. Matem., t. XIII, parte 12.—Stampato il 15 giugno 1899.

Le tableau aura $N_2 + N_3$ colonnes, N_2 dites de la 1ère sorte et N_3 dites de la 2^{de}; il aura $N_2 + N_1$ lignes, N_2 de la 1ère et N_1 de la 2^{de} sorte. Voici quels seront les éléments du tableau:

- 1° Pour l'élément de la $i^{\text{ème}}$ ligne de la $1^{\text{ère}}$ sorte et la $j^{\text{ème}}$ colonne de la $1^{\text{ère}}$ sorte, j'écrirai 1, si i=j, et 0, si $i\neq j$.
- 2° Les éléments appartenant à une ligne de la 2^{de} sorte et à une colonne de la 2^{de} sorte, seront tous nuls.
- 3° L'élément de la $i^{\text{ème}}$ colonne de la $1^{\text{ère}}$ sorte et de la $j^{\text{ème}}$ ligne de la 2^{de} sorte, sera $\epsilon_{i,j}^2$, $\epsilon_{i,j}^2$ étant le nombre qui nous fait connaître la relation entre la face a_i^2 et l'arête a_j^{I} .
- 4° L'élément de la $i^{\text{ème}}$ ligne de la $1^{\text{ère}}$ sorte et de la $j^{\text{ème}}$ colonne de la 2^{de} sorte, sera $\mathbf{z}_{i,j}^3$, c'est-à-dire le nombre qui fait connaître la relation entre la case a_i^3 et la face a_i^2 .

Notre tableau, s'il y a par exemple deux cases, quatre faces et trois arêtes, présentera un aspect tel que celui-ci:

	1	O	o	0	ε	ε	
	O	I	О	0	ε	ε	
	O	o	1	0	ε	ε	
(1)	O	O	o	I	ε	ε	
	ε	ε	ε	ε	o	o	
	ε	ε	3	ε	0	О	
	ε	ε	ε	ε	o	o	

Je n'ai pas écrit les indices des nombres e pour simplifier.

Voici maintenant les opérations que je regarde comme permises sur ce tableau.

- 1° Ajouter une colonne à une autre de même sorie, ou l'en retrancher.
 - 2° Ajouter une ligne à une autre de même sorte, ou l'en retrancher.
- 3° Permuter deux colonnes de même sorte, en changeant tous les signes de l'une d'elles.

4° Permuter deux lignes de même sorte, en changeant tous les signes de l'une d'elles.

Toutes ces transformations, pour lesquelles les éléments du tableau restent entiers, s'appelleront les transformations arithmétiques du tableau.

On peut s'en servir pour simplifier la partie du tableau qui appartient aux colonnes de la 1ère sorte et aux lignes de la 2^{de} sorte, et celle qui appartient aux colonnes de la 2^{ème} sorte et aux lignes de la 1ère sorte.

Voici jusqu'où l'on peut pousser la simplification, d'après des théorèmes bien connus d'arithmétique; quand la réduction sera terminée:

L'élément de la $i^{\text{ème}}$ colonne de la $1^{\text{ère}}$ sorte et de la $j^{\text{ème}}$ ligne de la 2^{de} sorte :

- r° Sera nul, si i > j.
- 2º Sera égal à un entier H_i , qui pourra être nul, si i=j.
- 3° Sera encore nul, si i < j et si H_i est premier avec H_j .
- 4° Enfin sera nul, si $j > N_2$.

Il en sera de même de l'élément de la i^{ème} ligne de la 1^{ère} sorte et de la j^{ème} colonne de la 2^{de} sorte.

La réduction peut être poussée encore plus loin, si l'on autorise une cinquième opération: multiplier tous les éléments d'une ligne ou d'une colonne par un même nombre entier ou non, dissérent de zéro.

Les transformations correspondantes s'appelleront les transformations algébriques du tableau.

On peut alors supposer que l'élément de la i^{eme} colonne de la $1^{\text{ère}}$ sorte et de la j^{eme} ligne de la 2^{de} sorte (de même que l'élément de la $i^{\text{ème}}$ ligne dela $1^{\text{ère}}$ sorte et de la $j^{\text{ème}}$ colonne de la 2^{de} sorte) est nul, si $i \neq j$. Si i = j, il peut être égal à 0 ou à 1. S'il en est ainsi, je dirai que le tableau est réduit.

Après la cinquième opération, les éléments qui appartiennent aux lignes et aux colonnes de la 1^{ère} sorte pourront ne pas rester entiers; de plus, le déterminant formé par ces lignes et ces colonnes pourra ne pas rester égal à 1, mais il restera différent de zéro.

Le tableau (1) est relatif aux faces du polyèdre P et à leurs relations avec les cases et les arêtes. Nous pourrions en dresser un, tout pareil, relatif aux arêtes du polyèdre P et à leurs relations avec les faces et les sommets.

Nous pourrions également envisager le polyèdre P', défini plus haut, et construire deux tableaux relatifs l'un aux faces de P', l'autre à ses arêtes.

Comparons le tableau (1), relatif aux faces de P, avec le tableau (1^{bis}) relatif aux arêtes de P'.

Il résulte de ce qui précède, que ces deux tableaux peuvent se déduire l'un de l'autre en remplaçant les lignes par les colonnes et inversement.

Cela posé, envisageons le tableau (1), relatif aux faces de P, et examinons comment on peut déduire de ce tableau le nombre de Betti P_2 du polyèdre P.

Comment, d'abord, pourra-t-on en déduire les congruences entre les faces et les arêtes?

Considérons une colonne quelconque de la 1^{ère} sorte; par exemple la $i^{ème}$ colonne. Multiplions les éléments de cette colonne et de la $k^{ème}$ ligne de la 1^{ère} sorte par a_k^2 et ajoutons; puis égalons à la somme obtenue, en multipliant les élements de cette même colonne et de la $j^{ème}$ ligne de la 2^{de} sorte par a_j^1 ; nous obtiendrons la congruence

$$a_i^2 \equiv \sum \varepsilon_{i,j}^2 a_j^1$$

ce qui est bien une des congruences (3) du § II. Toutes les autres congruences n'en sont que des combinaisons.

Comment pourra-t-on maintenant trouver les homologies entre les faces? Pour cela, envisageons par exemple la $i^{\text{ème}}$ colonne de la 2^{de} sorte; multiplions les éléments de la $k^{\text{ème}}$ ligne et de cette colonne par a_k^2 , ajoutons et égalons à zéro; nous trouverons:

$$\sum \varepsilon_{i,k}^3 a_k^2 \sim 0,$$

ce qui est bien une des homologies (5) du § II, dont toutes les autres ne sont que des combinaisons.

Qu'adviendra-t-il, maintenant, si l'on applique à notre tableau (1) une transformation algébrique quelconque?

Avant la transformation, chaque colonne de la 1ère sorte correspond

à une face, chaque colonne de la 2^{de} sorte à une case, chaque ligne de la 1^{ère} sorte à une face, chaque ligne de la 2^{de} sorte à une arête.

On obtient, comme nous l'avons vu, autant de congruences et d'homologies que de colonnes, en multipliant les éléments de chaque ligne de la 1^{ère} sorte par la face correspondante, ceux de chaque ligne de la 2^{de} sorte par l'arête correspondante, et ajoutant.

Supposons maintenant qu'on fasse la deuxième opération, c'est-àdire qu'on transforme en ajoutant la ligne de la 1^{ere} sorte, qui correspond à a_i^2 , à celle de la 1^{ère} sorte, qui correspond à a_k^2 . Nous convenons de dire qu'à la nouvelle $k^{\text{ème}}$ ligne (celle à laquelle on a ajouté la $i^{\text{ème}}$ ligne) correspond toujours la variété a_k^2 ; mais qu'à la nouvelle $i^{\text{ème}}$ ligne (qui d'ailleurs n'a pas changé) correspond la variété $a_i^2 - a_k^2$.

Si l'on fait la cinquième opération sur la $k^{\rm eme}$ ligne de la 1ère sorte, en en multipliant les éléments par une constante m, nous conviendrons de dire qu'à la nouvelle $k^{\rm eme}$ ligne correspond la variété $\frac{1}{m}a_k^2$ (notation

qui n'a qu'une valeur symbolique, à moins que $-\frac{1}{m}$ ne soit entier).

Quant à la quatrième opération, ce n'est qu'une combinaison de plusieurs opérations analogues à la deuxième.

Nous avons ainsi défini la variété qui correspond à chacune des lignes de la 1ère sorte du tableau, après qu'on a appliqué à ces lignes une combinaison quelconque des 2^{ème}, 4^{ème} et 5^{ème} opérations.

Nous définirions de même les variétés qui correspondent aux différentes lignes de la 2^{de} sorte, après qu'on aurait appliqué à ces lignes une combinaison des 2^{ème}, 4^{ème} et 5^{ème} opérations.

Grâce à ces conventions, il suffira encore, pour obtenir les congruences et les homologies, d'ajouter et d'égaler à zéro, après avoir multiplié les éléments de chaque ligne par la variété correspondante, et avoir changé le signe des produits ainsi obtenus, en ce qui concerne les lignes de la 2^{de} sorte.

Maintenant, si l'on applique aux colonnes du tableau les 1^{ème}, 3^{ème} et 5^{ème} opérations, on ne fera que combiner les congruences entre elles, et les homologies entre elles; ou multiplier une congruence et une homologie par un facteur constant.

D'où le résultat suivant:

Pour déduire les congruences du tableau transformé, voici ce qu'il faut faire: multiplier chaque ligne de la 1ère sorte pour la variété qui lui correspond en vertu de la convention que nous venons de faire, et ajouter; faire de même pour les lignes de la 2^{de} sorte; égaler les deux résultats ainsi obtenus; on aura ainsi autant de congruences que de colonnes de la 1^{ère} sorte; toutes les autres congruences possibles ne seront que des combinaisons.

Pour déduire de même les homologies, il faut: multiplier chaque ligne de la 1^{ère} sorte pour la variété correspondante, ajouter et égaler à zéro; on aura ainsi autant d'homologies que de colonnes de la 2^{de} sorte; toutes les autres homologies possibles n'en seront que des combinaisons.

Il importe de remarquer que les congruences et homologies ainsi obtenues, pourront n'avoir qu'une valeur symbolique, parce que les coefficients pourront être fractionnaires.

Et, en effet, d'une part les éléments du tableau transformé peuvent ne plus être entiers; d'autre part, la variété qui correspond à une ligne peut, comme je l'ai dit plus haut, n'avoir elle-même qu'une valeur symbolique.

Mais comme les coefficients, entiers ou non, sont toujours commensurables, il suffira de multiplier notre congruence ou notre homologie par un entier convenable, pour en déduire une congruence ou une homologie à coefficients entiers, qui aura un sens pour ellemême.

Supposons, maintenant, qu'on ait réduit le tableau, comme je l'ai dit plus haut.

Combien y aura-t-il d'homologies distinctes?

Parmi nos N_3 colonnes de la 2^{de} sorte, il y en aura $N_3 - N_2$ dont tous les éléments seront nuls, et N_2 dont un élément sera égal à 1 et tous les autres nuls. Les $N_3 - N_2$ premières ne nous donneront aucune homologie; chacune des N_2 autres nous en donnera une et ces N_2 homologies seront évidemment toutes distinctes.

Il y a donc N_2 homologies distinctes.

Combien y a-t-il de congruences distinctes entre les faces et les arêtes?

Il y en a évidemment N_2 , correspondant aux N_2 colonnes de la

1^{ère} sorte, et ces congruences sont distinctes, parce que le déterminant formé avec les lignes et les colonnes de la 1^{ère} sorte, n'est pas nul.

Considérons maintenant dans notre tableau réduit les N_1 lignes de la 2^{de} sorte; parmi elles il y en aura $N_1 - N_2''$ dont tous les éléments sont nuls, et N_2'' , dont un élément est égal à 1 et tous les autres nuls. Parmi nos N_2 congruences il y en aura donc N_2'' qui contiendront une arête, et $N_2 - N_2'$ qui ne contiendront aucune arête. Il y a donc $N_2 - N_2''$ congruences entre les faces seulement, et ces congruences sont toutes distinctes.

Il y aura donc entre les faces seulement $N_2 - N_2 - N_2$ congruences, qui resteront distinctes, si l'on ne regarde plus comme distinctes celles que l'on peut déduire les unes des autres par le moyen des homologies.

Le nombre de Betti relatif aux faces de P est donc:

$$N_2 - N_2' - N_2'' + 1.$$

Cherchons maintenant le nombre de Betti relatif aux arêtes de P. On le trouvera évidemment en opérant comme nous venons de faire sur le tableau (1^{bis}), relatif aux arêtes de P'.

Mais on passe d'un tableau à l'autre, en remplaçant les lignes par les colonnes, et réciproquement. Les nombres qui joueront, par rapport à (1^{bis}) , le même rôle que

$$N_{2}, N_{3}, N_{2}^{"}$$

jouent par rapport à (1), seront donc respectivement :

$$N_{2}$$
, N_{2}'' , N_{2}' .

Donc le nombre de Betti relatif aux arêtes de P' est encore :

$$N_2 - N_2 - N_3'' + 1$$
.

Ainsi les nombres de Betti relatifs, l'un aux faces de P, l'autre aux arêtes de P', sont égaux.

Or nous avons vu plus haut que les nombres de Betti relatifs aux arêtes de P et à celles de P' sont égaux, de même que les nombres de Betti relatifs aux faces de P et à celles de P'.

Donc le nombre de Betti relatif aux faces de P est égal au nombre de Betti relatif aux arêtes de P.

Notre théorème fondamental est donc démontré en ce qui concerne le polyèdre P, c'est-à-dire, en ce qui concerne les polyèdres de l'espace à quatre dimensions.

La démonstration pourrait, sans aucun doute, s'étendre à un polyèdre quelconque.

§ IX.

Remarques diverses.

Le théorème fondamental est ainsi établi par une démonstration, qui diffère essentiellement de celle de la page 43 de l'Analysis situs.

Mais cela ne saurait pas nous suffire. Il faut nous efforcer de retrouver les propositions intermédiaires, et, en particulier, celle-ci:

La condition nécessaire et suffisante pour que l'on puisse trouver une variété V telle que $\sum N(V,\,V_i) \neq$ o, c'est que l'on n'ait pas l'homologie $\sum V_i \sim$ o.

Considérons deux variétés, la première V_1 , à une dimension, composée d'arêtes de P', la seconde V_2 , à deux dimensions, composée de faces de P, de telle sorte qu'on aura :

$$V_{\scriptscriptstyle \rm I} = \sum \alpha_i b_i^{\scriptscriptstyle \rm I}, \quad V_{\scriptscriptstyle 2} = \sum \alpha_i' a_i^{\scriptscriptstyle 2},$$

l'arête b_i^{I} étant celle qui correspond à la face a_i^{2} , d'après les conventions du \S 7.

L'arête b_i^a coupe la face a_i^a , et n'en coupe aucune autre, de telle sorte que si nous reprenons la notation de l'*Analysis situs*, pag. 38, nous aurons :

$$N(V_{1}, V_{2}) = \sum \alpha_{i} \alpha_{i}'$$

Nous supposerons dans ce qui va suivre, que les variétés $V_{\scriptscriptstyle \rm I}$ et

 V_2 sont fermées, ce qui s'exprime par les congruences:

(1)
$$\sum \alpha_i b_i^1 \equiv 0, \quad \sum \alpha_i' a_i^2 \equiv 0.$$

Vérifions d'abord que l'on aura

$$\sum \alpha_i \alpha_i = 0$$
,

pourvu que l'on ait l'une des deux homologies (*):

(2)
$$\sum \alpha_i b_i^{\scriptscriptstyle \text{I}} \sim 0, \quad \sum \alpha_i' a_i^{\scriptscriptstyle \text{2}} \sim 0.$$

Si en effet nous avons, par exemple, la seconde homologie (2), c'est qu'on aura:

$$\alpha'_i = \sum_{j=1}^{j=N_3} \zeta_j \, \epsilon_{i,j}^3,$$

 ζ_j étant un coefficient ne dépendant que de j.

D'un autre côté, la première des congruences (1) peut se déduire de l'une des suivantes:

$$b_i^1 \equiv \sum b_j^o \varepsilon_{j,i}^3,$$

ďoù

$$\sum \alpha_i \, b_i^{\scriptscriptstyle \rm T} = \sum \sum \alpha_i \, b_j^{\scriptscriptstyle \rm O} \varepsilon_{j,i}^{\scriptscriptstyle \rm O}.$$

En égalant à zéro le coefficient de b_z^0 , il vient successivement :

$$\sum \alpha_i' \varepsilon_{j,i}^i = 0$$
, $\sum \sum \alpha_i \zeta_j \varepsilon_{j,i}^i = 0$, $\sum \alpha_i \alpha_i' = 0$, c. q. f. d.

On raisonnerait de même si on avait la première homologie (2). Je dis maintenant que si la seconde homologie (2) n'a pas lieu, on peut choisir les α_i de telle façon que V_i reste fermée et cependant que $\sum \alpha_i \alpha_i'$ ne soit pas nul.

En effet, dire que la seconde homologie (2) n'a pas lieu, c'est

^(*) Cfr. Analysis situs, pag. 42.

dire qu'on ne peut pas trouver des nombres ζ_i tels que l'on ait:

(4)
$$\alpha_i = \sum \zeta_j \varepsilon_{j,i}^{\mathfrak{z}}.$$

Dire que V_i reste fermée, c'est dire que les α_i sont assujettis aux conditions :

(5)
$$\sum \alpha_i \, \varepsilon_{j,i}^3 = 0.$$

Or il est clair que si les α'_i ne satisfont pas à des égalités de la forme (4), l'équation linéaire $\sum \alpha_i \alpha'_i = 0$ sera distincte des équations (5); on pourra donc toujours trouver des nombres α_i , qui satisfassent aux équations (5) sans satisfaire à $\sum \alpha_i \alpha'_i = 0$.

Remarquons d'ailleurs que nous n'avons pas restreint la généralité en supposant que nos variétés V_1 et V_2 étaient des combinaisons des b_i^T et des a_i^2 , quelle que soit la variété V, dont la subdivision forme les polyèdres P et P'. Quelles que soient les variétés V_1 et V_2 , nous pouvons toujours subdiviser V, de manière à former deux polyèdres réciproques P et P' tels que V_1 soit une combinaison des arêtes du second, et V_2 une combinaison des faces du premier.

Il faudrait voir comment le tableau (1) du § 8 et les tableaux analogues, peuvent nous permettre de déterminer les nombres de Betti, tels que Betti les définit lui-même, et non plus les nombres de Betti définis de la seconde manière, c'est-à-dire ceux que nous avons considérés jusqu'à présent.

Considérons, par exemple, un tableau analogue au tableau (1), mais relatif aux arêtes du polyèdre P et à leurs relations avec les faces et les sommets. Considérons, en particulier, les colonnes de la 2^{dc} sorte et les signes de la 1^{erc} sorte, où figurent les nombres $\epsilon_{i,j}^2$. Soit T le tableau partiel ainsi obtenu. A l'aide de ce tableau on pourra former les congruences

$$a_i^2 \equiv \sum \varepsilon_{i,j}^2 a_j^1$$

d'où l'on déduit les homologies

(6)
$$\sum \varepsilon_{i,j}^2 a_j^{\scriptscriptstyle \text{I}} \sim 0.$$

Alors pour reconnaître si plusieurs lignes fermées, formées de

combinaisons des arêtes a_j^{t} sont distinctes au sens de la 1ère définition, c'est-à-dire, au sens de Betti, il faut savoir si elles sont liées par une homologie obtenue en combinant les homologies (6) par addition, soustraction ou multiplication, mais sans division.

Supposons qu'on ait appliqué à notre tableau une série de ces transformations, que j'ai appelées arithmétiques au § 8.

Soit $\zeta_{i,j}^2$ le nombre qui, dans le tableau transformé, figure dans la $j^{\text{ème}}$ ligne de la $1^{\text{ère}}$ sorte et la $i^{\text{ème}}$ colonne de la 2^{de} sorte. Soit c_j la variété qui correspond à la $j^{\text{ème}}$ ligne de la $1^{\text{ère}}$ sorte de notre tableau transformé en vertu des conventions du \S 8. D'après ce que nous avons vu dans ce \S 8, cette variété n'est qu'une combinaison des arêtes a_i^{t} . Nous aurons alors les homologies

(6^{bis})
$$\sum \zeta_{i,j}^2 c_j \sim 0.$$

Ces homologies ne sont que des combinaisons des homologies (6), que l'on peut obtenir sans division, et réciproquement on peut tirer des homologies (6) des homologies (6^{bis}) sans division, c'est là une conséquence du caractère arithmétique des transformations.

On peut donc, quand on veut s'assurer si deux lignes fermées sont distinctes au sens de Betti, se servir des homologies (6^{bis}) au lieu des homologies (6).

Nous pouvons supposer qu'on s'est servi des transformations arithmétiques pour réduire le tableau, comme je l'ai expliqué au \S 8, et par conséquent que $\xi_{i,j}^2$ est nul : 1° si i > j; 2° si $j > N_2$.

Le tableau réduit aux colonnes de la 2^{de} sorte et aux lignes de la 1^{ère} sorte prendra, par exemple, la forme suivante:

а	o	0	O	О
е	b	0	O	0
f	g	с	0	0
h	k	1	d	0
0	0	О	0	0
0	o	o	o	0,

J'ai supposé 6 lignes et 5 colonnes; j'ai supposé que l'un des nombres $\zeta_{i,i}^2$ est égal à zéro, de façon qu'une des colonnes du tableau transformé soit entièrement composée de zéros. J'ajoute que si d était égal à 1, les nombres h, k, l, qui figurent à la même ligne, seraient nuls.

Cela posé, si d n'est pas égal à 1, les deux définitions des nombres de Betti ne coïncident pas, parce que l'on a l'homologie $dc_4 \sim 0$, d'où l'on ne pourrait déduire l'homologie $c_4 \sim 0$ que par division. Si d=1, on a b=k=l=0, et si c n'est pas égal à 1, on aura l'homologie $cc_5 \sim 0$, et les deux définitions ne concorderont pas; et ainsi de suite.

En résumé, pour que les deux définitions concordent, il faut et il suffit que le produit abcd soit égal à 1.

Pour interpréter ce résultat, revenons au tableau non transformé. Le produit abcd sera le plus grand commun diviseur de tous les déterminants obtenus en supprimant $N_2 - N_3$ lignes dans le tableau T, pourvu que ces déterminants ne soient pas tous nuls (auquel cas il n'y aurait pas dans le tableau transformé de colonne exclusivement composée de zéros). Si les déterminants sont tous nuls, on en formera d'autres en supprimant dans le tableau T une colonne et $N_2 - N_3 + 1$ lignes; le produit abcd sera le plus grand commun diviseur de tous ces déterminants, s'ils ne sont pas tous nuls; et ainsi de suite.

Nous arrivons ainsi à la règle suivante.

Soit Δ_p le plus grand commun diviseur des déterminants obtenus en partant du tableau T et y supprimant p lignes et $N_2 - N_3 + p$ colonnes. La condition nécessaire et suffisante pour que les deux définitions des nombres de Betti coïncident, c'est que le premier des Δ_p qui ne s'annule pas, soit égal à 1 (le plus grand commun diviseur de plusieurs nombres égaux à zéro étant zéro par définition).

Supposons que la variété $V_{\rm I} = \sum \alpha_i b_i^{\rm T}$, considérée au début de ce paragraphe, ne peut pas être frontière d'une variété à deux dimensions, mais satisfait à l'homologie $V_{\rm I} \sim$ 0. En d'autres termes, l'homologie $V_{\rm I} \sim$ 0 peut se déduire des homologies (6) par division, mais non pas sans division. Dans ce cas, on aura néanmoins:

$$N(V_1, V_2) = \sum \alpha_i \alpha_i' = 0.$$

§ X.

Démonstration arithmétique de l'un des théorèmes du § VII.

Voici une manière de former les homologies qui pourra être utile à connaître.

Soit b_i° un sommet du polyèdre P, situé à l'intérieur d'une case a_i° du polyèdre P. Soit, d'autre part, a_k° un sommet de P, appartenant à la case a_i° . Joignons b_i° à a_k° par une ligne que j'appellerai simplement b_i° a_k° .

Soit maintenant b_i^1 une arête de P', dont les deux extrémités sont b_j^0 et b_b^0 , de telle sorte que l'une des congruences (3) (cfr. § 2) relatives à P' soit :

$$b_{i}^{\mathrm{T}} \equiv b_{j}^{\mathrm{o}} - b_{b}^{\mathrm{o}}$$

Soit, d'autre part, a_i^2 la face de P qui correspond à l'arête b_i^1 de P', et a_k^0 un des sommets de a_i^2 ; nous aurons l'homologie:

$$(1) b_i^{\scriptscriptstyle \text{I}} \sim a_k^{\scriptscriptstyle \text{O}} b_i^{\scriptscriptstyle \text{O}} - a_k^{\scriptscriptstyle \text{O}} b_k^{\scriptscriptstyle \text{O}}.$$

Soit a_i^{τ} une arête de P, dont les deux extrémités sont a_j° et a_h° , de sorte que l'une des congruences (3) relatives à P soit:

$$a_{i}^{\mathfrak{l}} \equiv a_{i}^{\mathfrak{o}} - a_{b}^{\mathfrak{o}}.$$

Soit a_k^3 l'une des cases de P auxquelles appartient a_i^1 , et b_k^0 le sommet correspondant de P'; on aura l'homologie:

$$a_{i}^{i} \sim b_{k}^{o} a_{i}^{o} - b_{k}^{o} a_{b}^{o}$$

Je dis maintenant que toutes les homologies entre les a_i^{t} peuvent se déduire des homologies (2).

En effet, soit a_i^2 une face quelconque de P, et soit :

$$a_i^2 \equiv \sum \varepsilon_{i,j}^2 a_i^{\mathrm{r}}$$

la congruence de la forme (3) qui lui correspond; on en déduit l'homologie:

(3)
$$\sum \varepsilon_{i,j}^2 a_j^1 \sim 0,$$

et nous avons vu au \S 6 que toutes les homologies entre les arêtes de P sont des combinaisons de celles qu'on obtient de la sorte.

Soit alors $a_j^{\rm r}$ l'une des arêtes de P qui figurent dans l'homologie (3), et soit:

$$a_i^{\scriptscriptstyle \mathrm{I}} \equiv a_h^{\scriptscriptstyle \mathrm{O}} - a_l^{\scriptscriptstyle \mathrm{O}}.$$

Soit d'ailleurs a_k^3 l'une des cases dont fait partie a_i^2 . Nous aurons l'homologie :

$$(2^{\operatorname{bis}}) a_j^{\operatorname{o}} \sim b_k^{\operatorname{o}} a_k^{\operatorname{o}} - b_k^{\operatorname{o}} a_l^{\operatorname{o}}.$$

Si nous additionnons les homologies (2^{bis}) qui sont de la forme (2), après les avoir multipliées par $\epsilon_{i,j}^2$, tous les termes du second membre disparaîtront en vertu des relations (5) du \S 2; on retrouverait donc l'homologie (3).

On démontrerait de même que toutes les homologies entre les $b_i^{\rm r}$ peuvent se déduire des homologies (1).

Nous avons vu plus haut, au § 7, que si l'on a une congruence:

$$\sum a_i^{\rm r} \equiv 0$$
,

on peut trouver une autre congruence entre les arêtes de P':

$$\sum b_i^{\mathrm{r}} \equiv \mathrm{o},$$

et de telle façon qu'on ait l'homologie:

Je dis maintenant que cette homologie (4) peut être déduite des homologies (1) et (2).

Découpons, en effet, le premier membre de notre congruence $\sum a_i^{\rm r} \equiv 0$ en un certain nombre de groupes, de telle façon que les

arêtes d'un même groupe appartiennent à une même case a_k^3 . Soit $\sum a_j^1$ l'un de ces groupes; nous aurons la congruence :

$$\sum a_j^{\mathrm{t}} \equiv a_m^{\mathrm{o}} - a_p^{\mathrm{o}},$$

 a_m° et a_p° étant les deux extrémités de la ligne formée par l'ensemble des arêtes de ce groupe. Je suppose que toutes ces arêtes appartiennent à la case a_k^3 . Soit

$$a_i^{\scriptscriptstyle \mathrm{I}} \equiv a_b^{\scriptscriptstyle \mathrm{o}} - a_l^{\scriptscriptstyle \mathrm{o}}$$

l'une de ces arêtes; nous aurons l'homologie:

$$(2^{\text{ter}}) a_i^{\circ} \equiv b_k^{\circ} a_k^{\circ} - b_k^{\circ} a_l^{\circ},$$

et en ajoutant toutes ces homologies, on trouverait:

(6)
$$\sum a_i^{\scriptscriptstyle \text{\tiny T}} \sim b_k^{\scriptscriptstyle \text{\tiny O}} a_m^{\scriptscriptstyle \text{\tiny O}} - b_k^{\scriptscriptstyle \text{\tiny O}} a_k^{\scriptscriptstyle \text{\tiny O}}.$$

Ajoutons d'une part toutes les homologies (6), d'autre part toutes les congruences (5), qui correspondent aux différents groupes. L'addition des congruences (5) doit nous donner la congruence $\sum a_i^{\text{I}} \equiv 0$; il s'en suit que si un sommet a_m^0 figure dans une des congruences (5) avec le signe +, il devra figurer dans une autre avec le signe -. L'addition des homologies (6) nous donnera donc :

(7)
$$\sum a_j^{\scriptscriptstyle \text{I}} \sim \sum (b_k^{\scriptscriptstyle \text{o}} a_m^{\scriptscriptstyle \text{o}} - b_q^{\scriptscriptstyle \text{o}} a_m^{\scriptscriptstyle \text{o}}).$$

En écrivant cette relation je suppose que a_m° figure dans deux des congruences (5), une fois avec le signe + dans la congruence qui correspond à la case a_k° , et une fois avec le signe - dans la congruence qui correspond à la case a_q° .

Observons maintenant que b_k° et b_q° sont deux sommets de P', et que ces deux sommets appartiennent l'un et l'autre à la case b_m° . On peut alors trouver une ligne formée d'arêtes de P', appartenant à cette case b_m° , et allant de b_k° à b_q° . Soit $\sum b_s^{\circ}$ cette ligne; on aura

$$\sum b_s^{\rm i} \equiv b_k^{\rm o} - b_q^{\rm o}.$$

De même que de la congruence (5) des homologies (2^{ter}), qui sont de la forme (2), nous avons déduit l'homologie (6); de même de la congruence (5^{bis}) et d'homologies de la forme (1), nous pourrons déduire l'homologie:

$$\sum b_s^{\scriptscriptstyle \rm I} \sim a_m^{\scriptscriptstyle \rm o} b_k^{\scriptscriptstyle \rm o} - a_m^{\scriptscriptstyle \rm o} b_q^{\scriptscriptstyle \rm o}.$$

A chaque terme du second membre de (7) correspond une homologie (6^{bis}). En les additionnant, on trouvera:

(7^{bis})
$$\sum \sum b_s^i \sim \sum (a_m^o b_k^o - a_m^o b_q^o),$$

d'où:

(8)
$$\sum a_i^{\mathrm{r}} + \sum \sum b_s^{\mathrm{r}} \sim \mathrm{o},$$

homologies (1) et (2).

comme on le voit, des homologies (1) et (2).

c. Q. F. D.

On peut se demander pourquoi j'ai jugé nécessaire de revenir sur un théorème déjà démontré au § 7. On le comprendra si on se rend compte de la nature géométrique, pour ainsi dire, de la démonstration du § 7. La présente démonstration a, au contraire, un caractère arithmétique; elle n'invoque que des propriétés des schémas définis au § 2, et des tableaux construits au § 8; et elle conserverait sa valeur alors même qu'à ces schémas et à ces tableaux ne correspondrait aucun polyèdre.

Qu'avons-nous supposé en effet? C'est que si α_0^p , α_1^p , α_2^p sont les nombres des sommets, des arêtes et des faces appartenant à une même case, et si β_0^p , β_1^p , β_2^p sont les nombres des cases, des faces et des arêtes auxquelles appartient un même sommet, on a:

$$\alpha_0^p - \alpha_1^p + \alpha_2^p = \beta_0^p - \beta_1^p - \beta_2^p = 2;$$

et en outre que deux sommets quelconques $a_i^{\rm o}$ et $a_k^{\rm o}$ sont liés par l'homologie :

$$a_i^{\rm o} \sim a_k^{\rm o}.$$

Or on peut reconnaître si un sommet appartient à une face, par

exemple, en appliquant au tableau du § 8 des règles purement arithmétiques, et on peut de la même manière reconnaître si une homologie telle que (9) a lieu.

§ XI.

Possibilité de la subdivision.

Tout ce qui précède suppose qu'une variété quelconque peut être subdivisée en variétés simplement connexes, de manière à former un polyèdre P, à p dimensions, pour lequel les variétés a_i^p , a_i^{p-1} , ..., a_i^z , a_i^z , a_i^o sont toutes simplement connexes. Par exemple, toute variété à trois dimensions pourra être subdivisée en cases simplement connexes, séparées les unes des autres par des faces simplement connexes.

C'est cela qu'il nous reste à démontrer, et c'est cette démonstration que je vais donner. Je précise davantage: je vais montrer que toute variété à p dimensions peut être subdivisée de façon à former un polyèdre P, dont toutes les variétés a_i^p , a_i^{p-1} , ..., a_i^2 , a_i^1 , a_i^{o} sont des tétraèdres généralisés.

Je supposerai que le théorème a été démontré pour une variété à p-1 dimensions, et je me propose de l'étendre à une variété à p dimensions.

Nous présenterons la définition de notre variété sous la forme suivante, qui comprendra les deux définitions données dans l'Analysis situs.

Nous aurons les équations et les inégalités

$$x_{i} = \theta_{i}(y_{1}, y_{2}, \dots, y_{q}), \qquad (i = 1, 2, \dots, n)$$

$$f_{k}(y_{1}, y_{2}, \dots, y_{q}) = 0, \quad (k = 1, 2, \dots, q - p)$$

$$\varphi_{h}(y_{1}, y_{2}, \dots, y_{q}) > 0.$$

Ces équations et ces inégalités définiront une variété v qui sera limitée et, en général, non fermée; on aura différents systèmes analogues d'équations et d'inégalités, définissant autant de variétés partielles que j'appellerai v_1, v_2, \ldots, v_m .

Deux de ces variétés seront dites contigües, si elles ont une partie commune, et je puis supposer que l'on peut passer d'un point quelconque de l'une de ces variétés à un point quelconque d'une autre quelconque d'entre elles, sans sortir de l'ensemble de ces variétés. Cet ensemble constituera la variété que j'appellerai V, et qu'il s'agissait de définir.

Je supposerai que cette variété V est bilatère.

C'est évidemment là la façon la plus générale possible de définit une variété.

Considérons la variété partielle v_1 , définie par les équations (1). D'après le théorème des fonctions implicites, on pourra satisfaire aux équations

$$f_{\nu} = 0$$

en faisant

$$y_j = \psi_j(\chi_1, \chi_2, \ldots, \chi_p),$$

les ψ étant des fonctions holomorphes des χ ; mais les séries ψ pourront ne pas converger pour tous les points de la variété v_{χ} .

Les conditions de convergence seront certaines inégalités :

$$\eta_k(\chi_1, \chi_2, \ldots, \chi_p) > 0.$$

Quand on remplacera les y en fonctions des z, les relations:

$$x_i = \theta_i$$
, $\varphi_b > 0$

deviendront:

$$x_i = \theta_i'(\chi_1, \chi_2, \ldots, \chi_p)$$

$$\varphi_h(\chi_1, \chi_2, \ldots, \chi_p) > 0.$$

Alors l'ensemble des relations

$$(\mathbf{1}^{\text{bis}}) \qquad \qquad x_i = \theta_i, \qquad \varphi_b > 0, \qquad \eta_k > 0$$

définira une certaine variété v_i , de telle façon que l'ensemble des variétés analogues à v_i reproduira la variété v_i .

Nous sommes ainsi ramenés à la seconde définition de l'Analysis situs.

Cela posé, soit v_1^r une autre variété v_1^r satisfaisant aux conditions suivantes: elle sera tout entière contenue dans v_1^r ; elle comprendra tous les points de v_1^r qui ne lui sont pas communs avec une des variétés contigües; par conséquent la frontière complète de v_1^r sera tout entière dans la partie commune à v_1^r et aux variétés contigües.

A chacune des variétés

$$v_1', v_2', \ldots,$$

dont l'ensemble constitue V, correspondra ainsi une variété

$$v_1^{"}, v_2^{"}, \ldots,$$

satisfaisant aux conditions que je viens d'énoncer; et il est clair qu'on peut s'arranger de telle façon que tout point de V appartienne à l'une des variétés v'', et à une seule, à moins qu'il ne soit sur la frontière de l'une des variétés v'', auquel cas il devra appartenir, en outre, à la frontière au moins d'une autre variété v''.

La variété V, ainsi subdivisée en variétés v'', constitue un polyèdre P, au sens donné à ce mot au \S 2. Mais ce polyèdre ne convient pas encore à la question, car nous ne pouvons savoir si les variétés v'' sont des tétraèdres généralisés, ou même sont simplement connexes.

Considérons la variété v_i^r , et soit :

$$\chi_1 = 0, \quad \chi_2 = 0, \dots, \chi_p = 0$$

un point intérieur à cette variété; considérons la variété à une dimension:

$$\chi_1 = \alpha_1 t, \quad \chi_2 = \alpha_2 t, \ldots, \chi_p = \alpha_p t,$$

où les α sont des constantes, et où nous ferons varier t depuis o jusqu'à $+\infty$. C'est ce que j'appellerai un rayon vecteur.

Chaque rayon vecteur rencontrera la frontière complète de v_1'' en un nombre impair de points; en esset, quand on suivra ce rayon, en

faisant varier t de 0 à $+\infty$, on sortira de la variété v_i^r ; on pourra y rentrer ensuite et en sortir plusieurs fois, mais on finira toujours par en sortir pour n'y plus rentrer.

Il pourra se faire qu'un rayon vecteur rencontre la frontière de v_x^r en deux points confondus. Les rayons vecteurs qui satisfont à cette condition s'appelleront les rayons remarquables.

L'ensemble des rayons remarquables formera une ou plusieurs variétés à p-1 dimensions, que j'appellerai les cônes remarquables.

Les intersections des cônes remarquables avec la frontière de v_1'' formeront une ou plusieurs variétés à p-2 dimensions, que j'appellerai U, et ces variétés U partageront la frontière de v_1'' en régions que j'appellerai R.

Une région R ne peut être rencontrée par un rayon vecteur en plus d'un point; mais d'après ce que nous venons de voir, il peut se présenter deux cas : quand on suit ce rayon vecteur, en faisant croître t de o à ∞ , on peut, au moment où on rencontre R, sortir de v_1^r ou y rentrer. Si le premier cas, par exemple, se présente pour un des vecteurs qui rencontrent R, il se présentera pour tous les vecteurs qui rencontrent R.

D'où la distinction des régions R en régions de la 1ère sorte, que les rayons vecteurs rencontrent en sortant de v_i^r , et en régions de la 2^{de} sorte, que les rayons vecteurs rencontrent en rentrant dans v_i^r .

Les régions R étant des variétés à p-1 dimensions pourront, d'après l'hypothèse faite au début, être subdivisées en tétraèdres généralisés.

Supposons, pour fixer les idées, qu'un rayon vecteur rencontre trois fois la frontière de v_1^r , qu'il rencontre successivement les régions R_1 , R_2 , R_3 ; R_4 et R_5 seront de la 1^{ère} sorte, R_2 sera de la 2^{de} sorte. Subdivisons R_4 et R_5 en tétraèdres généralisés à p-1 dimensions.

Si T_i est une des subdivisions de R_i , menons tous les rayons vecteurs qui passent par les différents points de T_i , et conservons la partie de ces rayons vecteurs qui est comprise entre le point $z_i = 0$ et le rayon R_i (partie qui est intérieure à v_i); l'ensemble de ces vecteurs formera un tétraèdre généralisé à p dimensions, ayant pour sommet le point $z_i = 0$, et pour base le tétraèdre généralisé à p - 1 dimensions T_i .

Soit maintenant T_3 une des subdivisions de R_3 ; menons encore tous les rayons vecteurs qui passent par les différents points de T_3 et conservons la partie de ces rayons vecteurs qui est comprise entre R_2 e R_3 (partie qui est intérieure à $v_1^{\prime\prime}$). Cet ensemble forme une variété à p-1 dimensions que l'on pourrait appeler un tronc de tétraédre généralisé, dont les deux bases sont T_3 et un tétraèdre généralisé à p-1 dimensions, que j'appellerai T_2 et qui fera partie de R_2 . C'est, en d'autres termes, la différence de deux tétraèdres généralisés, ayant pour sommet commun le point $z_i=0$ et pour bases l'un T_3 , l'autre T_2 .

Ce tronc de tétraèdre généralisé pourra à son tour être partagé en *p* tétraèdres généralisés, de même que dans le théorème classique, le tronc de pyramide triangulaire se partage en trois pyramides triangulaires.

Finalement v_i^r sera partagé en tétraèdres généralisés.

Une difficulté subsiste cependant; on peut subdiviser comme v_1'' les autres variétés analogues v_2'' , v_3'' , ...; considérons la subdivision de v_1'' en tétraèdres généralisés T_1 et celle de v_2'' en tétraèdres généralisés T_2 . La frontière commune de v_1'' et v_2'' se trouvera subdivisée d'une part en tétraèdres généralisés à p-1 dimensions τ_1 , qui seront les faces des T_1 , et d'autres part en tétraèdres généralisés à p-1 dimensions τ_2 , qui seront les faces des T_2 ; mais il n'est pas évident que ces deux subdivisions coıncident.

Considérons alors la partie commune à l'un des τ_1 et à l'un des τ_2 ; je pourrai, d'après l'hypothèse faite au début, la subdiviser en tétraèdres généralisés à p-1 dimensions σ . Ainsi chacun des tétraèdres τ_1 et chacun des tétraèdres τ_2 sera subdivisé en tétraèdres σ .

Soit maintenant τ_1' une des variétés à q dimensions appartenant à τ_1 (j'emploie ici le mot appartenir dans le même sens que quand je dis que les faces, les arêtes et les sommets d'un tétraèdre ordinaire appartiennent à ce tétraèdre, ou quand je disais au \S 2 que les variétés a_i^q appartenaient au polyèdre P). Soit de même τ_2' une des variétés à q dimensions appartenant à τ_2 . Ces deux variétés τ_1' et τ_2' seront des tétraèdres généralisés, puisque d'après la définition du tétraèdre généralisé, toute variété qui appartient à un tétraèdre généralisé, est elle-même un tétraèdre généralisé. Alors τ_1' et τ_2' se trouveront subdivisés en té-

traèdres généralisés à q dimensions σ , qui appartiendront aux tétraèdres à p-1 dimensions σ .

Cela à la rigueur pourrait nous suffire; nos variétés v_1^r , etc., seraient partagées en tétraèdres généralisés à p dimensions T^p , leurs frontières en tétraèdres à p-1 dimensions T^{p-1} , etc.; seulement ces tétraèdres T^{p-1} ne seraient pas ceux qui appartiennent aux tétraèdres T^p , cela en seraient seulement des subdivisions.

Mais nous pouvons aller plus loin.

Considérons l'un des tétraèdres à p dimensions T^p dans lequel v_i^r est subdivisé. Je rappelle qu'on les a obtenus en subdivisant les troncs de tétraèdres généralisés, dont il a été question plus haut. Par conséquent T^p a tous ses sommets sur la frontière de v_i^r (il y aurait exception pour les tétraèdres dont un sommet est au point $z_i = 0$, mais pour ceux-là il n'y a pas de difficulté).

Supposons, par exemple, que les points communs à T^p et à la région que j'ai appelée plus haut R_3 forment un tétraèdre généralisé à q dimensions T^q appartenant à T^p , et que les points communs à T^p et à la région R_2 forment un tétraèdre à p-q-1 dimensions T^{p-q-1} , appartenant à T^p .

Les tétraèdres T^q et T^{p-q-1} sont analogues aux tétraèdres τ_1' traités plus haut; ils peuvent donc être subdivisés en tétraèdres analogues à ceux que j'ai appelés σ' ; soient S_1^q , S_2^q ..., les tétraèdres analogues à σ' , qui sont des subdivisions de T^q ; soient S_1^{p-q-1} , S_2^{p-q-1} ,... les tétraèdres analogues à σ' qui sont des subdivisions de T^{p-q-1} . Je dis qu'on peut subdiviser T_k^p en tétraèdres à p dimensions de telle façon que les variétés S_1^q , S_2^q , ..., S_1^{p-q-1} , S_2^{p-q-1} , ... appartiennent à T^p .

Pour le démontrer je suppose d'abord que T^p soit un tétraèdre rectiligne (cfr. § 2 in fine). On sait qu'un tétraèdre rectiligne est entièrement défini quand on connaît ses p+1 sommets. Alors T^p est le tétraèdre rectiligne qui a pour sommets ceux de T^q et de T^{p-q-1} .

Supposons que T^q se décompose en g tétraèdres partiels:

$$S_1^q$$
, S_2^q , ..., S_g^q ,

et $T^{p-q-\tau}$ en h tétraèdres partiels :

$$S_1^{p-q-1}$$
, S_2^{p-q-1} , ..., S_b^{p-q-1}

On vérifiera alors que T^p se décompose en gh tétraèdres partiels qui sont ceux dont les sommets sont ceux de

$$S_i^q$$
 et S_k^{p-q-1} $(i=1, 2, ..., g; k=1, 2, ..., b)$.

Si le tétraèdre T^p n'est pas rectiligne, le résultat subsiste puisque un tétraèdre quelconque est homéomorphe à un tétraèdre rectiligne.

Ainsi notre variété est décomposée en tétraèdres à p dimensions de façon à former un polyèdre tel que toute variété appartenant à ce polyèdre, appartient à l'un de ces tétraèdres.

On est ainsi débarrassé des derniers doutes qui pouvaient subsister au sujet de la possibilité de subdiviser une variété V de façon à former un polyèdre P, pour lequel tous les a_i^q soient simplement connexes.

Paris, mars 1899.

H. POINCARÉ.