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PREFACE

DE LA PREMIERE EDITION.

Le role des deux principes fondamentaux de la
Thermodynamique dans toutes les branches de la phi-
losophie naturelle devient de jour en jour plus im-
portant. Abandonnant les théories ambitieusesd’il y a
quarante ans, encombrées d’hypothéses moléculaires,
nous cherchons aujourd’hui a élever sur la Thermo-
dynamique seule I'édifice tout entier de la Physique
mathématique. Les deux principes de Mayer et de
Clausius lui assureront-ils des fondations assez solides
pour qu'il dure quelque temps ? Personne n’en doute ;
mais d’ou nous vient cette confiance ?

Un physicien éminent me disait un jour a propos de -
la loides erreurs : « Tout le monde y croit fermement
parce que les mathématiciens s’imaginent que c’est
un fait d’observation, et les observateurs.que c’est un

theoreme de mathématiques. » Il en a été longtemps
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ainsi pour le principe de la conservation de I'énergie.
It n’en est plus de méme aujourd’hui; personne n’i-
gnore que c’est un fait expérimental.

Mais alors qui nous donne le droit d’attribuer au
principe lui-méme plus de généralité et plus de pré-
cision qu’aux expériences qui ont servi a le démon-
trer? C'est la demander s'il est légitime, comme on le
fait tous les jours, de généraliser les données empi-
riques, et je n’aurai pas l'outrecuidance de discuter
cette question, aprés que tant de philosophes se sont
vainement efforcés de la trancher. Une seule chose est
certaine : si cette faculté nous était refusée, la
Science ne pourrait exister ou, du moins, réduite 2
une sorte d’inventaire, & la constatation de faits isolés,
elle n’aurait pour nous aucun prix, puisqu’elle ne
pourrait donner satisfaction a notre besoin d’ordre et
d’harmonie et qu’elle serait en méme temps incapable
de prévoir. Comme les circonstances qui ont précédé
un fait quelconque ne se reproduiront vraisembla-
blement jamais toutes a la fois, il faut déja une pre-
miere généralisation pour prévoir si ce fait se renou-
vellera encore dés que la moindre de ces circonstances.
sera changée.

Mais toute proposition peut étre généralisée d’une

infinité de maniéres. Parmi toutes les généralisations.
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possibles, il faut bien que nous choisissions, et nous
ne pouvons choisir que la plus simple. Nous sommes
donc conduits a agir comme si une loi simple était,
toutes choses égales d’ailleurs, plus probable qu’une
loi compliquée.

Il y a un demi-siécle, on le confessait franchement
et Pon proclamait que la nature aime la simplicité;
elle nous a donné depuis trop de démentis. Aujour-
&’hui on n’avoue plus cette tendance et I’on n’en con-
serve que ce qui est indispensable pour que la Science

-ne devienne pas impossible.

En formulant une loi générale, simple et précise
apres des expériences relativement peu nombreuses et
qui présentent certaines divergences, nous n’avons
donc fait qu’obéir & une nécessité a laquelle 'esprit
humain ne peut se soustraire. ’

Mais il y a quelque chose de plus et ¢’est pourquoi
jinsiste. i

Personne ne doute que le principe de Mayer ne soit
appelé a survivre a toutes les lois particuliéres d’ou
on laftiré, de méme que la loi de Newton a survécu
aux lois de Képler, d’ou elle était sortie, et qui ne sont
plus qu’approximatives, si I’on tient compte des pertur-

bations.

Pourquoi ce principe occupe-t-il ainsi une sorte de
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place privilégiée parmi toutes les lois physiques? Il ya
a cela beaucoup de petites raisons.

Tout d’abord on croit que nous ne pourrions le re-
jeter ou méme douter de sa rigueur absolue sans ad-
mettre la possibilité du mouvement perpétuel; nous
nous défions, bien entendu, d’une telle perspective,
et nous nous croyons moins téméraires en affirmant
yu’en niant.

Cela n’est peut-étre pas tout a fait exact; l'impos-
sibilité du mouvement perpétuel n’entraine la conserva-
tion de I’énergie que pour les phénoménes réversibles.

L’'imposante simplicité du principe de Mayer con-
tribue également a affirmer notre foi. Dans une loi dé-
duite immédiatement de 'expérience, comme celle de
Mariotte, cette simplicité nous paraitrait plutot une
raison de méfiance; mais, ici, il n’en est plus de méme
nous voyons des éléments, disparates au premier coup
d’eil, se ranger dans un ordre inattendu et former un
tout harmonieux; et nous nous refusons a croire
qu’une harmonie imprévue soit un simple effet du ha-
sard. Il semble que notre conquéte nous soit d’autant
plus chére qu’elle nous a coité plus d’efforts ou qile
nous soyons d’autant plus surs d’avoir arraché & la na-
ture son vrai secret qu'elle a paru plus jalouse de nous

le dérober,
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Mais ce ne sont la que de petites raisons; pour
ériger la loi de Mayer en principe absolu, il faudrait
une discussion plus approfondie. Mais, si 'on essaye
de la faire, on voit que ce principe absolu n’est méme
pas facile a énoncer.

Dans chaque cas particulier on voit bien ce que
c¢’est que I'énergie et I'on en peut donner une défini-
tion au moins provisoire ; mais il est impossible d’en
trouver une définition générale.

Si I'on veut énoncer le principe dans toute sa géné-
ralité et en I’appliquant a I'Univers, on le voit pour
ainsi dire s’évanouir et il ne reste plus que ceci: I!
y a quelque chose qui demeure constant.

Mais cela méme a-t-il un sens? Dans I'hypothese
déterministe, 1'état de 'Univers est déterminé par un
nombre excessivement grand n de parametres que

jappellerai ,, @,, ..., x,. Dés que 'on connait a
" uninstant quelconque les valeurs de ces n parametres,
on connait également leurs dérivées par rapport au
temps et 'on peut calculer par conséquent les valeurs
de ces mémes paramétres 4 un instant antérieur ou
ultérieur. En d’autres termes, ces n parametres sa-

tisfont & n équations différentielles de la forme

dx; .
_—l:({’i(xnwv---’xn) ({=1,2,..., 1)

dl
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Ces équations admettent n — 1 mtégrales etilya
par conséquent n — 1 fonctions de x,, x,, ..., x, qui
demeurent constantes. Si nous disons alors qu'il y a
quelque chose qui demeure constant, nous ne faisons
qu’énoncer une tautologie. On serait méme embar-
rassé de dire quelle est parmi toutes nos intégrales
celle qui doit conserver le nom d’énergie.

Ce n’est pas d’ailleurs en ce sens que I'on entend le
principe de Mayer quand on P'applique a4 un systeme
limité.

On admet alors que p de nos n paramétres varient —
d’une maniere indépendante, de sorte que nous
avons seulement n — p relations, généralement li-
néaires, entre nos n parametres et leurs dérivées. Je

les écrirai

(1) DY, =X doy+ X deg+. ..+ X pdzp =0

(i=1,2,...,n—p),

les X, ; étant des fonctions de z,, x,, ..., x,.
Supposons, pour simplifier ’énonce, que la somme
des travaux des forces extérieures soit nulle ainsi que
celle des quantités de chaleur cédées au dehors. Voici
alors quelle sera la signification de notre principe :
Il y a une combinaison des Y; qui est une differentielle

exacte; c’est-a-dire que I'on peut trouver n — p fonc-
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tions
LU Z29 ey ZlL——p

de z,, x,, ..., x, telles que

LY, + 7Yy 4. ..+ Z”"P Y""”

soit une différentielle exacte.

Mais comment peut-il se faire qu’il y ait plusieurs
paramétres dont les variations soient indépendantes?
Cela ne peut avoir lieu que sous 'influence des forces
extérieures (bien que nous ayons supposé, pour sim-
plifier, que la somme algébrique des travaux de ces
forces soit nulle). Si en effet le systéme était complé-
tement soustrait & toute action extérieure, les valeurs
de nos n paramétres & un instant donné suffiraient
pour déterminer I'état du systéme a un instant ulté-
rieur quelconque, pourvu toutefois que nous restions
dans P’hypothése déterministe; nous retomberions
donc sur la méme difficulté que plus haut.

Si I’état futur du systéme n’est pas entiérement dé-
terminé par son état actuel, c’est qu’il dépend en outre
de P’état des corps extérieurs au systéme. Mais alors
est-il vraisemblable qu’il existe des équations comme
les relations (1) indépendantes de cet état des corps
extérieurs? et si dans certains cas nous croyons pou--

voir en trouver, n’est-ce pas uniquement par suite de
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notre ignorance et parce que 'influence de ces corps
est trop faible pour que notre expérience puisse la
déceler?

Sile systéme n’est pas regardé comme complétement
isolé, il est probable que I'expression rigoureusement
exacte de son énergie interne devra dépendre de I'état
des corps extérieurs. Encore ai-je supposé plus haut
que la somme des travaux extérieurs était nulle, et, si
Von veut s’affranchir de cette restriction un peu arti-
ficielle, I'énoncé devient encore plus difficile.

Pour formuler le principe de Mayer en lui donnant
un sens absolu, il faut donc I'étendre a tout I'Uni-
vers, et alors on se retrouve en face de cette méme
difficulté que I'on cherchait a éviter.

En résumé, et pour employer le langage ordinaire,
la loi de la conservation de I’énergie ne peut avoir
qu'une signification, c’est qu’il y a une propriété
commune i tous les possibles; mais, dans 'hypothése
déterministe, il n'y a qu’un seul possible, et alors la
loi n’a plus de sens.

Dans I'hypothése indéterministe, au contraire, elle
en prendrait un, méme si I'on voulait 'entendre dans
un sens absolu; elle apparaitrait comme une limite
imposée ala liberté.

Mais ce mot m’avertit que je m’égare et que je vais
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sortir du domaine des Mathématiques et de la Phy-
sique. Je m’arréte donc et je ne veux retenir de toute
cette discussion qu’une impression : c’est que la loi
de Mayer est une forme assez souple pour qu’on y
puisse faire rentrer presque tout ce que I'on veut. Je
ne veux pas dire par la qu’elle ne correspond a aucune
réalité objective, ni qu’elle se réduise 4 une simple
tautologie, puisque, dans chaque cas particulier, et
pourvu qu’on ne veuille pas pousser jusqu’a I’absolu,
elle a un sens parfaitement clair.

Cette souplesse est une raison de croire a sa longue
durée, et comme, d’autre part, elle ne disparaitra que
pour se fondre dans une harmonie supérieure, nous
pouvons travailler avec confiance en nous appuyant
sur elle, certains d’avance que notre ‘travail ne sera
pas perdu.

Presque tout ce que je viens de dire s’applique au
principe de Clausius. Ce qui le distingue, c’est qu'il
s’exprime par une inégalité. On dira peut-étre qu’il en
est de méme de toutes les lois physiques, puisque leur
précision est toujours limitée par les erreurs d’obser-
vation. Mais elles affichent du moins la prétention
d’étre de premieres approximations et I'on a I'espoir de

-les remplacer peu & peu par des lois de plus en plus

précises. Si, au contraire, le principe d* Clausius se
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réduit & une inégalité, ce n’est pas 'imperfection de
nos moyens d’observation qui en est la cause, mais la
nature méme de la question.

Pour expliquer par quelles raisons tous les physi-
ciens ont €t¢ amenés a adopter ces deux principes, je
n’ai rien trouvé de mieux que de suivre dans mon
exposition la marche historique. Le spectacle deslongs
tatonnements par lesquels 'homme arrive 2 la vérité
est d’ailleurs tres instructif par lui-méme. On remar-
quera le role important joué par diverses idées théo-
riques ou méme métaphysiques, aujourd’hui aban-
données ou regardées comme douteuses. Service sin-
gulier que nous a ainsi rendu ce qui est peut-étre
Perreur! Les deux principes, appuyés maintenant sur
de solides expériences, ont survécu a ces fragiles hy-
pothéses, sans lesquelles ils n’auraient peut-étre pas
encore été découverts. C’est ainsi que’on débarrasse la
voute de ses cintres quand elle est complétement batie.

Ce mode d’exposition avait cependant un incon-
vénient, c’était de m’obliger a4 bien des longueurs.
Youlant, par exemple, conserver les raisonnements de
Carnot et de Clausius, j'ai donné deux démonstrations
du théoreme de Clausius : la premiére, applicable seu-
lement & certains systemes; la seconde, absolument .

énérale, mais s’appuvant sur la premiere.
p
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11 en est résulté que je n’ai pu éviter une distinction
tres artificielle entre deux classes de corps, selon que
leur état est défini par deux variables seulement, ou
par un plus grand nombre. Cette distinction, qui ne
correspond a rien de réel, se retrouvera a chaque
instant dans cet Ouvrage. J'ai I'air d’y attacher une
importance énorme, tandis que rien n’est plus loin de
ma pensée.
Yai du insister sur I'équation de Clausius

(2) [F>o

appliquée aux phénoménes irréversibles, parce qu’elle
a donné lieu 4 de longues polémiques.

Mon point de départ est I'axiome de Clausius :

« On ne peut pas faire passer de chaleur d’un corps

froid sur un corps chaud. »

Je n’avais pas 4 rechercher quelle en est la généra-
lité et, par exemple, s’il est encore vrai quand il se
produit des phénomenes chimiques irréversibles. C’est
a 'expérimentateur seul qu'il appartient de trancher
ces questions. Le role du mathématicien est plus mo-
deste.

Fixer la signification précise de I'inégalité (2),

chercher quelles hypotheses il faut associer 4 ’axiome
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de Clausius pour que cette inégalité s’en déduise né-
cessairement, voila la tache qu’il m’était permis d’a--
border et que je me suis efforcé d’accomplir.

En relisant mes épreuves, je suis un peu effrayé de
la longueur du Chapitre o je traite des machines a
vapeur. Je crains que le lecteur, en voyant le nombre
des pages que j'y consacre, ne s’attende a trouver une
théorie compléte et satisfaisante et qu’il ne me sache
ensuite mauvais gré de sa déception.

Une pareille théorie n’est pas pres d’étre faite et je
n’ai méme pas la compétence nécessaire pour exposer
Iétat actuel de la question. J’ai voulu seulement mon-
trer par un exemple quel usage on doit faire du théo-
réme de Clausius; j'ai voulu faire voir également
quelle est la complexité de ces sortes de problémes
et & quelles erreurs on s’expose quand on veut la mé-
connaitre.

Dans une de ses spirituelles préfaces, M. Bertrand
raille trés finement les auteurs qui entassent dans
leurs Ouvrages des intégrales rébarbatives, et qui ne
sauraient les calculer, parce qu'ils sont obligés de
faire figurer sous le signe somme des fonctions in-
connues que I'expérience n’a pas encore déterminées.
Dans ce Chapitre, j'ai mérité cette critique plus que

personne et je serais inexcusable si j’avais eu d’autre
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but que de faire mieux comprendre la signiﬁcﬁlion de
I'inégalité (2).

I’objet des deux Chapitres suivants est 'application
des théorémes de Mayer et de Clausius aux phéno-
ménes chimiques et électriques. On a quelquefois
exposé cette théorie comme si 'on voulait la déduire
tout entiére de ces deux principes seuls. On congoit
qu'elfrayés de cette prodigieusé fecondité tant de sa-
vants éminents soient allés jusqu’a regarder I'inégalité
de Clausius comme douteuse. Mais il n'y a 12 qu'un
trompe-I'eil ; la fécondité de nos deux principes reste
grande sans doute ; de toute loi démontrée par U'expé-
rience, ils permettent d’en déduire une autre qui en
est pour ainsi dire la réciproque. L’air se dilate quand
on le chauffe, donc il s’échauffe quand on le com-
prime, etc. Par la, la Thermodynamique double en
quelque sorte nos connaissances ; ¢est beaucoup, mais
c¢’est la tout. D’'une majeure quelconque, on ne peut
tirer aucune conclusion si I’on ne lui adjoint une mi-
neure, et, s'il semble quelquefois en étre autrement,
¢’est que la mineure est sous-entendue.

Je crois qu’il convient de la rétablir, parce que
¢’est souvent une hypothese et que toute hypothése
doit étre énoncée explicitement. Certainement il est

permis d’en faire ; sans cela, il n’y aurait pas de Phy-



XVII - PREFACE.

sique mathématique, puisque P'objet de cette science
est précisément de véritier les hypothéses en en tirant
des conséquences susceptibles d’étre controlées par
Pexpérience. Le danger serait d’en faire sans s’en aper-
cevoir. C’est ce que j’ai essayé d’éviter.

Il ne faut pas méme faire d’exception pour les hy-
pothéses les plus simples. Si elles nous paraissent
telles, c’est le plus souvent parce que le hasard nous
a fait adopter certaines variables. Nous ne penserions
plus de méme s’il nous en avait fait choisir d’autres.
C’est méme des hypothéses simples qu’il faut le plus
se défier, parce que ce sont celles qui ont le plus de
chances de passer inapercues.

C’est de ces idées que je me suisinspiré dans I’étude
de la dissociation et du phénoméne Peltier; j'ai
cherché a faire voir qu’il est impossible de construire
a priort la loi de la dissociation des mélanges homo-
genes ou celle de la dissociation des mélanges hétéro-
génes, mais qu’on peut essayer de les déduire 'une de
Yautre.

Je termine par la théorie des systémes monocy-
cliques. Je ne citerai ici que ma conclusion :

Le mécarmisme est incompatible avec le théoréme de
Clausius.

Il'y a deux sortes de mécanismes:
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On peut se représenter I'Univers comme formé
d’atomes incapables d’agir a distance les uns sur les
autres et se mouvant en ligne droite dans des direc-
tions diverses, jusqu’a ce que ces directions soient
modifiées par des chocs. Les lois du choc sont les
meémes que pour les corps élastiques. Ou bien on
peut supposer que ces atomes peuvent agir a distance
et que 'action mutuelle de deux atomes se réduit a

. une attraction ou a4 une répulsion dépendant seule-
ment de leur distance.

La premiére conception n’est évidemment qu’un cas
particulier de la seconde; je montre que toutes deux
sont incompatibles avec les principes de la Thermo--
dynamique.

Yai eu deux fois P'occasion d’étre en désaccord avec
M. Duhem; il pourrait s’étonner que je ne le cite que
pour le combattre, et je serais désolé qu’il erat a
quelque intention malveillante. Il ne supposera pas,
je l'espére, que je méconnais les services qu’il a
rendus a la Science. J'ai seulement cru plus utile d’in-
sister sur les points ol ses résultats me paraissaient
mériter d’étre complétés, plutét que sur ceux ou je

n’aurais pu que le répéter.
H. PoiNcARE.
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La Thermodynamique repose sur deux principes :

1° Le principe de la conservation de U’énergie dont un
cas particulier, le plus intéressant au point de vue qui nous
goccupe,.est le principe de l'équivalence de- la chaleur
appelé aussi principe de Mayer;

2° Le principe de la dissipation de Uentropie, plus sou-

vent nommé principe de Carnot ou principe de Clausius.

Nous étudierons successivement ces deux principes, ainsi
que leurs conséquences les plus immédiates. Les premiers
Chapitres seront principalement consacrés a I'historique de
la découverte de ces principes.



CHAPITRE I

LE PRINCIPE DE LA CONSERVATION DE L’ENERGIE.

1. La découverte du principe de I'équivalence. — 1l est
difficile de dire & qui appartient 'honneur d'avoir découvert
le principe de l'équivalence de la chaleur et du travail
mécanique.

Sadi Carnot semble V’avoir reconnu vers la fin de sa vie;
mais ses recherches sur ce sujet, consignées dans des Notes
manuscrites publiées seulement dans ces derniéres années,
restérent longtemps ignorées et ne furent d’aucun profit
pour la Science. 1l était réservé A Robert Mayer de le
retrouver et de le faire connaitre.

Mais, au moment o Mayer énoncait ce principe, Joule
était occupé & des expériences qui devaient infailliblement
le conduire a sa découverte et qui devinrent la meilleure
démonstration de son exactitude. De son ¢dté, Colding, sans
avoir connaissance des travaux de Mayer et de Joule, était
sur le point d’arriver au méme résultat.

Cette simultanéité de recherches, convergeant vers le
méme but, rappelle la découverte du calcul infinitésimal,
découverte a laquelle Newton et Leibnitz possédent des
droits équivalents.
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Mais, pour qu’une vérité apparaisse ainsi en méme temps
a des savants travaillant isolément, et ce fait n’est pas rare
dans I'histoire de la Science, il esl nécessaire que les esprits
s’y trouvent naturellemenl préparés. Aussi ne peut-on
séparer I’exposé du principe de Mayer de celui du mouve-
ment scientifique qui a précédé sa découverte.

2. L'impossibilité du mouvement perpétuel. — Les pre-
miéres traces de l'idée de la conservation de 'énergie
remontent trés loin.

De'toul temps la découverte du mouvement perpétuel a
été le but de bien des recherches. Galilée, s’'inspirant des
conditions de fonctionnement des machines simples,
affirma le premier I'impossihilité d’'un tel mouvement.

Prenons un treuil, par exemple. Soit Q la force agissant
sur la corde qui s’enroule sur le cylindre, de rayon r, du
treuil. Nous pouvons lui faire équilibre en appliquant i la
manivelle une force plus petite, Qi"l, R étant le rayon de
la circonférence décrite par le bouton de la manivelle. Si
la machine est animée d’un mouvement uniforme, ces deux
forces, la résistance et la puissance, sont encore dans le
méme rapport. Nous pouvons donc avee une force donnée

faire monter un corps dont le poids est a.cette force dans
R N - .
un rapport L plus grand que I'unité. Mais, si nous multi-

plions la force, nous ne créons pas de travail, car la vitesse
du point d’application de la résistance esL & celle du point

. ro.
d’application de la puissance dans le rapport R inverse du
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précédent. En un mot, le travail de la résistance est égal a
celui de la puissance.

Galilée vérifia cette égalité pour le moufle et, en général,
pour toutes les machines simples. Mais il observa qu’il fal-
lait prendre pour résistance, non pas la force utile déve-
loppée, mais ‘cette force augmentée de celles qui résultent
des résistances passives telles que le frottement. Ces der-
niéres forces existant nécessairement dans tout mécanisme
matériel, Galilée en conclut, avee raison, que le travail utile
est toujours inférieur au travail de la puissance. Du travail
ne peut donc étre créé et, par suite, le mouvement perpeé-
tuel est impossible.

3. Mais, si aucune machine ne peut créer du travail, il
n’est pas évident que le travail ne puisse étre détruit. La
conservation de I’énergie ne saurait donc étre une consé-
quence de I'impossibilité du mouvement perpétuel, bien
que la réciproque soit vraie. Galilée ne pouvail donc se
rendre compte qu’il y avait conservation de I’énergie dans
les machines qu’il étudiait.

. Cependant on trouve dans les ceuvres. du grand physicien
du xviesiécle 1a notion claire du principe de la conservation
de I’énergie, dans un cas particulier, 3 5avoir, dans le cas
ou la pesanteur intervient seule, le froitement étant sup-
posé nul. On sait, en eﬂ"et, que Galilée a démontré que la
vilesse acqmse par un corps grave tombant d’une hauteur A

est égale a \/2g quelle que soit la nature du chemin par-
éouru par le co:ps par ‘suite des halsons, on a donc

o =\/25h,
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ou ‘
‘-2— -~ gh=o.

Or, le premier terme de cette relation est I’énergie due a
la force vive du corps, la masse de ce corps étant prise pour
unité; le second, — gh, est, & une constante prés, I'énergie
potentielle de ce méme corps, ou mieux, du systéme formé
par ce corps et la terre; par conséquent, I’égalité précé-
dente exprime que la somme de ces deux énergies est
constante, en d’autres termes qu’il y a conservation de
Pénergie. Huyghens étendit le méme principe & un systeme

de corps pesanls.

4. Le principe de la conservation du mouvement. —
Quelques années aprés, Descartes énonce le principe de la
conservation du mouvement. Certes, sa démonstration n'a
rien de scientifique : « Dieu étant immuable, dit-il, il a dQ
conserver la méme quantité de mouvement. » D’ailieurs,
tel que l'entendait Descartes, ce principe est faux, il est
déraisonnable.

En effet, la quantité de mouvement d’'un systéme est la
somme des produits des masses des points maltériels qui le
cdmposem par les vitesses de ces points. 8i donc /m,,
ma, ..., m; sont les masses de ces points, £, ny, &y, &gy ...,
:, mi §: les composantes de leurs vitesses suivant Lrois axes,
le principe de la conservation du mouvement s'exprime par

E m;v; = counslt,,

vi=VE + 0l + 8.

v; étant
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Or, I'inexactitude de cette égalité est évidente. Pour s’en
convaincre il suffit de remarquer que, si elle est vraie dans le
mouvement absolu, elle cesse de I’étre dans le mouvement
relatif lorsque les axes sont animés d’un mouvement de
translation ().

Modifié convenablement, le principe de Descartes est
devenu un des principes importants de la Mécanique : le
principe des quantités de mouvement projetées. 11 s’exprime
par les relations

-l ‘ l
Zm,{;: const., Emm,-: const., Z m;§; = const.,

et s'énonce : la somme des projections sur un axe quel-
congue des quantités de mouvement d’un systéme (et non
plus la somme des quantilés de mouvement elles-mémes)
est constanle. C’est & Huyghens qu’est due cette modifi-
cation.

5. La force vive. — D’ailleurs, quoique faux, le principe
de Descartes a une grande importance historique; il a pré
paré et conduit Leibnitz a la considération de la force vive.

Comme Descartes, et pour les mémes raisons métaphy-
siques, Leibnitz admet que guelgue chose doit rester inva-
riable dans V'univers. Ayant remarqué que le carré de la

vitesse d’'un point est la somme des carrés des composantes,

~

(') Descartes s'est bien apercu que sonm principe n'est pas confirmé par
T'expérience; on peut s'en assurer en lisant une remarque qui vient 3 la suite
de sa théorie du choc des corps; mais il croyait que l'accord seraif rétabli
si I'on tenait compte de la quantité de mouvement de I'éther.
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il fait observer que le produit
m; o} = mE} 4+ myn} -+ mt}

est la somme de trois produits analogues ou entrent des
vitesses &;, n;, ¢; de directions arbitraires. Il'en conclut que
dans un systéme de points matériels, ou les vitesses ont

des directions quelconques, c’est la somme Emi v de ces
produits, la rorce vive, qu’il faut considérer, et non, comme
le faisait Descartes, la somme Zm,-vi. Leibnitz introduit

en outre ce qu'il appelle 'action motrice et Vaction latente,
et, pour lui, ce qui reste constant, c’est I'action motrice,
somme de la force vive et de l'action latente. Leibnilz était
donc sur la voie de la découverte du principe de la conser-
vation de I’énergie.

il semble d'ailleurs que Leibnitz ait eu Uintuition de nos
idées actuelles. En effet, suivant ce mathématicien, si l'ac-
tion motrice parait se perdre dans certains cas, c’est que
les mouvements sensibles sont transformés en mouvements
moléculaires. On ne pouvait exprimer plus clairement
I’hypothése qui a 616 Porigine de la Théorie mécanique de
{a chaleur.

6. Le théoréme des forces vives. — Les idées émises par
Leibnitz ne tardérent pas & étre précisées; on en déduisit
le théoréme des forces vives,

Soient m,, m,, ..., m; les masses des points d’un systéme
matériel; x,, )y, «.., % Yo 3 les coordonnées de ces
points; X,, Yy, ..., X4, Y, Z; les composantes suivant les
axes de la résultante de toutes les forces intériedres et
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extérieures qui agissent sur chacun des points. Les équa~

tions du mouvement de 'un d’eux sont

d? Xy

m; d—t{ == Xl-,.
d’
d?*z

m; —— dtz = Zi.

La demi-force vive du systéme a pour valeur

; my [ fdz\Y /‘dj',- 2 dz,-' 2
w23 (%) + (&) ~(Z)]

En dérivant par rapport au temps, il vient

dW dPx; dz; | dy; dy; d's; z;'z, i
a Emf(“rn v df a4t T an dt'>

et,en remplacant dans cette expression les dérivées secondes
par rapport au temps par leurs valeurs tirées des équations
du mouvement, on obtient

dW_ d*z'z dyl dzi
2( i Y Vg +Z"7dz_>’

AW =3\ (X, da;+ Yidy+ L ds;).

ou

Le second membre de cette égalité représente le travail
de toutes les forces appliquées au systéme quand leurs
points d'application subissent kde.’s Vdéplac’emeynts infiniment
petits. De 14 le théoréme suivant : La variation de la demi-
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Jorce vive d’un systéme est égale & la somme des travaux
accomplis par toutes les forces du systéme pendant le dépla-

cement considéré.,

7. La conservation de I'énergie. — Bornons-nous au cas
d’un systéme soumis seulement i des forces intérieures et
supposons que ces forces admettent une fonction des force‘s,
c’est-a-dire que X, Y,, ... soient les dérivées partielles par
rapport aux coordonnées d’'une méme fonction.— V de ces
coordonnées; nous avons alors

X=— ¥, y=_2 g

5[.1),'

Mais, V ne dépendant pas explicitement du temps, par
hypothése, sa dérivée par rapport & ¢ est

dV__Z dV dz; _dlfi_l/l ﬂdzi .
At T a\dz, i T dy, dt T ds; dt )’

et par conséquent

av :_2 Xidz,+ Yodyi+ Lidz,.

11 résulte de cette expression que la variation de fa fone-
tion des forces est égale, au signe prés, i celle de la demi-
force vive ; nous avons donc ' '

AW 4-dV == o,
et en intégrant

W + V = const.
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La demi-force vive W d’un systéme étant appelée énergie
cinétique ou actuelle du systéme; la fonction des forces
intérieures changée de signe, V, étant son énergie poten-
tielle; enfin, la somme de ces deux énergies, {’énergie to-
tale; la relation précédente exprime que I'énergie totale du
systéme considéré est constante, c’est-d-dire qu’il y a con-

servation de l'énergie.

8. Le travail des forces extérieures. — Considérons
maintenant le cas ol le systéme n’est pas isolé, ol il y a des
forces extérieures. Soient dr le travail de ces forces et dr’
celui des forces intérieures pour un déplacement infiniment
petit. Si dW est la variation de la demi-force vive, le théo-
réme des forces vives donne

dW = dr + d7'.

Si nous supposons encore que les forces intérieures
admettent une fonction des forces — V, nous avons

dV = —dr'.
Par conséquent, en additionnant, nous obtenons

dW +dV =dr.

Le travail des forces extérieures pendant un déplacement
est donc égal a la variation de l'énergie totale du systéme
pendant ce déplacement.

9. Cas ou il y a conservation de 1'énergie. — Pour re-
connaitre s'il y a toujours conservation de I'énergie, il suffit
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donc de chercher si, dans un cas quelconque, les forces
intérieures admettent une fonction des forces.

On sait qu’une telle fonction existe lorsque les points
matériels du systéme s’attirent ou se repoussent suivant les
droites qui les joignent deux & deux avec une force ne dé-
pendant que de la distance qui les sépare, et si, en outre, il
y a égalité entre ’action et la réaction.

Cette derniére condition est toujours réalisée d'aprés
le principe de Uégalité de U'action et de la réaction,
principe justifié par tous les faits connus. Mais on peut
imaginer des systémes ou les forces ne satisfont pas
aux conditions ci-dessus et ou par conséquent il peut
n’y avoir pas conservation de I’énergie. Les principes fon-
damentaux de la Mécanique ne suffisent donc pas & dé-
montrer dans toute sa généralité le principe de la con-
servation de I'énergie : ils apprennent seulement que ce
principe est vérifié toutes les fois que les forces inté-
rieures du systéme considéré admettent une fonction des
forces.

10. Les conséquences de l'impossibilité du mouvement
perpétuel. — Examinons maintenant ce qu’il était possible
de déduire de ces résultats en les combinant avec le prin-
cipe de I'impossibilit¢ du mouvement perpétuel enseigné
par Galilée.

Montrons que si les forces qui agissent sur les divers
points du systéme ne dépendent que de leurs positions il
existe une fonction des forces.

Pour simplifier la démonstration supposons le systéme
réduit 3 un point matériel M soumis & une force satisfaisant
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& la condition précédente et dont les composantes sont
X, Y, Z _

La variation de Ja demi-force vive de ce point pour un
déplacement élémentaire est, d’aprés le théoréme des forces

vives, ‘ .
AW =Xdx + Ydy + ZLds.

Si le point considéré passe de la position M, & la posi-
tion M, la variation W — W, de sa demi-force vive est

donnée par

W —Wozf(de & Ydy +Zdz),

Iintégrale étant prise le long de la courbe décrite parle
point mobile. Dans le cas olt le mobhile revient a sa position
initiale M,, I'intégration doit alors &tre prise le long d'une
courbe fermée C; soit alors I la valeur de cette intégrale.

11. Montrons que 1 est nul.

D’abord I ne peut dtre positif. En effet, s’il en était ainsi,
Ja demi-force vive augmenterait de I lorsque le point maté-
riel décrit la courbe C; en lui faisant parcourir n fois cette
courbe l'augmentation serait nl. On pourrait donc faire
croitre indéfiniment la force vive et, si on l'employait a
accomplir un travail, on obtiendrait le mouvement perpé-
tuel, ce qui’est contraire au principe de Galilée.

D’autre part, I ne peut é&tre négatif. En effet, si nous
assujettissons le point mobile & décrire la courbe C en sens
inverse du précédent, les composantes X, Y, Z de la force
reprennent en chaque point les mémes valeurs que dans le
sens primitif, puisque par hypothése X, Y, Z ne dépendent.



LE PRINCIPE DE LA CONSERVATION DE L'ENERGIE. 13

que de la position de leur point d’application ; mais dx, dy,
ds changent de signe ; par suite ’élément différentiel

Xdz + Ydy +1dz

change également de signe. La variation de force vive
lorsque le point matérie! revient a sa positibn initiale est
donc alors — I, c’est-a-dire positive. Or, d’aprés ce qui pré-
céde, cette variation positive entrainerait la possibilité du
mouvement perpétuel. Par conséguent — 1 ne peut étre
positif, ¢’est-a-dire que I ne peut étre négatif. .

. Cette quantité ne pouvant étre ni positive ni négative est
donc nécessairement nulle.

42. Il résulte immédiatement de la que la variation de
force vive, lorsque le point passe de la position M, & la po-
sition M, est indépendante du chemin décrit pour passer
de I'une & l'autre de ces positions.

Soient, en effet, deux chemins yuelconques M,P;M et

)

Fig. 1.

M,P,M (fig. 1) pour lesquels les variations de force vive
sont respectivement I, et I,. Appelons I' cetie variation
guand le point passe de'M en M, par le chemin MP’ M,.
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Nous aurons, d’aprés ce qui précéde,

L+I'=o et I,+~YV=o,
d’ot *
Ii -= I,-

Mais 1; et 1, sont les valeurs de I'intégrale
fde + Ydy + Zds

prise suivant les courbes M,P;M et M,P,M. Puisqu’elles
sont égales la valeur de )intégrale ne dépend que de ses
limites. Or, ¢’est une condition suffisante pour que la quan-
tité placée sous le signe d'intégration soit une différentielle
exacte. Il y a donc bien une fonction des forces et, par
suite, conservation de I'énergie.

13. Considérons maintenant le cas ot la force dépend non
seulement de la fonction de son point d’application, mais
aussi de la vitesse de ce point.

En répétant le raisonnement du paragraphe 11 on trouve-
rait que I ne peut étre positif. Mais on ne peut affirmer
que cette quantité n’est pas négalive, car Ja démonstration
donnée précédemment ne s’applique plus. Eo effet, quand on
change le sens du mouvement du point matériel sur la
courbe fermée, on change en méme temps celui de la vi-
tesse; comme X, Y, Z dépendent de cette vitesse on ne
peut plus dire que ces composantes possédent, au méme
point de la courbe, la méme valeur quel que soit le sens du
mouvement; par suite, la variation T de la force vive peut
non seulement changer de signe, mais aussi de valeur
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absolue quand on intervertit le sens du mouvement. La va-
leur de I'intégrale du travail peut donc dépendre du chemin
décrit par le point d’application et il n’y a pas de fonction
des forces. On ne peut alors affirmer qu’il y ait conserva-
tion de I’énergie dans le systéme. Telles étaient les consé-
quences auxquelles I’étude des principes de la Dynamique
avait conduit les savants a la fin du xvine siécle.



. CHAPITRE II.

CALORIMETRIE.

14. Le fluide calorifique. — L’état des sciences mathé-
matiques vers la fin du xvnre siécle permettait donc de
prévoir que, au moins dans un grand nombre de cas, ily
a conservation de l'énergie dans les phénoménes méca-
niques.

Mais, pendant que les mathématiciens perfectionnaient
leurs méthodes et assuraient, par des raisonnements rigou-
reux, des fondeméms solides aux principes de la Méca-
nique, les physiciens étudiaient la Chaleur et préparaient
ainsi, conjointement avec les mathématiciens, le principe
de 'équivalence.

Malheureusement, a cette époque, les fluides hypothé-
tiques tenaient une place prépondérante dans I’explication
des phénoménes physiques. Avec le mot fluide s’introduisit
Pidée d’indestructibilité. Le fluide calorifique, les fluides
électriques étaient donc supposés indestructibles. Cette
hypothése ne pouvait avoir aucune conséquence ficheuse
sur le développement de l'électricité, puisque plus tard elle
a été reconnue exacte. Il en fut autrement pour la Chaleur:

Ihypothése de la conservation du calorique est fausse et
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elle empécha pendant de longues années tout progrés mar-
qué dans cette branche de la Physique. Nous ne tarderons
pas a en démontrer P'inexactitude, mais il nous faut aupa-
ravant présenter deux notions indispensables & I'élude de

la Chaleur : la température et la quantité de chaleur.

15. Température. — Lorsque deux corps sont mis en
présence, on observe généralement un changement de
volume de chacun d’eux; au bout d’'un temf)s plus ou moins
long, cette variation de volume cesse de se produire.

Par définition, deux corps sont a des températures égales
ou en équilibre de température lorsque, mis en présence,
ils n’éprouvent aucune variation de volume.

Pour que cetle définition soil acceptable, il faut que, si
deux corps A et B sont séparément en équilibre de tempé-
rature avec un troisiéme C, ils soient également en équilibre
de température entre eux. C'est ce que V'expérience vérifie.
Nous verrons plus loin que ce fait expérimental peut étre
regardé comme un cas particulier du second principe de la
Thermodynamique.

16. Pour mesurer les températures, une autre convention
est nécessaire. Nous conviendrous que la température d’une
masse de mercure occupant un volume V est donnée par la
relation

V, étant le volume de masse lorsqu’elle est en équilibre de
température avec la glace fondante, V, son volume lors-

qu’'elle est ¢n équilibre de température avec la vapeur d’eau
P. 2
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bouillante. La température esl dite alors exprimée en degrés
centigrades.

Lorsque nous voudrons évaluer la température d’un corps
quelconque, nous le meitrons en présence de celte masse
de mercure; s’il n’y a pas variation de volume, ces deux
corps sont, d’aprés la définition des températures égales, a
la méme température, et, pour avoir sa valeur, il suffit
d’appliquer la relation précédente. A cause de son role, la
masse de mercure que nous venons de considérer est appe-
lée thermométre.

En général, lorsqu’'on place un corps en présence d'un
thermométre, il y a variation de volume des deux corps;
par suite, la température de chacun d’eux varie jusqu’a ce
que Péquilibre de température soit atteint. En portant dans
la relation qui définit la température le volume qu’occupe
alors le corps thermométrique, on n’obtient que la tempé-
rature correspondant & cet état d’équilibre. Nous voyons
donc qu’a moins de conditions particuliéres, la température
a laquelle s’arrétera le thermométre ne sera pas exactement
celle qu’avait le corps au moment ot on 'avait mis en pré-
sence de ce thermomeétre.

17. Faisons observer que la convention adoptée pour la
mesure des températures est entiérement arbitraire. Non
seulement nous pouvons faire choix d'un autre corps que le
mercure, mais encore nous pouvons prendre pour tempé-
rature, au lieu de la valeur ¢ définie par la relation précé-
dente, la valeur d’une fonction 6 = f (¢), assujettie seule-
ment a la condition de croitre constamment en méme temps
que ¢. Cette derniére hypothése permet, en effet, d’évaluer
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les températures, car si deux corps sont & des températures
différentes ¢, et £,, lorsqu’on adopte la convention énoncée
plus haut, les valeurs 8, et 8, correspondantes sont aussi
différentes; de plus, si ¢, est plus grand que ¢,, 6, est éga-
lement plus grand que 4,, puisque la fonction § est supposée
croissante en méme temps que ¢. Nous verrons plus tard
I'importance de cette remarque, et nous verrons que la
Thermodynamique nous fournit une définition rationnelle
de ce gu'on peut appeler la température absolue, défi-
nition ou ne figure plus aucune convention de caractére
arbitraire.

18. Quantité de chaleur. — Possédant un moyen de me-
surer les températures, il est possible, & I'aide de nouvelles
conventions, de mesurer les quantités de chaleur.

Si nous mettons en présence un corps A a une tempéra-
ture ¢, et un corps B & une température supérieure a ¢,
Pexpérience montre que la température du premier s’éléve,
tandis que celle du second s’abaisse. Nous exprimons ce fait
en disant que B céde de la chaleur a A.

Dans certains cas, 'un des corps, B par exemple, peut ne
pas changer de température ; c’est ce qui a lieu lorsque B
est le siége d’'un phénomeéne physique s’effectuant a tempé-
rature constante comme la fusion. Cependant, nous admet-
trons encore qu’il y a échange de chaleur et, si la tempéra-~
ture de A s’éléve, nous dirons que la chaleur est cédée a ce
corps par B. 1l peut méme arriver qu'un corps céde de la
chaleur, bien que sa température continue 2 s’élever; c’est
ce qui arrive, par exemple, quand on cbmprime un gaz;
ce gaz s’échauffe, bien que, devenu plus chaud que les
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corps avoisinants, il leur céde de la chaleur par rayonne-
ment et par conductibilité.

11 est donc nécessaire de donner une définilion plus pré-
cise et 4 I’abri de ces objections. .

1° 8i un corps (ou un systéme de corps) B, soustrait 2
toute action extérieure, subit un changement d’état quel-
conque, nous dirons que la quantité de chaleur regue par
ce corps B est nulle.

2° Si un corps B est mis en présence d’un corps A el que
le systeme de ces deux corps soit soustrait & toute action
extérieure ; s’il subit un changement d’état 8 pendant que
le corps A subil un changement d’état a; si, ensuite, un
autre corps B’ est mis en présence du méme corps A et qu’il
subisse un changement 3’ pendant que le corps A subit le
méme changemenlt a, c’'est-a-dire part du méme état initial,
pouf aboutir au méme état final en passant par les mémes
états intermédiaires, nous dirons que la quantité de chaleur
recue ou cédée par B pendant le changement 3 est égale
a la quantité de chaleur recue ou cédée par B’ pendant le
changement 3.

3° Si un corps B est mis en présence de K kilogrammes
du cerps A et subit le changement 3, pendant que ces K ki-
logrammes subissent le changemen!t «; si, ensuite, le corps
B’ est mis en présence de K’ kilogramines du méme corps A,
et subit le changement 3’ pendant que ces K’ kilogrammes
subissent le méme changement «'; nous dirons que la
quantité de chaleur regue par B dans le changement (3 est
a celie que recoil B’ dans le changement ' comme K est
akK. '

4° Nous avons ainsi un moyen de définir le rapport de
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deux quantités de chaleur quand ce rapport est posilify
pour étendre la définition au cas ol ce rapport est négatif,
nous conviendrons de dire que la chaleur regue par B dans
le changement 3 est égale et de signe contraire & la chaleur
recue dans le changement inverse.

Pour que ces définitions soient acceptables, il faut que le
rapport ainsi défini ne dépende pas du corps A employé
pour le mesurer et du changement « subi par ce corps A;
c’est ce gui n’est nullement évident a priori, mais ce que
Vexpérience confirme. Nous verrons plus loin que ce fait
expérimental est un cas particulier du principe de 'équi-
valence.

3

Le corps A employé & reconnaitre 'égalité el 'inégalité
des quantités de chaleur se nomme le corps calorimétrique.

19. Remarquons que dans le cas de la température nous
avons, contrairement a ce que nous venons de faire pour la
quantité de chaleur, spécifié la nature du corps thermomé-
trique avant de définiv ce qu'on entend par température
plus élevée qu’une autre. Si tous les corps augmentaient de
volume forsque leur température s’éléve, nous aurions pu,
aprés la définition des températures égales, dire qu'un
corps B est & une température plus élevée qu'un corps A,
lorsque, ces corps étant mis en présencé, le volume de B
diminue tandis que celui de A augmente. Il en serait résulté
quelques simplifications. Mais certains corps, I'eau, par
exemple, diminuant de volume lorsque leur température
augmente entre certains intervalles, nous ne pouvions
adopter, pour la mesure des températures, le mode d’expo-
sition que nous venons d’esquisser,
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20. Drailleurs, il esL nécessaire de faire choix d’'un corps
calorimétrique particulier lorsqu’on veut exprimer les quan-
tités de chaleur par des nombres.

Le corps calorimétrique universellement adopté est I'eau
a la température o.

L’unité de quantité de chaleur, la calorie, est la quantité
de chaleur nécessaire pour élever de o° & 1°C. la tempéra-
ture de 1% d’eau. Par conséquent, lorsqu’un corps B mis en
présence de n kilogrammes d’eau & o° éléve leur tempéra-
ture de 1°, nous dirons que B dégage n calories. Dans le
cas contraire ol B refroidit de 1° 4 0° une masse d’eau de
n kilogrammes, nous dirons que B absorbe n calories.

21. Relation fondamentale d'un corps. — La densité d’un
corps dépend et de sa température ¢ et de sa pression p; par
suite, le volume v occupé par 'unité de masse d’un corps,
autrement dit le volume spécifique, dépend également de
ces deux quantités. 1l existe donc une relation

e{p,v,t) =0

entre le volume spécifique, la température et la pression;
c’est cette relation qu’on appelle la relation fondamentale
du corps.

Il est facile d’en trouver 'expression pour les gaz obéis-
sant aux lois de Mariotte et de Gay-Lussac.

D’aprés la loi de Mariotte le produit p¢ est constant pour
une mérﬁe température; par conséquent py est une fonction
de ¢ seulement. D’autre part, d’aprés la loi de Gay-Lussac,

pour une pression constante, le volume est proportionnel

. . . ! :
au binome de dilatation 1+ mt; pv est donc proportionnel
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3 ce méme binome et nous pouvons écrire
pv = R(273 + ).

Telle est 1a relation fondamentale d’'un gaz parfait.

La quantité R qui y entre varie avec la nature du gaz
considéré, 11 est facile de voir, d’aprés {a maniére dont cette
quantité a été introduite, qu’elle est inversement propor-
tionnelle au poids spécifique du gaz.

22. Température absolue. — La relation fondamentale
des gaz parfaits se réduit a

pv — RT
si nous posons
T =273 + ¢

Clausius a donné a la quantité T définie par cette relation
le nom de température absolue.

Cette définition de Clausius souléve une objection grave.
Les gaz parfaits n’existent pas dans la nature; nous donne-
rons plus loin la véritable définition de la température ab-
solue, définition qui nous affranchira de cette difficulté. Je
me contenterai de dire pour le moment que, si ’'on convient

de poser
T—=1t+ 273e,

¢t étant la température centigrade définie plus haut, la rela-
tion caractéristique des gaz naturels différera peu de

po = RT.

En considérant la température T ainsi définie, la relation
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fondamentale d’un corps s’écrira
¢(T,¢, p)=o,
ou encore, en résolvant par rapport a T,
T=f(p,v).

23. Chaleur spécifique a pression constante. — Suppo-
sons qu'on éléve la température d’un corps de 4T en main-
tenant la pression constante, et soit dv 'augmentation de
son volume spécifique.

Pour produire cette élévalion de température il faut
fournir au corps une quantité de chaleur CaT; c’est ce
coefficient C qu'on appelle chaleur spécifigue a pression
constante.

Cette quantité de chaleur peut s’exprimer autrement.
Nous pouvons, en effet, considérer T comme une fonction
de p et de ¢; par conséquent

_dr dT

dT= 2o dp + g do.

Mais, puisque, par hypothése, la pression demeure con-

stante, cette égalité se réduit a

AT
dr»gmd‘).

Par suite nous avons pour la quantité de chaleur cherchée

o T
Cdr—hd‘—vd‘).

24. Chaleur spécifique & volume constant. — Admettons
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maintenant que, pour une élévation de température dT, la
pression varie de dp, le volume restant constant. Pour effec-
tuer cette transformation le corps emprunte 3 ceux qui
I'environnent une quantité de chaleur ¢ dT. Ce coefticient ¢
est la chaleur spécifigue a volume constant.
Comme précédemment celte quantité de chaleur peul se
mettre sous une autre forme, gui est ici
drT

2; dP.

cdT =¢
25. Chaleur empruntée pendant une transformation
élémentaire. — Si, pour une élévation de température 4T,
le volume spécifique varie de d¢ en méme temps que la
pression varie de dp la quantité de chaleur dQ empruntée -
aux corps environnants est, & des infiniment petits prés,
¢gale & la somme des quantités trouvées dans les deux cas
précédents. Nous avons done
dr AT
dQ = C - dv s ——dp.
Q de c+cdp o
Remarquons que C el ¢ sont des fonctions quelconques
de p et de v. La quantité de chaleur dQ n’est donc pas, en

général, une différentielle exacte.

26. Représentation géométrique de I'état thermique d'un
corps. — Puisque les trois quantités p, v, T sont liées par
la relation fondamentale, leurs valeurs sont déterminées
gquand on connait les valeurs de deux d’entre elles, p et v,
par exemple, qu'on peut dés lors regarder comme variables
indépendantes. Par conséquent, si nous tragons deux axes
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de coordonnées rectangulaires Op et Ov (fig. 2) et que
nous portions en abscisse une longueur OP égale au volume
spécifique d’'un corps et en ordonnée une longueur PM

égale & la pression du corps, au méme instant, le point M

Fig. 2.

) E——

ainsi obtenu détermine complétement par sa position I’état
thermique du corps, pourvu toutefois que la relation fonda-
mentale soit connue.

Le point M est appelé le point représentatif de l’état du
corps. Ce mode de représentation de I’état thermique d’'un
corps est dit & Clapeyron.

27. Courbes isothermes et courbes adiabatiques. —
Lorsque I'état thermique du corps varie d’'une maniére
continue le point représentatif décrit une courbe. Parmi
P'infinité de courbes qu’on peut ainsi obtenir deux sont par-
ticuliérement importantes & considérer.

Si nous supposons que la température reste constante
pendant toute la transformation, la relation fondamenlalé
du corps donne N

JS(p,v)—=const.

La courbe correspondant & cette équation et qui est celle
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que décrit le point représentatif pendant la transformation
se nomme une isotherme.

Dans le cas ol la transformation s’effectue sans que le
corps emprunte ou céde de la chaleur aux corps environ=-
nants la courbe décrite par le point M se nomme une adia-
batique.

Pour avoir son équation il suffit d’écrire que la quantité
de chaleur dQ, dont nous avons trouvé précédemmem Uex-
pression (25), est égale & zéro; cette éguation est donc

C%—}‘d" -+ c%dp =o.

On voit immédiatement que le coefficient angulaire de Ja
tangente en un point de cette courbe a pour valeur

28. Conséquences de I’hypothése de l'indestructibilité
du calorique. — Tout ce qui précéde subsiste, qu’il y ait,
ou non, conservation du caloriqgue.

Admettlons que le calorique est indestructibie, comme le
faisaient tous les physiciens au début du xixe siécle, c’es
admettre que la quantité de ce fluide contenue dans un
corps reprend la méme valeur guand le corps revient an
méme état, quelle gue soit la transformation qu’il a subie,
Par suite la quantité Q de calorique empruntée aux corps
environnants dans une transformation ne doit dépendre que
de I’état initial et de I’état final du corps qui se transforme.

Ces états étant complétement définis par les valeurs corres-
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pondantes de p et de ¢, Q est donc une fonction de ces va-
riables ne dépendant que de leurs valeurs aux limites et ne
dépendant pas de la maniére dont s’effectuent leurs varia-
tions. Or si dQ est la quantité de calorique absorbée dans
une transformation élémentaire, Q a également pour valeur
I'intégrale de dQ prise le long de la courbe décrite par le
point figuratif. La valeur de cette intégrale ne dépend donc
que des valeurs des variables aux limiles, et, par suite,
dQ est une différentielle exacte.

Ainsi ’hypothése de la conservation du calorique revient
a.admettire que dQ est une différentielle exacte. La remarque
que nous avons faite au paragraphe 25 suftit pour nous con-
vaincre que cette hypothése ne s'impose en aucune fagon;
nous verrons d’ailleurs plus loin qu’elle est fausse. Mais les
anciens physiciens, croyant 3 I'existence matérielle du calo-
rique, étaient amenés a l'admettre el personne au siécle
dernier ne la mettait en doute.

29. Le frottement dégage de la chaleur. — Mais ces consi-
dérations théoriques n’étaient pas nécessaires pour faire
douter de I'exactitude de I’hypothése de l'indestructibilité
du calorique; 'observation attentive des faits connus a la
fin du xvin® siécle pouvait suffire.

Le frottement dégage de la chaleur. La preuve en est
constamment sous les yeux. De plus, la célebre expérience
de Rumford a la fonderie de canons de Munich en était une
démonstration péremptoire.

Mais, au lieu de voir dans ce phénoméne une transfor-
mation du travail mécanique en chaleur, les physiciens en
cherchérent une explication conforme a leurs idées. Ils ad-
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mirent que la chaleur spécifique des copeaux de bronze
détachés du canon pendant 'opération du forage était infé-
rieure 3 celle du bronze compact formant les canons eux-
mémes. De la, disaient-ils, la mise en liberté d’une certaine
quantité de calorique.

Le frottement étant toujours accompagné d’usure des
corps en contact, 'explication précédente s’étendait & tous
les cas.

L’élévation de température qui résulte de la compression
des gaz s’expliquait d’'une maniére analogue : la capacité
calorifique d’une masse gazeuse était supposée diminuer en
méme temps que le volume.

30. Cependant Rumford ne s’était pas borné & montrer
que le frottement dégage de la chaleur. 1l avait, en outre,
mesuré la chaleur spécifique du bronze des canons et celle
de la limaille provenant du forage; il avait trouvé le méme
nombre. Ce résultat renversait 'explication que nous venons
de rappeler.

Une autre expérience due a Davy avait la méme consé-
quence. Davy avait constaté que, si I'on frotte I'un contre
Pautre deux morceaux de glace, ils fondent. La chaleur spé-
cifique de {’eau étant supérieure a celle de la glace, on ne
pouvait attribuer fa production de chaleur nécessaire a la
fusion de la glace A une différence entre les chaleurs spé-
cifiques du corps frotté et du corps provenant du frotte-
ment.

Mais les expériences de Rumford et de Davy passérent
inapergues et la foi des physiciens dans le principe de la
conservation du calorique n’en fut pas ébranlée.
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Ajoutons d’ailleurs que I'expérience de Rumford n’est
pas aussi concluante qu’elle le parait de prime abord. En
effet, si Q et Q' sont les quantités de calorique respective-
ment contenues dans le bronze compact et dans la limaille,
il suffit pour l'explication du résultat de 'expérience que
I'on ait Q > Q’. Or, en trouvant le méme nombre pour les
chaleurs spécifiques de ces corps, Rumford a seulement

f
démontré que pour les températures ordinaires % = ,ij‘%,

ce qui ne démontre pas l'inexactitude de I'inégalité précé-
dente, mais suffirait pour rendre invraisemblable I'explica-
tion des anciens physiciens.
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LES TRAVAUX DE SADI CARNOT

31. Les premiers travaux de Sadi Carnot. — Tel était
I’état de la question lorsque Sadi Carnot entreprit des re-
cherches pour se rendre compte de la production de travail
par la chaleur dégagée par la combustion du charbon dans
les machines & vapeur, machines qui commencaient & étre
employées dans 'industrie. Ses premiers travaux, publiés
en 1824 dans un Mémoire intitulé : Réflexions sur la puis-
sance motrice du feu et sur les moyens propres d la déve~‘
lopper, portent I'empreinte des idées de I’époque : ils s’ap-
puient sur le principe de la conservation du calorique.

Outre ce principe, Carnot admet 'impossibilité du mou-
vement perpétuel. Cette derniére vérité venait cependant
d’étre contestée & propos de la pile de Volta. L'usure du
zinc dans la pile étant alors considérée comme accidentelle,
cet appareil était regardé comme pouvant fournir indéfini-
ment de I'énergie sans jamais en recevoir.

Ainsi des deux principes adoptés par Carnot : I'un, celui
de la conservation du calorique, était faux; 'autre, celui de
I'impossibilité du mouvement perpétuel, était exact. Cepen-

dant le premier était universellement admis; le second, qui
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aurait do étre a I'abri de toute critique, était I'objer de
vives attaques. )
L’introduction du premier principe devait nécessairement
conduire Carnot 2 des résultats inexacts. Néanmoins leur
importance historique est trop grande pour qu’il soit permis
de les passer sous silence. D’ailleurs I'étude des premiers
travaux de Carnot s’impose & un autre point de vue. (C’est
sur les débris de la théorie inexacte, qui leur servait de
base, qu'on a construit le second principe de la Thermo-
dynamique : le principe de Carnot. C’est & ce double titre que
nous les exposerons.

32. Travail correspondant a un coup de piston. — Cher-
chons 'expression du travail correspondant & un coup de
piston dans une machine a feu.

Soit ¢ le volume de 1%8 du corps C, eau ou autre matiére,
employé dans cette machine a la production du travail, et
soit p la pression de ce corps. A la vérité, cette pression
n’a pas la méme valeur en tous les points du corps lorsque
le piston se déplace; pour qu’il en soit ainsi il faudrait,
théoriquement, que le déplacement du piston soit infini-
ment lent. Nous admeltrons cependant que cette pression
est uniforme, car autrement la quantité p n’aurait aucune
signification précise et nous ne pourrions l'introduire dans
le calcul. D’ailleurs, cette hypothése n’est pas loin d’étre
réalisée en pratique. .

Représentons géoméiriquement 1’état thermique du
corps C. Au premier abord, il semble que la courbe repre-
sentative des transformations qu’il subit pendant le fonc-
tionnement de la machine ne puisse jamais étre fermeée.
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Ainsi, par exemple, 'eau transformée en vapeur dauns la
chaudiére d’'une machine a vapeur se perd dans le conden-
seur aprés avoir agi sur le piston; elle ne revient donc pas
4 son état initial. Toutefois, il est possible, théoriquement
du moins, d’obtenir une courbe fermée. En effet, nous pou-
vons supposer que I’eau provenant de la condensation de la
vapeur nécessaire & un coup de piston est portée, par la
pompe alimentaire, du condenseur & la chaudiére ou elle
se vaporise de nouveau pour agir sur le piston. Dans ces
conditions, cette eau suffit pour assurer le jeu de la ma-
chine et elle repasse périodiquement par les mémes états;
en d’autres termes, suivant ’expression consacrée, elle ac-
complit une série de cycles fermés dont chacun correspond
a un coup de piston et qui est représenté par une courbe
fermée. Des considérations analogues s’appliqueraient &
une machine fonctionnant avec une aulre matiére que Ieau.
Nous pouvons donc supposer que, dans tous les cas, la
courbe correspondant & un coup de piston est fermée.

33. Désignons par @ la surface du piston et supposons
que la masse du corps enfermé dans le corps de pompe soit
égale & 1%8; le volume de ce corps est alors ¢, Si le piston
s'avance d’une longueur d! ce volume s’accroit de

dv=2Qdl.
En méme temps le piston effectue un travail
dr=pQdl=pdy.

Pour avoir le travail effectué pendant un coup de piston il

suffit de prendre Yintégrale de cette quantité le long de la
P. 3
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courhe fermée AMBN (fig. 3) qui représente la transfor-
mation correspondante. Ce travail est donc égal & Paire
limitée par cetie courbe; il est positif, si le point repré-

sentatif décrit cette courbe dans le sens des aiguilles d’une

Fig. 3.

montre; il est négalif, si la courbe est décrite dans le sens
rétrograde.

8i, au lieu de contenir 1*¢ de matiére, le corps de pompe
en contenait n, la variation du volume  d! résultant d’'un
déplacement 4! du piston serait le produit de » par la va-
riation dv du volume spécifique; nous aurions donc

nde=8dl
et
dv=pQdl=npdy.

Ainsi le travail correspondant & un déplacement du piston
est proportionnel 3 la masse du corps contenu dans le corps
de pompe. Pour simplifier, nous supposerons généralement
que la masse du corps qui se transforme est égale a I'unité.

34. Source chaude et source froide. — Tragons les deux
adiabatiques CD et EF tangentes en A et B 4 la courbe AMBN.
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Quand le point représentatif décrit cette courbe, il coupe
les adiabatiques intermédiaires dans des sens différents
suivant qu’il se meut sur ’arc AMB ou sur I’arc BNA. Par
conséquent, si, pour un déplacement infiniment petit sur
I’arc AMB, la chaleur empruntée par le corps qui se trans-
forme est positive, pour un déplacement sur I'arc BNA, la
ch aleur empruntée est négative. Le corps emprunte donc
de la chaleur pendant la portion du cycle correspondant au
premier arc, tandis qu'il en céde pendantla portion qui
correspond au second. Or, un corps ne peut emprunter de
la chaleur qu’a des corps A une température plus élevée et
ne peut en céder qu’a des corps a une plus basse tempé-
rature que lui. Une machine thermique doit donc com-
prendre, outre le corps C quise transforme, des corps chauds
el des corps froids. Les premiers sont désignés sous le nom
collectif de source chaude, les seconds constituent 1a source
Jroide. -

Nous considérerons chacune de ces sources comme formée
d’un seul corps de masse assez grande pour qu’on puisse
négliger les variations de température résultant des em-
prunts ou des apports de chaleur qui leur sont faits. Nous
désignerons par T, la température de la source chaude,
par T, celle de la source froide.

35. La quantité de chaleur empruntée a la source chaude
est cédée tout entiére a la source froide. — Considérons
fes quantités de chaleufque, pendant la durée d’un coup de
piston, le corps C emprunte i la source chaude et céde a la
source [roide. Soient Q, la premiére quantité, Q, la seconde.
Puisque le corps C reprend le méme état & la fin de chaque
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coup de piston, il ne peut emmagasiner de la chaleurfi
donc nous admettons la conservation du_calorigue, les
:;Tﬁ;'ﬂmé“ dmleur Q, et Q, dmvem étre egales. Clest &
cette conclusion qu’arrive Carnot.

. Nous savons aujourd’hui que 'on a Ql> Q..

" Mais, si ce premier résultat des travaux de Carnot est
inexact, d’autres résultats plus importants sont restés vrais.
“Avant de les énoncer et d’exposer le raisonnement suivi par
‘Carnot pour y parvenir, donnons quelques notions indis-
peusables sur ce qu'on doit entendre par reversibilité d’un
cycle. Vappelle tout de suite ’attention sur un résultat sur
lequel nous insisterons au n° 39, c’est que dans la nature

“ .un cycle ne peut jamais étre qu’a peu prés réversible.

- 36. Réversibilité du cycle d’'une machine. — Pour que
le cycle décrit par le corps C, qui se transforme dans une
machiné, soil réversible, il faut d’abord que ce corps puisse
parcourir ce cycle en sens inverse. Généralement cette con-
diﬁox} est satisfaile; ainsi, dans le cas d’une machine a
.vapeur, on_ peut faire marcher cetle machine & contre-
vapeur. Mais on sait que, si cette condition est nécessaire,
elle n’est pas suffisante. ,

Considérons les échanges de chaleur qui ont lieu entre le
corps C et les sources lorsque la machine fonctionne dans
le sens direct et dans le sens inverse.

Puisque 'nous avons supposé que C emprunte de la cha-
leur lorsque le point représentatif se meut sur l'arc AMB
d.an’s le sens indiqué par 'ordre des lettres, ce corps doit
abandonner la méme quaniité de chaleur quand le point
représentatif se déplace en sens inverse BMA. D’autre part,
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nous avons vu que la température T, de la source chaude
doit tdujours étre supérieure a celle du corps C dans un
quelconque de ses états. Par conséquent, puisqu’un corps
ne peut céder de la chaleur & un autre dont la température
est plus élevée, 1a chaleur abandonnée par C, pour la por-
tion BMA du cycle qu’il décrit dans le fonctionnement in-
verse de la machine, ne pourra étre cédée & la source
chaude. Comme il n’y a que deux sources, cette chaleur est
nécessairement cédée & la source froide. Des raisons ana-
logues nous .feraient voir que le corps G emprunte de la
chaleur lorsqu’il décrit-le cycle ANB et que cette chaleur ne
peut provenir que de la source chaude.

- En ré'sumé, dans le mouvement direct de la machine, le
corps C produit un travail . en empruntant une quantité de
chaleur Q, & la source chaude et en cédant la quantité Q,
a la source froide; dans le mouvement inverse, le travail
produit est — 7, puisque le cycle est parcouru en sens in-
verse, et en méme temps une quantité de chaleur Q, est
cédée a la source froide tandis que la quantité Q, est em-
pruntée & la source chaude. Il n’y a donc pas inversion
compléte dans les échanges de chaleur; par conséquent, en

général, le cycle d’'une machine thermique n'est pas réver-
sible.

. 37. Conditions de réversibilité d’une transformation élé-
mentaire. — Considérons une transformation élémentaire
du corps C et soit MM’ I’élément de. courbe correspondant.
Désignons par A la source qui fournit la quantité de cha-
leur absorbée par le corps C pendant cette transformation.

. Cette transformation sera réversible si, lorsque le point
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représentatif revient de M’ en M, la quantité de chaleur
dégagée par C est absorbée par le corps A. )
Cette condition est évidemment réalisée si dQ est nul,
c’est-a-dire si I'arc MM’ appartient & une adiabatique.
Elle I'est encore, du moins théoriquement, dans un autre
cas : c’est lorsque la température du corps C reste constam-

ment égale a celle de A, c’est-a-dire lorsque la transforma-
tion de C est isotherme.

38. Cycle de Carnot. — Pour qu’un cycle fini soit réver-
sible, il faut nécessairement que chacun des éléments du
cycle soit réversible. D’aprés ce qui précéde, un cycle ré-
versible ne peut donc étre composé que de portions d’iso-
thermes et d’adiabatiques. Le plus simple de ces cycles

Fig. 4.

comprend au moins deux isothermes AB et CD (fig. 4)
coupées par deux adiabatiques AD et BC. Ce cycle a été
considéré par Carnot et, pour cette raison, il porte le nom
de cycle de Carnot.
Assurons-nous qu’un tel cycle est bien réversible.
Lorsque ce cycle est parcouru dans le sens direct ABCD,
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le travail  produif est positif et égal 4 I'aire du cycle. Quand
le point figuratif va de A en B, le corps C emprunte une
quantité de chaleur Q,  une source que 'on peul supposer
a la température T, de 'isotherme AB; pour la portion BC,
il n’y a pas d’échange de chaleur; pour la portion CD, le
corps C céde une quantité de chaleur Q, que I’on peut sup-
poser absorbée par une source a la température T, de cette
isotherme; enfin, le long de I’adiabatique DA, le corps C
n’emprunte ni ne céde de chaleur.

Décrivons le cycle dans le sens inverse ADCB. Le travail
produit, toujours égal en valeur absolue & 'aire du cycle,
est alors négatlif; il est donc — 7. Pour les échanges de cha-
leur, nous n’avons a considérer que les isothermes DC et BA,
Quand le point figuratif décrit la premiére, le corps em-
prunte une quantité de chaleur Q, et cet emprunt peut étre
fait & la source froide puisque sa température est égale a
celle que posséde le corps pendant celte transformation ;
on peut donc dire que, le long de Visotherme DC, le corps
céde une quantité de chaleur — Q. a la source froide. Pour
des raisons analogues, nous pouvons dire que, pendant la
transformation isotherme BA, le corps C emprunte une
quantité de chaleur — Q, a la source chaude.

Par conséquent, lorsqu’on renverse le sens des trans-
formations, le travail et les quantités de chaleur emprun-
tées ou cédées d chacune des sources changent de signe. Le
cycle est donc bien réversible.

39. Toutefois il y a une petite difficulté & admettre qu'une
transformation isotherme est réversible. Il ne suffit pas,

pour qu’'un corps C puisse emprunter de la chaleur & une
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source A, que la température de celle-ci Soit égale .a celle
du corps C; il faut qu’elle lui soit supérieure. De méme,
pour que C puisse céder de la chaleur 3 une source B il faut
que la température de cette source soit inférieure a celle
du corps. Par conséquent, si T, et T, sont les températures
des deux sources, le corps C ne pourra décrire les iso-
thermes AB et CD corréspondant a ces deux températures.
Le cycle de Carnot décrit par Cdans le mouvement direct
ne sera donc pas ABCD, mais A'B'(/D’, A'B’ et C'D’ étant
deux isothermes comprises. entre AB et CD. Dans le mou-
vement inverse le cycle décrit sera A"B"C"D",

En toute rigueur, le cycle ABCD n’est donc pas réver-
sible. Néanmoins, il peut éire considéré comme tel, i la
limite, car on peut supposer aussi petites qu’on veut les
différences de température entre C et les sources et, par
conséquent, faire différer aussi peu qu’on le veut les cycles
A'B'CD' et A”B"C"D" du cycle ABCD.

Si I'on appelle alors 7, 7 et 7" les aires des trois cycles
ABCD, A'B'C'D’, A’B"C"D" (c’est-a-dire le travail effectué
pendant ces trois cycles): si l'on appelle Q,, Q}, Q} la
quantité de chaleur absorbée par C quand on décrit les iso-
thermes AB, A'B’, A”B”; Q,, Q}, Q) les gquantités de cha-
leur cédées par C quand on décrit les isothermes CD, C'D’,
C’D", on peut rendre aussi petites que 'on veut les diffé-
rences

T,—T; 7”_'7’ Q'|_' Qi; ’;_Qn Q;_Qb ”2_' Q!’

ce qui suffit pour rendre rigoureux les raisonnements qui
vont suivre.

_ Les cycles naturels sont donc tous irréversibles; mais on
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peut en construire qui différent trés peu d’un cycle réver-
sible. La différence peut devenir aussi petite qu'on le veut,
mais a la condition que le cycle soit parcouru d’une fagon
tnfiniment lente.

40. Le coefficient économique d'un cycle de Garnot est
maximum. — On appelle rendement ou coefficient écono-
ke
Q

duite a la quantité de chaleur empruntée a la source

mique d’un cycle le rapport de la quantité de travail pro-

chaude.

Considérons deux machines M et M’ fonctionnant entre
les mémes limites de température T, et T,. Supposons que
le corps € qui se transforme dans la premiére décrive un
cycle de Carnot et que le corps C’ de la machine M’ décrive
un cycle quelconque. Carnot démontre que dans ces condi-
tions le coefficient économique de la machine M’ esl au plus
égal 4 celui de M. En d’autres termes, on doit avoir

7 T

e Sy
Q= Q
' étant le travail correspondant au second cycle, et Q) Ia

chaleur empruntée & la source chaude par (7, lorsque ce
corps décrit ce cycle.

41. Carnot arrive & ce résultat en démontrant que ’hypo-
thése

7 - T

Qi ™ Q
conduit & admettre la possibilité du mouvement perpétuel.
Yoici son raisonnement.
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Les deux machines fonctionnant entre les mémes limites
de température, on peut supposer que, dans l'une etl’autre,
la chaleur empruntée provienl d’'une méme source chaude
et que la chaleur cédée est absorbée par une méme source
froide. De plus on peut accoupler les deux machines de
telle sorte que M’ marche dans le sens direct et M dans le
sens inverse. On réalise ainsi une machine thermique com-
plexe fonctionnant entre deux sources.

Le cycle de la machine M étant réversible, puisque c’est
un cycle de Carnot, le travail produit et les quantités de
chaleur échangées avec les sources ne font que changer de
signe quand on intervertit le sens du mouvement de cette
machine. Par conséquent, si m et m' sont les poids des
corps C et (' qui entrent en jeu & chagne coup de piston,
le travail résultant d’un cou'p de piston, lorsque les ma-
chines sont accouplées comme il vient d’étre dit, a pour
valeur

m'v —mr.
La chaleur empruntée a la source chaude est
m' Q| — mQy,
et celle qui est cédée a la source froide

m' QY — mQ,.

Or, on peut choisir m et m’ de telle sorte que la premiére
de ces quantités soit nulle; il suffit qu’on ait

m’:(—;-\,— et m:l—
1

A étant une quantité quelconque.
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Dans ces conditions le travail de la machine complexe a
pour valeur
m’r’-—mr:l(—i— — -i);
Q, W
c’est donc une quantité positive, d’aprés ’hypothése provi-
soirement admise.

Mais, si 'on admet le principe de la conservation du calo-
rique, il ne peut y avoir de chaleur cédée i la source froide
quand aucun emprunt n’est fait & la source chaude. Par
conséquent, a la fin d’'un coup de piston les deux sources
sont dans les mémes conditions qu’au commencement. Un
travail positif est donc obtenu sans aucune modification des
sources de chaleur. Le méme fait se reproduisant & chaque
coup de piston, le mouvement perpétuel serait donc pos-
sible; ce qui est absurde. ,

On sait que, quoique ce raisonnemenl repose sur une
notion inexacte, la conclusion est juste.

42. Le coefficient économique d'un cycle de Carnot ne
dépend pas du corps transformé. — Le théoréme précé-
dent a une conséquence importante, ,

Supposons que le cycle de la machine M’ soit également
un cycle dc Carnot. On doit alors avoir, d’aprés ce qui pré-
céde,

Mais on a aussi, puisque le cycle de la machine M est un
cycle de Carnot,
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11 faut donc que 'on ait

T 7

Q. ~ Qo

Ainsi, lorsque deux corps C et C’ décrivent deux cycles de
Carnot, entre les mémes limites de température, les coeffi-
cients économiques des deux cycles sont égaux. Le coeffi-
cient économique d’'un méme cycle ne dépend donc pas de
la nature du corps transformé.

Cette conséquence avait une grande importance pratique.
Il en résultait que, quel que soit le corps employé, une ma-
chine thermique posséde le méme rendement lorsque ce
corpé décrit un cycle de Carnot. Il devenait donc inutile de
chercher & ‘augmenler ce rendement en vremplagant la va-
[;em' d’eau par un autre corps; il suffisait de perfectionner
les machines & vapeur d’eau, de maniére que le cycle décrit
par cette vapeur se rapproche le plus possible d’'un cycle
de Carnot.

Depuis cette méme conséquence a acquis une égale im-
portance théorique; elle est devenue le principe de Carnot.

43. Fonction de Carnot. — Puisque le coefficient écono-
mique d’un cycle de Carnot ne dépend pas du corps trans-
formé, il ne peut dépendre que des températures T, ét T,
des isothermes du cycle; posons donc

T-—

g =/Tu Ty).

C’est & cette fonction f qu’on a donné le nom de fonction de
Carnot. Carnot n’en a pas cherché la valeur.
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Voyons cependant & quelles conséquences il aurait été
conduit s’il avait entrepris cette recherche.

Considérons trois isothermes AB, CD, EF (fig. 5) corres-
pondant aux températures T,, T,, T; et coupées par deux
adiabatiques AE et BF; nous obtenons ainsi trois cycles de
Carnot ABDC, CDFE et ABFE. Soient 7 et 7/ les travaux
accomplis par un corps qui décrit le premier et le second ;
le travail correspondant au troisiéme sera 7-+1'. Soient
encore Q,, Q., Q; les quantités de chaleur empruntées par
un corps lorsque le point représentatif de son état décrit
les isothermes AB, CD, EF. Quand le corps décrit le cycle
ABDC, il emprunte donc une quantité de chaleur Q, & une
source i température T, et en céde une quantité Q, & une
source A température T,; par suite Q,— Q,, si 'on admet
Pindestructibilité du calorique. Pour la méme raison Q,;Q,.
Posons Q,; = Q,= Q,= Q.

Nous avons alors pour les coefficients economlques des

trois cycles de la figure
=f(Ty, Ty),

—-f(Tz, Ts),

a8 O!'* Ol’*

T+

i) "—f(Tlr Ts).

Nous en déduisons
STy, T,) :f(Tn '3) ""./(Tzo Tr,),
et, si nous regardons T; comme une covnstante,

ST, To) =f(Ty) — f(Ta).
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La fonction de Carnot serait donc la différence des deux
fonctions d’une seule variable dépendant 'une de la tempé-

Fig. 5.

rature T, de la source chaude, 'autre de la température T,
de 1a source froide.

44, Cette propriété de la fonction de Carnot a été re-
connue fausse. Elle est cependant intéressante, car elle nous
montre I'idée que Carnot pouvait se faire sur la conserva-
tion de I'énergie.

Soit W I'énergie sensible d’un corps; nous verrons (54)
que ZQf(T) est son éunergie calorifique; 1’énergie totale
est donc ‘

W+ 3 Qr(T).

Si nous faisons déerire au corps un cycle de Carnot, W
diminue de 7 et I’énergie calorifique augmente de

QAT —f(Ty)].
Ces deux quantités sont égales puisqu’on a

T

Q =JS(T1) — A(Ty).
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L’énergie totale ne varie donc pas.

Mais, si le cycle décrit par le corps est quelconque, lerap-
T
Q

de Carnot. Par conséquent
tSQ[A(T)) —f(Ty)].

L’énergie totale doit donc, en général, aller constamment

port = velatif & ce cycle est au plus égal & celui d’un cycle

en diminuant,
C’est & cette idée gque Carnot se ralliait; d’autres considé-
rations que les précédentes 'y avaient conduit.

45. Quelques applications aux chaleurs spécifiques des
gaz. — Dans le Mémoire de Carnot on trouve quelques
remarques intéressantes sur les chaleurs spécifiques des
gaz.

Prenons un cycle de Carnot infiniment petit ABCD ( fig. 6).

Fig. 6.

Soient

p, v, T, 1a pression, le volume spécifique et la température
du corps qui se transforme quand son point représentatif
esten A;

p+dp, v+dv, T, les valeurs des mémes quantités rela-
tives au point B;

p—9p, v — dv, T.— 4T, celles qui se rapportent au point D.
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Le travail accompli quand le corps décrit le cycle est égal
4 la surface de ce cycle que 'on peut assimiler & un pa-
rallélogramme; on a donc

T =290p dv — dv dp.

La quantité de calorique 4Q empruntée 2 la source chaude

-le long de I'isotherme AB est, par suite de ’hypothése de

I'indestructibilité du calorique, une différentielle exacte (28) ;
par conséquent

dQ dQ
d dy ~—= dp.
() Q= ‘+dp p

La température ne variant pas le long de AB, nous avons
dar

o AT
(2) dl' = o0 = 4o d‘—i—a;dp

L’adiabatique AD nous fournit les deux équations

__dQ. _dQ

(3) dQ_O—a; o¢ +%6p,
N dT dT

(4) 6T = a;&v—l—%&p.

Multiplions I’équation (1) par la derniére, 'équation (2)

par la troisiéme, et retranchons; nous obtenons

an'r:(apdv—avdp)<‘ﬂ ar _ dQ ﬂ),

ou

(5) deT=T<§9§_§9d_z>.

Mais, d’aprés 'expressiop trouvée précédemment (43)
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pour la fonction de Carnot, le coefficient économique du
cycle est

20 =/(T)—F (T —81);
par suite
t=dQoT f'(T).

En portant cette valeur de 7 dans 1'égalité (5), nous avons

) 4QdT _dQ dT _

Ce résultat n’aurait aujourd’hui aucune signification; trans-
formons-le en introduisant les chaleurs spécifiques. Des
définitions de ces quantités (23 et 24) nous tirons

dQ _ .dr
(7) o =Cx
et

dQ _ 4T
) P =

La relation (6) peut donc s’écrire

dT dT |

(9) (C—C)Z;d_v:f’(—'l‘i'

46. Appliquons cette formuie aux gaz parfaits. Pour ces
corps
pv— RT;
par suite
dr v dT _ p

dp — R’ dv T R’

et en portant ces valeurs des dérivées partielles de T
P. . 4
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dans (g) on obtient

C—c 1

(10) & =170 =0

La différence des chaleurs spécifiques d'un méme gaz doit
donc n’étre fonction que de la température. On sait aujour-
d’hui que cette fonction se réduit & une constante.

De la relation (10) nous tirons

c=C—RO,
et, en portant cette valeur de ¢ dans (8), nous avons

dQ _ .dT dT
Ziﬁ*cﬁ“ﬁ@d_ﬁ’

ou, en tenant compte de la valeur précédemment trouvée

dT
pour %ﬁ

dQ _ .dr o .dT

Multiplions cette égalité par dp et ajoutons au produit
ainsi obtenu celui des deux membres de ’égalité (7) par dv;
nous obtenons

dQ dl dT

dQ .
—&—v-dv—*‘ ;i—’;d‘p_C?d—vdV +La;dp—-9vdp,

ou '

(11) dQ =CdT — 0 dp.

Considérons le produit

dy + ——dp

dT - dT
R@dT__R®<dV et )
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Si nous y remplacons les dérivées partielles de T par leurs
valeurs, nous avons

ROdT =8pdy + Bvdp,
et par conséquent, en additionnant avec ’égalité (11),
dQ +~ROdT =CdT + 8p do.

Le premier membre est une différentielle exacte, car,
d’une part, dQ en est une d’aprés ’hypothése de la conser-
vation du calorique, et, d’autre part, RO® dT doit également
I’étre puisque ® est une fonction de T seulement; par con-
séquent le second membre est une différentielle exacte.
Nous avons donc, en prenant T et ¢ comme variables indé-

pendantes,
dC _ dep
dv — dT’

ou, en remplacant p par la valeur tirée de la relation fonda-

mentale,
dC __ R 40T
de — v di

Si nous intégrons par rapport 4 ¢ nous obtenons

aeT

C == R e IO [ T .

7 1080 +9(T)
47. Aprés avoir démontré cette formule, Carnot ajoute

que les expériences semblent prouver que C estindépendant

de la température. Considérant ces expériences comme peu

probantes il ne chercha pas les conséquences de leur ré-

sultat. Il aurait pu cependant en déduire la valeur de la
fonction f(T,, T,).
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En effet, si C est constant, la fonction ¢(T) introduite par
Pintégration doit se réduire a une constante et, de plus, on

doit avoir
derT

T =B

B étant aussi une constante. 1l résulte
®1=8B(T—T,),

et, si 'on se reporte & 'expression que nous avons désignée

par O,
j’T(l'ﬁ:B(T—TO)'
Par conséquent
/ 1 !
(12) f(T)-—BT___T

o

ot
S(T)= —lOg(T T,).

On a donc pour la fonction de Carnot

ST, Ty = /(1) — f(Ty) = g [1og(T,— T,) — log (T, — To)]

ou
T,

(T, T;) = = logT2

Cette expression de la fonction, rigoureusement déduite
des principes admis par Carnot, est inexacte. On sait au-
jourd’hui que cette fonclion a pour expression

T,—T,
T,




LES TRAVAUX DE SADI CARNOT. 53

Quoi qu’il en soit de son exactitude elle aurait amené
Carnot a découvrir la constance de la différence C — ¢. En
effet, si dans la formule (10) nous remplagons f'(T) par sa
valeur (12), nous obtenons

C—c_,T—T,
R = B—5—
égalité dont le second membre se réduit & la constante B
quand on suppose Ty=o.

48. Derniéres idées de Sadi Carnot. — Déja, dans les
derniéres pages du Mémoire dont nous venons d’esquisser
les principales lignes, Carnot concoit des doutes sur la légi-
timilé de ’hypothése de la conservalion du calorique.

Parmi les raisons qui ’ont amené a ce doute les expé-
riences de Rumford et de Davy sur le frottement tiennent
probablement le premier rang.Mais des raisons d'une autre
nature semblent aussi avoir contribué a ce changement
d’idées.

A cette époque la discussion entre les partisans de la
théorie de I’émission et les partisans de la théorie des on-
dulations de la lumiére était & sa période aigué et les argu-
ments de ces derniers commencaient 3 avoir une poriée
décisive pour le triomphe de la théorie qu’ils soutenaient.
La lumiére paraissait donc déja devoir étre considérée
comme une manifestation du mouvement moléculaire.
D’autre part, des expériences récentes montraient Pidentité
de la lumiére et de la chaleur rayonnante; cette derniére
devait donc également provenir d’'un mouvement. Il deve-
nait dés lors naturel de considérer 1'état thermique d’un
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corps comme résultant du mouvement de ses molécules
matérielles et de voir dans la chaleur une transformation
des mouvements sensibles. D’ailleurs cette hypothése n’était
pas nouvelle; elle avait été introduite deux siécles aupara-
vant, mais sans aucune raison scientifique, par Francois Ba-
con, puis par Boyle, puis reprise plus tard par Euler. La
théorie de Fresnel n’apportait donc, en réalité, qu’une con-
firmation partielle d’une hypothése déja ancienne,

49. Quoi qu’il en soit, quelque temps avant sa mort pré-
maturée, Carnot possédait sur la chaleur des idées tout a
fait conformes 2 nos idées actuelles. Il les consigna dans
des Notes manuscrites qui restérentignorées jusqu'en 18713
leur lecture ne laisse aucun doute sur l'importance des
progrés qui seraient résultés d’une publication plus hative.

Nous y trouvons en effet :

« La chaleur n’est autre chose que la puissance motrice,
ou plutdt que le mouvement qui a changé de forme. C’est
un mouvement dans les particules du corps. Partout ou il
y adestruction de force motrice, il y a en méme temps pro-
duction de chaleur en quantité précisément proportion-
- nelle & la quantité de puissance nqgtrice détruite. Récipro-

quement : partout ou il ys%%e chaleur, il y a
destruction de puissance motrice», et « I'on peut poser en
thése générale que la puissance motrice est en quantité
invariable dans la nature; qu’elle n’est jamais, & propre-
ment parler, produite ou détruite. A la vérité, elle change
de forme, c’est-a-dire qu’elle produit tantét un genre de

mouvement, tantét un autre, mais elle n’est jamais
anéantie. »
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Pouvait-on exprimer d’une maniére plus claire et plus
précise le principe de la conservation de I’énergie?

Carnot donne méme le nombre exprimant le nombre
d’unités de chaleur correspondant a l'unité de puissance
motrice : la production de 1 unité de puissance (1000%8
élevés & 1™) nécessite la destruction de 2,70 unités de
chaleur. De ces nombres on déduit 370 pour I'équivalent
mécanique de la chaleur,

Carnot ne dit pas comment il est parvenu au nombre qu’il
indique pour I’équivalent calorifique de la puissance mo-
trice. Il est cependant probable qu’il I’a déduit des chaleurs
spécifiques des guz. Si I'on fait le calcul en prenant pour C
et ¢ les valeurs admises a I’époque, on trouve en effet le
nombre de Carnot. C’est aussi ce méme nombre que Mayer
obtint 15 ans plus tard par cette méthode.



CHAPITRE 1V.

LE PRINCIPE DE I’EQUIVALENCE.

50. Les hypothéses moléculaires. — S’il est présumable
que la théorie des ondulations en Optique n’est pas étran-
gére A l'évolution des idées de Carnot sur la chaleur, les
admirables travaux de Physique mathématique entrepris &
cette époque par Laplace, Cauchy, Lamé, Poisson, Fourier
paraissent avoir exercé la néme influence sur les contem-
porains et successeurs de Carnot.

Dans ces travaux les corps sont considérés comme formés
de molécules matérielles agissant les unes sur les autres
suivant les droites qui les joignent deux a deux, et d’aprés
une loi ne dépendant que de la distance; de plus l'action
égale la réaction; en un mot, les forces moléculaires sont
supposées centrales.

Sans discuter ici la 1égitimité de cette hypothése, nous
allons montrer qu’elle conduit au principe de ’équivalence.
C’est 12 certainement l'explication de la découverie simul-
tanée de ce principe par Mayer, Joule et Colding.

54. Energie interne d’'un systéme isolé. — Considérons
un systéme de corps matériels isolé. Deux sortes de forces
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agissenl sur ce systéme : les forces sensibles s’exercant i
distance, et les forces moléculaires s’exercant entre molé-
cules a des distances trés petites. Les unes et les autres
étant supposées centrales admettent une fonction des forces
et, par conséquent, ainsi que nous I’avons démontré (7), il
Yy a conservation de 1’énergie dans ce systéme. Soient — V
la fonction des forces dues aux forces qui s’exercent a dis-
tance sensible, —V, celle qui est due aux forces molé-
culaires, qui ne sont sensibles qu’a des distances infiniment
petites. L’énergie potentielle totale sera V -+ V,.

Un théoréme bien connu de Mécanique nous apprend que
la force vive d’un corps est égale & la somme de la force
vive de translation (c’est-a-dire de la force vive qu'’il aurait
si toute sa masse étail concentrée en son centre de gravité)
et de la force vive due au mouvement relatif du corps par
rapport a son centre de gravité. Décomposons alors notre
corps en éléments de volume trés petits d’'une maniére
absolue, mais contenant un trés grand nombre de molé-
cules. Soient w la demi-force vive de translation d’un de ces
éléments, w, la demi-force vive due & son mouvement
relatif par rapport & son centre de gravité. Soient

\YY :zm, W,:Zm,,

les sommations étant étendues atous les éléments; la demi-
force vive totale sera W +— W, et le principe de la conser-
vation de ’énergie donnera

W4+ W, 4+ V 4+ V,=const.

ou, en désignant par U la somme V +~ W,+ V, des deux
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sortes d'énergie moiéculaire et de I'énergie potentielle sen-

sible,
W + U = const.

La quantité U est appelée V'énergie interne du systéme :
elle dépend nécessairement des posilions relatives des
molécules des corps et de leurs vitesses.

Dans la plupart des applications, V est négligeable, ce
qui permet d’écrire

U:V1+ W,.

La quantité U est accessible & 'expérience, ainsi qu’on le
verra plus clairement plus loin; mais nous n’avons aucun
moyen, méme en admettant la 1égilimité de I'bypothése des
forces centrales dont nous déduisons ici les conséquences,
de calculer séparément V, et W,.

52. Nature des forces de frottement. — Il arrivera en
général que dans le systéme cousidéré s’exerceront des
forces de frottement. Ces forces dépendant des vitesses de
leurs points d’applications ne peuvent pas admetire de
fonction des forces. Mais, dans I’hypothése que nous exami-
nons ici, ces forces de frottement ne seraient que des forces
apparentes, et les forces réelles qui produiraient les effets
que nous leur attribuons seraient des forces moléculaires
centrales. Ces forces réelles ne dépendraient donc pas des
vitesses des molécules, mais seulement de leurs positions,
et admettraient une fonction des forces.

53. Extension du principe de la conservation de
I'énergie. — Dans ’hypothése que nous examinons ici, la:
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chaleur ne serait que la manifestation des mouvements
moléculaires; la température d’un corps (et il en serait de
méme en général de toutes les variables qui définissent son
état thermique) serait une fonction dépendant seulement
des positions de ses diverses molécules et de leurs vitesses.

Géncralisant cette hypothése, nous pourrons supposer
que tout état physique d’un corps, tel que son état d’élec~
trisation, résulte de la nature des mouvements moléculaires.
Alors I'état physique des corps du systéme peut varier sans
qu’il cesse d’y avoir conservation de I'énergie.

Ainsi les principes généraux de la Mécanique conduisent
a la démonstration du principe de la conservation de
I’énergie lorsqu’on admet que les forces de frottement et
I’état physique d’un corps résultent des aclions molécu-
laires, et que ces actions sont centrales.

Si donc un systéme quelconque est soustrait a toute
action extérieure, on aura, comme nous l'avons vu plus

haut,
U + W — const.

Si ce systéme est soumis & I'aclion des forces extérieures et
que dr représente le travail de ces forces pendant une
transformation infiniment petite du systéme, on aura

(voir § 8) :
dv=dU + dW.

54. Equivalence du travail et de la chaleur. — Appli-
quons ce principe, ainsi entendu, & un systéme de corps
qui décrivent un cycle, ou I'on fait varier non seulement
leurs positions et leufs vitesses, mais leur état thermique,

mais dont un seul, un calorimétre, peut, quand le cycle est
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entiérement parcouru, avoir changé d’état thermique. Fai-
sons subir & ce systéme une série quelconque de transfor-
mations pendant lesquelles les corps ne peuvent ni céder
ni emprunter de chaleur a I’extérieur du systéme, mais
peuvent soit échanger entre eux de la chaleur, soit produire
ou absorber du travail; de plus, supposons qu’ad la fin de
cette série de transformations les corps reprennent leur
état thermique, leurs positions et leurs vitesses primitives,
a V’exception du calorimétre qui reprendra sa position et sa
vitesse initiale, mais dont la tempéralure aura pu changer.
Dans ces conditions, la variation de l'énergie totale du
systéme se réduit A la variation AU de I'énergie interne du
calorimétre, et elle est égale au travail 7 produit par les
forces extérieures; nous avons donc

AU =~

Supposons que I’état thermique du calorimétre ne dé-
pende que de sa température; c’est ce qui arrivera, par
exemple, si le calorimétre se réduit 3 une cerlaine masse
d’eau sous pression constante.

L’énergie interne U du calorimétre est une fonction de sa
température 6; en outre, elle est évidemment proportion-
nelle 3 la masse du corps calorimétrique; soit n cette masse

exprimée en kilogrammes; nous pouvons poser
U=nrf(9).

8i df est ’élévation de température du calorimétre résul-
tant des transformations du systéme, nous avons

AU = n f'(8) df.
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Mais, si nous supposons que le corps calorimétrique est
T'eau, » df représente la quantité de chaleur Q nécessaire a
cette élévation de température, c'est-d-dire la quantité de
chaleur absorbée par le calorimétre. En remplacant rdf
par Q, nous aurons

AU=1"(6)Q

el par conséquent
T=/(9)Q.

8i nous faisons Q =1, nous obtenons z=y"(4). Cetle
dérivée f’(G) est donc la quantité de travail correspondant
a4 un développement d’'une quantité de chaleur de 1°!
dans le systéme considéré; on l'appelle 'équivalent méca-

nique de la chaleur et on la désigne par E.

55. Faisons obhserver que la fonction f/(8) ne dépend
nullement de la maniére dont le systéeme se transforme, ni
de la nature de ses transformations puisqu’elles sont sup-
posées uelconques. De plus, la quantité de chaleur Q qui
entre dans I'égalité précédente aurait la méme valeur si
nous prenions pour corps calorimélrique un aulre corps
que l'eau, ou de I’eau & une température différente, puisque
nous avons vu (48) que la mesure des quantités de chaleur

ne dépend pas de la nature du corps calorimétrique; par

conséquent, le quotient f'(6) = 6— ne peut dépendre de ce
\corps. En un mot, f'(8) ou E est une constante absolue.

Cette invariabilité de E constitue précisément le principe

de Uéquivalence; il est donc démontré, sous les mémes

conditions que le principe de la conservation de I’énergie
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d’olt nous I'avons déduit. On congoit qu’au milieu de ce
si¢cle, ou I’hypothése des forces centrales était générale-
ment admise, plusieurs savants aient pu étre simultané-
ment conduits & admettre ce principe et & en chercher la

vérification expérimentale.

56. Détermination expérimentale de 1’équivalent méca-
nique de la chaleur. — Les expériences effectuées dans le
but de déterminer la valeur de I'équivalent mécanique de
la chaleur sont nombreuses el variées; nous rappellerons
seulement le principe de quelques-unes d’entre elles (!).

Expériences de Joule. — Les premiéres furent ehlre—
prises par Joule en 1843, & I'aide de plusieurs dispositifs.

Dans I'un d’eux I’élévation de température du calorimétre
résulte du frottement de 'eau qu’il contient sur elle-méme
et sur des palettes de laiton portées par un axe vertical
animé d’'un mouvement de rotation. Ce mouvement est
obtenu par la chute d’un poids. Considérons le systéme
formé par le calorimétre et les palettes. Ce systéme recoit
de Pextérieur un travail v égal & celui de la pesanteur sur
le poids qui tombe, diminué du travail employé & aug-
menter la force vive de ces poids et de celui qui est absorbé
par le frottement des poulies de transmission et par le frot-
tement de I’axe portant les palettes sur le collier qui le
maintient. L’évaluation du travail transformé en force vive
s’effectue facilement en mesurant la vitesse de chute du

(') Pour la partie expérimentale, consulter : LipPMANN, Cours de Ther-
modynamique professé & la Sorbonne, et les Traités classiques.
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poids, chute qui ne tarde pas & étre uniforme; d’ailleurs ce
travail n’est qu'une fraction trés faible de celui qui est
transformé en chaleur et l'incertitude qu’il peut y avoir
dans son évaluation n’enléve aucune précision & l1a méthode.
Le travail absorbé par les frottements des poulies est beau-
coup plus important et en méme temps son évaluation
beaucoup plus délicate; aussi ne peut-on compter sur une
approximation plus grande que i+ dans la mesure du tra-
vail = transformé en chaleur. Quant i la quantité Q de cha-
leur absorbée par le calorimétre, elle peut étre évaluée &
++5 prés environ. Le nombre trouvé par Joule dans ces con-
ditions est 424,9 kilogrammetres.

En remplacant I’eau du calorimétre par du mercure, Joule
a obtenu 425 kilogrammétres.

Dans d’autres expériences, faites &2 la méme époque, le
développement de chaleur résultait du frottement de deux
piéces de fonte tronconiques l'une sur l'autre. Le travail
correspondant était évalué comme précédemment. Le
nombre trouvé différe peu de ceux que nous venons de

citer.

57. Nouvelles expériences de Joule. — En 1878, Joule
entreprit de nouvelles déterminations. Comme dans la pre-
miére de celles que nous venons de rappeler, la chaleur
résulte du froltement de 'eau sur elle-méme et sur des
palettes de laiton; le mode de production et d’évaluation
du travail transformé en chaleur est différent,

Ce travail est fourni par I'opérateur, qui fait tourner les
palettes en agissant sur une manivelle. Son évaluation
s’obtient par le dispositif suivant : le calorimétre est sup-
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porté par un flotteur lui permettant de tourner autour de
son axe; il peut ainsi prendre un mouvement de rotation
sous l'influence du mouvement de ’eau qu’il contient; deux
cordons tendus par des poids et s’enroulant en sens inverse
dans une gorge creusée & la partie supérieure du calori-
meétre s'opposent a cette rotation.

Considérouns le systéme formé par le calorimétre, les cor-
dons tendus qui le maintiennent, les palettes et la portion
de I'axe qui plonge dans le calorimétre. Nous pouvons faire
abstraction de I’appareil moteur et regarder le mouvement
de I'axe comme résultant de 'action d’un couple. Cest le
travail de ce couple qui représente le travail = fourni au
systéme par les forces extérieures.

Supposons la vitesse de régime atteinte. Alors la dérivée
par rapport au temps de la somme des moments des quan-
tités de mouvements pris par rapport a 'axe de rotation est
nulle. Par suite, la somme des moments des forces appli-
quées au systéme pris par rapport au méme axe est nulle.
Nous avons donc, en appelant p le couple qui fait tourner
'axe, P et P’ les tensions des cordons qui maintiennent le

calorimétre, et r le rayon de la gorge sur laquelle sont
enroulés les cordons,

p=(P +P)r,
et par suite

agnp=2annr(P + P').

Or le premier membre de cette égalité représenle le tra-
vail du couple de rotation, c’est-a-dire le Lravail z fourni au
systéme. Son évaluation revient donc a la mesure du

nombre de tours effectués par ’'axe, nombre qui est donné
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par un compteur, a celle du rayon de la gorge et a celle
des poids qui tendent les cordons; elle peut donc étre faite
avec une précision plus grande que dans les expériences
antérieures. Joule a encore obtenu, comme moyenne de
cing séries d’expériences, 425 kilogrammétres pour I'équi-

valent mécanique de la chaleur.

58 Expériences de M. Rowland. — Par suite de la faible
quantité de travail fournie pendant 'unité de temps, il fallait,
dans les expériences précédentes, un temps assez long pour
obtenir une élévation sensible de la température du calori-
métre. C’est une mauvaise condition pour I’exactitude de la
correction relative au refroidissement. D’autre part, cette
élévation était mesurée par un thermométre & mercure non
comparé au thermomeétre & air aujourd’hui choisi pour défi-
nir les températures. Enfin la disposition des ailettes ne
permettait pas de laisser constamment le thermomeétre dans
Ie calorimétre et les lectures de temmpérature ne se faisaient
qu’au commmencement et & la fin de chaque expérience.

M. Rowland a montré que, si 'on rapporte les indications
du thermomeéire de Joule a celles du thermométre a air; le
nombre trouvé par ce physicien pour I'équivalent mécanique
de la chaleur doit étre un peu augmente.

En 1879, M. Rowland entreprit de nouvelles expériences
dans le but de remédier aux autres défauls que nous venons
de signaler dans le dispositif de Joule et obtenir ainsi une
détermination plus exacte de E.

Le travail transformé en chaleur est fourni par un petit
moteur & pétrole qui fait mouvoir 'axe portant les palettes.

Cet axe pénétre dans le calorimeétre par le fond, et sa par-

P 5
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tie supérieure, plongée dans ce calorimétre, s’évase en cone
percé de trous.

Dans ce cone on place un thermométre qui peut 'alors
rester dans celte position pendant toute la durée d’une
expérience. Par une courbure convenable donnée aux
ailettes, 'eau est constamment ramenée dans ce cone, de
sorte que le thermométre indique bien la température
moyenne du calorimétre. Comme dans les derniéres expé-
riences de Joule, le calorimétre peut prendre un mouve-
ment autour de son axe par suite du mouvement de I’eau;
un frein de Prony s’oppose a cette rotation. L’évaluation du
travail fourni au systéme formé par le calorimétre, le frein
qui le maintient et la portion de I’axe qui plonge dans le
calorimétre s’effectue donc exactement comme précédem-
ment; il est facile de voir qu’il est donné par le produit

27tnaPl,

n étant le nombre de tours effectués par I'axe pendant un
temps déterminé, a la longueur du levier du frein & l’extré-
mité duquel est appliquée la force P.

A des intervalles de temps rapprochés, on notait n et
I’élévation de température; on en déduisait le travail
fourni pendant cet intervalle et la quantité de chaleur cor-
respoundante absorbée par le caloriméire; le rapport de ces
deux quantités donnait E. On pouvait ainsi faire un grand
nombre de déterminations successives sans arréter 'appa-
reil. La moyenne de ces déterminations est 428 kilogram-
métres.

59. Invariabilité de E. — Les expériences que nous
venons d’indiquer sont celles qui donnent E avec la plus
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grande exaclitude. Mais beaucoup d’autres déterminations
de cette quantité, quoique moins exactes, onl une grande
importance parce qu’elles montrent que la valeur de E ne
dépend pas de la série des transformations par lesquelles
passe le systéme. Citons-en quelques-unes.

Dans une de ses premiéres expériences, Joule prenait un
corps de pompe plein d’eau fermé a sa partie supérieure
par un piston, en matiére poreuse, que l'on pouvait faire
descendre en le chargeant de poids. L’eau en passant a tra-
vers les pores du piston s’échauffait. Le travail dépensé
pour produire cet échauffement était donné par le travail
de la pesanteur sur les poids. Joule trouva ainsi 424,6.

Hirn reprit cette méthode sous une forme un peu diffé-
rente. L’eau passe sous pression d’un vase dans un second
a travers un tube capillaire. Il obtint le nombre 433.

Les expériences dans lesquelles Hirn évaluait la quantité
de chaleur résultant de la chute d’un poids par l'élévation
de température éprouvée par une masse de plomb écrasée
par ce poids lui fournirent e nombre 425, identique & celui
obtenu par Joule dans ses meilleures expériences. Cepen~
dant dans ces expériences, outre le calorimétre, un des
corps du systéme, le plomb, ne revient pas i son état pri-
mitif puisque ce métal est déformé. Les conditions admises
dans la démonstration (54) de l'invariabilité de E ne sont
donc pas réalisées dans le cas qui nous occupe. Aussi ces
expériences de Hirn doivent-elles étre considérées moins
comme une vérification du principe de I'équivalence que
comme une preuve de la petitesse de la variation de
I’énergie interne du plomb lorsque ce métal s’écrouit. Avec

“un autre métal le résuliat edit certainement éLé trés différent.
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Enfin rappelons les expériences faites en 1870 par
M. Violle. Un disque de cuivre tournant entre les poles
d’un puissant électro-aimant s’échauffe par suite des cou-
rants d’induction dont il est le siége. La quantité de chaleur
développée s’obtient au moyen d’un calorimétre dans lequel
on plonge le disque; la quantité de travail fournie est
évaluée par la chute d’un poids qui fait mouvoir le disque.
M. Violle a ainsi obtenu 435,

Les nombres 424,6, 433, 425, 435 fournis par ces diverses
expériences ne différent entre eux que du 5 de leur valeur
environ. Comme cette fraction est certainement plus petite
que I'approximation sur laquelle il est permis de compter,
on peut considérer ces résultats comme une bhonne vérifi-
cation de l'invariabilité du nqmbre E.

60. Le principe de 1'équivalence considéré comme prin-
cipe expérimental. — La marche que nous venons de suivre
dans 'exposé du principe de ’équivalence est conforme au
développement historique de la théorie thermodynamique;
mais elle ne saurait nous satisfaire aujourd’hui, car elle
offre le grave inconvénient de faire reposer la démonstra-
tion de ce principe sur I’hypothése que les forces molécu-
laires sont centrales. Or rien ne nous prouve que celte
hypothése soit exacie, puisque nous ne pouvons en con-
troler 1a justesse que par I'exactitude de conséquences éloi-
gnées qui, peut-éire, pourraient tout aussi bien résulter
d’une hypothése toute différente sur la nature des forces
moléculaires. Aussi est-il préférable d’abandouner la marche
historique et de considérer les expériences précédentes, non
comme une vérification d’un principe démontré, mais, au
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contraire, comme la démonstration expérimentale du prin-
cipe de I’équivalence. Cette maniére d’envisager ce prin-
cipe, aujourd’hui généralement adoptée, présente ’avantage
de ne faire aucune hypothése sur la constitution molécu-
laire des corps.

Nous regarderons donc comme démontrée par l'expé-

rience la proposition suivante :

Si un systéme de corps aprés avoir décrit un cycle de
transformations revient a son état initial, le travail fourni
au systéme par les forces extérieures est égal au produit
de la quantité de chaleur cédée par le systéeme par un coef-

JSicient constant, E.

Si done dr est le travail des forces extérieures pendant
une transformation infiniment petite et si dQ est la quantité

de chaleur absorbée par le systéme, l'intégrale
f(dr +EdQ)=—o

quand le systéme décrit un cycle fermé,

dr +EdQ

Donc

est une différentielle exacte.
Si nous désignons par W la demi-force vive du systéme

nous pourrons donc poser \A&{,m aj_
Powdtoe L

dW + dU = dr + E dQ,

-~

U étant une certaine fonction que nous appellerons énergie
interne du systéme.
Nous avons dit plus haut, au n° 48, que la quantité de
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chaleur mesurée était indépendante du corps calorimé-
trique. Ce fait expérimental n’est qu'un cas particulier du
principe de ’équivalence; et en effet, s'il ne se vérifiait pas,
la mesure de I'équivalent mécanique de la chaleur dépen-
drait du corps calorimétrique employé; tet équivalent ne
pourrait donc étre constant.

64. Remarque. — Si I'on suppose que les vitesses des
‘corps reprennent leurs valeurs initiales & la fin de la trans-
formation, ou si les vitesses sont négligeables, comme il
arrivera le plus souvent, la relation précédente devient

dU = dr + E dQ.

Dans cette relation et dans toutes celles que nous avons
écrites jusqu’ici, ’énergie interne est supposée exprimée au
moyen de l'unité de travail, le kilogrammétre. Souvent,
cette forme de I’énergie est exprimée en calories; dans ce
cas sa valeur est égale au quotient de sa valeur en kilogram-
métres par 'équivalent mécanique de la chaleur. Si nous
désignons encore par Uson expression en calories, il faudra
donc, dans les formules qui précédent, remplacer U par EU;

nous avons alors pour la derniére de ces formules

EdU =dr + EdQ

ou, en désignant par A l'inverse de I’équivalent mécanique

de la chaleur,
dU=dQ +A dr.

62. Nouvelles méthodes de vérification du principe de
I'équivalence. — La considération d’un systéme non isolé
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au point de vue thermique nous fournit deux nouveaux
modes de vérification du principe de 'équivalence.

Si nous supposons que tous les corps duy systéme
reviennent, & la fin de la transformation, dans leur état
physique initial, dU est nul, et 1a relation précédente devient

dQ +Adr=o,
et par suite
E—— T,
- Q

Ainsi I'équivalent mécanique de la chaleur est égal au
quotient, changé de signe, du travail fourni au systéme par
la quantité de chaleur également fournie au systéme;la me-
sure de ces deux quantités permettra donc de calculer E et,
par suite, de vérifier si le nombre ainsi trouvé concorde avec
celui obtenu dans les expériences rappelées précédemment.

Un autre mode de vérification consiste & calculer E en

exprimant que la quantité
dU=dQ + Adr

est une différentielle exacte. Il faut encore évaluer la quan-
tité de chaleur et la quantité de wravail fournies au systéme
pendant une transformation élémentaire, mais les corps du
systéme ne sont plus assujeltis & reprendre leur état ther-
mique initial.

L’application de ce mode de vérification du principe de
I’équivalence & un systéme ne comprenant qu’un seul corps,
un gaz, sera ’'objet du Chapitre suivaat.

63. Expériences de Hirn sur les machines & vapeur. —
Parmi les expériences qui se rapportent au premier mode
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de vérification, rappelons les expériences de Hirn sur les
machines & vapeur. .

Soient Q la chaleur empruntée a la chaudiére par 'eau
qui se transforme; 7, le travail produit par cette eau en
agissant sur le piston; ¢, la chaleur cédée au condenseur,
et R, celle qui est perdue par rayonnement.

La quantité de chaleur fournie a eau pendant les trans-
formations qu’elle accomplit est alors

Q—g9—R;
le travail qui lui est fourni est — 7. Si donc nous supposons
que ’eau revient & son état initial, nous devons avoir

T

Em o —_.
Q—9—R

La connaissance de quatre quantités est donc nécessaire
pour le calcul de E. La valeur de 7 se déduil de la sur-

Fig. 7.

face ABCDE (fig. 7) du diagramme d’'un indicateur de
Watt ('), et du nombre de coups de piston produils pen-

(1) L’indicateur de Watt se compose d'un cylindre er communication avec
le corps de pompe de la machine et dans lequel se meut un piston K pressé
& sa partie supérieure par un ressort. La déformation de ce ressort étant pro-
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dant la durée de I’expérience. La valeur de Q est calculée

par la formule de Regnault pour la chaleur latente de vapo-

portionnelle & P’effort qui s’exerce sur lui, le déplacement du piston K ( fig. 8)
sera proportionnel & la pression de la vapeur dans le corps de pompe de la
machine. Le mouvement du piston est transmis par la bielle QS a un systéme
formé par deux balanciers AB et CD mobiles autour des points A et C et liés
par la bielle rigide BD. Le milieu de cette Lielle, ou l'on place un crayon,
décrit une courbe a longue inflexion, sensiblement une droite verticale, et les
déplacements de ce point sont proportionnels aux déplacements du piston K.

Fig. 8.

Le crayon inscrit son mouvement vertical sur une feuille de papier enroulée
sur un cylindre auquel, au moyen de poulies et de courroies, on communique
un mouvement de rotation alternatif dont la vitesse angulaire est proportion—
nelle & la vitesse linéaire du piston de la machine.

En déroulant la feuille de papier on obtient un diagramme tel que ABCD
(ffg. 7) dont les ordonnées sont proportionnelles & la pression p de la vapeur
agissant sur le piston et dont les abscisses sont proportionnelles au déplace-
ment de ce piston, ¢’est-3-dire au volume ¢ occupé par la vapeur. L’aire ABCDE

est donc proportionnelle & l'intégrale [p dv, c’est-a-dire au travail de la

vapeur pendant un coup de piston. La connaissance du coefficient de propor-
tionnalité, qui se déduit des dimensions des divers organes de transmission de
mouvement de l'indicateur, permet donc de calculer ce travail; c’est ce qu'on
appelle le travail indigue.
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risation de l'eau :
Q = p(606,5 + 0,305T — ¢),

ou p est le poids d’eau vaporisée pendant la durée de I'ex-
périence; T, la température de la chaudiére, et ¢, celle de
I’eau d’alimentation. Le poids p est obtenu en mesurant le
poids d’eau p’ fourni au condenseur et le poids qui en sort;
ce dernier étant p + p’, la soustraction des deux mesures
donne p.

La mesure des températures ¢ et ¢ de I'’eau fournie au
condenseur et de V’ean qui en est rejetée permet de cal-
culer ¢ par la formule

q:pl(t”—tl)

qui exprime que la quantité de chaleur cédée ¢ est employée
a élever de ¢/ 3 ¢ le poids d’eau introduit p'. Quant a R,
comme on n’a aucun mojfén d’en évaluer la valeur, on le
néglige.

Par suite de cette approximation les nombres trouvés
pour E sont nécessairement trop faibles. Dans deux séries
d’expériences, Hirn a obtenu 413 et 420,4. La différence
avec les résultats des meilleures déterminations est dans le
sens prévu. La vérification est donc bonne.

Remarquons que les calculs précédents supposent que
I’eau revient 4 son état initial & la fin de 'expérience; il
faudrait done que la température ¢" de 1'eau sortant du
condenseur soit égale 3 la température ¢ de I’eau d’alimen-
tation de la chaudiére. Pratiquement il serait trés difficile

de maintenir 3 une température assignée d’avance l'eau

évacuée du condenseur. Mais il n’est pas nécessaire de
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remplir cette condition; il suffit de ne pas tenir compte
dans Q de la chaleur empruntée ou cédée a la chaudiére
par Peau d’alimentation pour faire passer sa température
de ¢ & ¢’. Cest alors comme si I’on supposait ’eau d’alimen-
tation prise au condenseur et le cycle décrit par cette eau est
bien un cycle fermé. 1l faudra donc dans la formule qui
donne Q remplacer ¢ par ¢". Hirn n’a peut-étre pas fait cette
correction; d’ailleurs elle est sans importance sur le résultat
des expériences, 'erreur provenant de ce qu'on néglige R
étant beaucoup plus grande que celle qui résulterait de
I'oubli de cette correction.



CHAPITRE V.

VERIFICATION DU PRINCIPE DE L’EQUIVALENCE
AU MOYEN DES GAZ.

84. Expression du travail extérieur produit par un
fluide. — Nous avons montré (§ 33) par un raisonnement
trés simple que le travail extérieur accompli par un fluide
qui se détend dans un corps de pompe est égal & pdyv.
Donnons-en une démonstration qui ne suppose pas le fluide

" enfermé dans un corps de pompe.

Soit p la pression, supposée uniforme, du corps consi-
déré; la pression extérieure qui s’exerce sur la surface de
ce corps doit lui éire égale, car autrement il n’y aurait pas
équilibre. Evaluons le travail de ces forces extérieures,
travail qui est égal et de signe contraire au travail exté-
rieur effectué par le corps, en vertu du principe de I'égalité
de l'action et de la réaction.

Prenons un élément de de la surface du corps, désignons
par «, 3, y les cosinus directeurs du segment de la normale
A cet élément extérieur au corps, et par £, n, {, les compo-
sanles du déplacement de I’élément. Le travail de la force

extérieure agissant sur cet élément sera

—pdw(a + Bn + y§).
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Pour la surface entiére, on obtiendra

——Pf(ai-i- Bn =+ 7%) do.

Or on sait que, dr désignant pour un moment un élément
de volume,

.

par conséquent T'eéxpression précédente du travail peut

s’écrire
di  dn dt
—Pf<d—x i az)d“

Il est facile de démontrer, et nous le verrons plus loin (74),
que la quantité entre parenthéses est la variation de volume

s

. s s s @Y . .
rapportée a P'unité, c’est-a-dire — > par suite le travail des

forces extérieures a pour expression
dv dv
—p Td'[:—'prdT-

L’intégrale représente le volume total du corps considéré;
son quotient par le volume spécifique est donc la masse M
du corps; il enrésulte, pour I'expression du travail, —Mp dy.
Par conséquent le travail extérieur d’'un fluide rapporté
a l'unité de masse est

dr = p dv.

65. Détermination de E au moyen des chaleurs spéci-
fiques des gaz. — Considérons un gaz placé dans un corps
de pompe fermé par un piston. La quantité de chaleur
absorhée par I'unité de poids de corps dans une transforma-
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tion quelconque est (25)

dv dp

el le travail extérieur produit par le gaz a pour valeur p dv.
Nous avons donce
. _ [~dT ) dT
dU_dQ-i-Ad'r_.( - —Ap’ dv+c%-dp.
Si nous supposons que le gaz considéré obéit aux lois de
Mariotte et de Gay-Lussac, la relation fondamentale est

pv = RT;
par conséquent,
a_p A _
v TR’ dp R’
et
(1) dU:<C—Ié—Ap>dv+c[~‘;dp.

En exprimant que celte quantité est une différentielle
exacle, il vient, en supposant que C et ¢ sont constants,

C c
R A= w
d’out
C—ec
(2) | A__R—

Ainsi I’équivalent mécanique de la chaleur se déduit faci-
lement des chaleurs spécifiques des gaz. La quantité R qui
entre dans la formule peut étre évaluée avec la plus grande
précision a 'aide des données actuelles; C est donné par
les expériences de Regnault; quant 3 la chaleur spécifique



VERIFICATION DU PRINCIPE DE L’EQUIVALENCE. 79

sous volume constant elle ne peut éire mesurée directe-
s c .
ment et sa valeur se déduit de celle du rapport 7 qui mal-

heureusement n’est pas connue avec une grande exactitude.

Si I'on fait le calcul pour I’air en prenant pour C le nombre
C .
de Regnault, 0,237471, et pour = le nombre 1,41, on trouve

426 pour I'équivalent mécanique; les autres gaz, azote,
oxygene et hydrogéne, donnent des nombres trés peu diffé-
rents.

Mayer, qui était arrivé i la formule (2) par un raisonne-
ment différent du précédent ('), en tira, au moyen des
données de I’époque, E = 367.

(') Mayer raisonne ainsi : La chaleur nécessaire pour échauffer, & volume
constant, 1*6 de gaz est moindre que si, la pression restant constante, le gaz
éprouvait une dilatation. La différence des deux quantités de chaleur doit 8tre
équivalente au travail produit par le gaz pendant la dilatation.

Il en résulte que pour une élévation de température de dT on a

(C—¢)dT = Ap dv,

ou d
[
C—c=Ap =7
: : av R
mais la relation fondamentale des gaz, pv = RT, donne T = ;; par con-
séquent
C —c = AR.

Remarquons que ce raisonnement revient & appliquer la formule
dU=dQ+ Adr

du § 61 en supposant qu'un gaz n’éprouve aucune variation d’énergie interne
quand son volume varie. Les expériencos de Joule (66) démontrérent l'exac-
titude de cette hypothése. Mais, comme le fait observer M. Bertrand ( Ther-
modynamique, p. 66), Mayer I'avait déja déduite des résultats obienus par
Gay-Lussac dans des expériences sur la détente des gaz dans le vide.
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Nous avons déja dit que, dans ses derniéres recherches,
Sadi Carnot trouvait 370 pour I'équivalenl mécanique de la
chaleur; la faible différence euire ce nombre et celui de
Mayer fait supposer que Carnot I’a obtenu par la méme for-
mule.

66. Expériences de Joule sur la détente des gaz. — Mais
la démonstration que nous venons de donner de cette for-
mule suppose que les chaleurs spécifiques C et ¢ sont des
constantes. Pour C cette hypothése est vérifiée, au moins
pour I'air, par les expériences de Regnault; mais il n’en est
pas de méme pour ¢, puisque le rapport (? qui détermine
cette derniére quantité est mal connu. D’ailleurs des expé-
riences de M. Berthelot sur les mélanges explosifs montrent
que ¢ augmente avec la température. Pour les gaz, comme
'oxygéne et l'azote, ¢ reste seusiblement constant jusqu’a
1600°; au deld de cette température c est lié & la tempé-
rature par une formule de la forme

c=a+bT

ou b est un coefficient positif. Pour le chlore, ¢ augmente
& partir de 200°; il est vrai que ce gaz s’écarte sensiblement
de la loi de Mariotte que nous avons supposée applicable au
gaz considéré. L’exactitude de la formule (2) pourrait donc
étre mise en doule s’il n’était possible de retrouver cette
formule en s’appuyant sur des expériences d’une grande
précision : les expériences de Joule.

Deux récipients A et A’ sont plongés dans un calorimétre

et communiquent par un robinet R ( fig. 9); dans I'un, A,



VERIFICATION DU PRINCIPE DE L'EQUIVALENCE. 81

on comprime un gaz; dans l'autre on fait le vide. Quand les
récipients et le gaz qui y est renfermé sont en équilibre de
température avec I’eau du calorimétre, on ouvre le rohinet R;
la température de cette eau ne varie pas.

Soient U, et Uj les valeurs de I’énergie interne des masses
gazeuses contenues dans A et A’ au commencement de I'ex-

périence; U; et U] leurs valeurs & la fin de ’expérience;
nous avons

U+U —-U,—U,=Q+ A~

Le travail = fourni par I’extérieur est nul, les parois des
récipients étant, par leur nature, inextensibles; la chaleur Q
fournie est également nulle puisque la température de 'eau
du calorimeétre ne varie pas; enfin, on peut négliger Uy, car
on a fait le vide aussi exactement que possible dans A’. Par
conséquent la relation précédente se réduit a

U‘+U;:U0-

Le premier membre représente I’énergie interne du gaz

quand, a la fin de 'expérience, il remplit a la fois les deux

P. 6
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récipients; le second est I'énergie interne du méme gaz
avant 'expérience. L’énergie interne d’un gaz ne varie donc
pas quand il se détend dans le vide.

Prenons ¢ et T comme variables indépendantes pour
définir I'état de la masse gazeuse primitivement conlenue
dans le récipient A. Dans I'expérience de Joule, ¢ varie
mais T ne varie pas. Nous devons donc en conclure gue
I’énergie interne d’une masse gazeuse ne dépend pas de
son volume, gu’elle ne dépend que de sa température. Cest
la la loi de Joule. Nous verrons plus loin que pour les gaz

naturels cette loi n’est qu’approchée,

67. Souvent on exprime cetite loi en disant que le travail
interne d’'un gaz qui se détend est nul. Cette locution est
inexacte; elle provient d’hypothéses sur la nature de la
chaleur. '

Nous avons vu (51) que, sil’'on regarde la chaleur comme
résultant des mouvements moléculaires et siI’on supposeles '
aclions moléculaires centrales, 'upplication du théoréme de

la conservation de I’énergie donne la relation

W+ V 4+ W, V, =const.,

et, V étanl négligeable dans la plupart des cas, nous avons
appelé énergie interne du systéme la somme W+ V, des
énergies moléculaires. D’auvtre part, il est évident que
I'énergie interne ainsi définie ne doit différer que par une
conslanle de I’énergie interne définie au moyen du principe
de V’équivalence. L’expérience de Joule montrant que cette
derniére ne dépend, dans le cas des gaz, que de la tempé-
rature, il en résulte que W, + V, ne doit étre fonction que

de la température
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Introduisons maintenant une nouvelle hypothése : admet-
tons que I’énergie cinétique moléculaire W, ne dépende que
de la température des corps et que I’énergie potentielle
moléculaire V; ne dépende que de son volume. Alors, pour
que la somme W,+ V, ne soit fonction que de T, il faut
que V, représente au signe prés le travail des forces mo-
léculaires ou ¢ravail interne, ce travail est nul pour les
gaz.

Mais I'hypothése précédente, que l'on fait quelquefois
implicitement, ne repose sur aucun fondement. Elle revient
en effet 4 admettre que, pour tous les corps, I’énergie in-
terne est la somme d’une fonction de la température et
d’une fonction du volume; or, il est évident qu’il est plus
naturel de considérer I'énergie interne comme une fonc-
tion quelconque de la température et du volume. On doit
donc rejeter complétemnent I’énoncé vicieux de la loi de
Joule, que l'on trouve dans plusieurs traités classiques, et
s’en tenir a celui du paragraphe précédent.

68. De prime abord, I'expérience de Joule parait para-
doxale.

Quand un gaz se détend dans un cylindre fermé & sa
partie supérieure par un piston, I’expérience montre que le
gaz se refroidit. Si au-dessus du piston s’exerce une pres-
sion, le refroidissement du gaz s’explique : la chaleur aban-
donnée par le gaz est transformée en travail; si au-dessus
du piston il y a le vide, il n’y a pas de travail produit et
cependant le gaz se refroidit encore : parce que le gaz
s’échappe avec une grande vitesse et que la chaleur aban-

donnée par le gaz se retrouve sous forme de force vive; au
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contraire, dans I'expérience de Joule, qui parait identique
A la précédente, il n’y a pas de refroidissement.

En réalité, I'expérience de Joule comprend deux phases,
dont une seule se produit dans ’expérience 4 laquelle nous
la comparons. Dans cette derniére, le piston, d'abord au
repos, acquiert de la vitesse; la perte d’énergie du gaz
résultant de son refroidissement se retrouve donc en force
vive du piston. Dans I’expérience de Joule, le gaz, en se
détendant, se refroidit aussi et la force vive de ses molé~
cule augmente; c’est la premiere phase. Dans la seconde
phase, I'augmentation de force vive est détruite par le frot-
tement des molécules les unes sur les aulres, et la témpé-
rature du gaz reprend sa valeur initiale.

69. Application & la détermination de E. -~ Reprenons
la formule (1) du § 65,

§

Ra’p.

dU:<C—§ »—Ap) do + ¢

Puisque, d’aprés 'expérience de Joule, U est une fonc-
tion ¢(T) de la température, nous avons

o dT s\
dU = ¢'(T)&T du:q)’(l‘)—gv—dv+cp’(l‘)a;dp,

ou, en remplacant les dérivées partielles de T par leurs
valeurs tirées de la relation fondamentale des gaz,

dU :@’(T)gdv + qn'('.l‘)i‘;-dp.

Par suite, en égalant les coefficients des différentielles
des variables indépendantes dans les deux expressions pré-
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cédentes de dU,

A cl _
<P(l)R R Ap,
c .
‘R’

et, par conséquent, en éliminant ¢'(T),

C—c

A_—_-R

C’est hien I'expression a laquelle nous étions arrivés.

70. Détente isotherme et détente adiabatique d'un gaz.
— On peut imaginer une infinité de détentes différentes
d’un gaz; considérons celles qui correspondent a une trans-
formation isotherme et & une transformation adiabatique.

Pour la premiére nous avons

ar darT P

dTI——dV-l-—dp:E

(4
v dp dy 4 -R' dp =0,

ou
pdv+vdp=—o,

et par suite, en intégrant,

py = const.;

ce qu'on aurait pu déduire immédiatement de la relation
fondamentale p¢ — RT, puisque T est constant. La courbe
représentative d’'une détente isotherme est done une hyper-
bole équilatére ayant pour asymptotes les axes des coor-

données.
L’équation différentielle de la courbe qui représente une
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détenle adiabatique s’obtient en écrivant que
—ck d
dqQ _CRdv+cde

est nul; on a donc, pour cette équation,

Ccﬁ)-+cd—p:0.
P

Si nous admettons que C et ¢ sont des constantes, nous
obtenons, en intégrant,

L CLog¢ —+ ¢ Logp = const.,
c
pve = const.
71. Cherchons dans quelies conditions se produira 'une
ou 'autre de ces détentes,

Supposons le gaz enfermé dans un cylindre; soient T sa
température a I'instant ¢, et T, la température extérieure.

La quantité de chaleur rapportée a l'unité de temps %

que le gaz recoit de I'extérieur est a(T, - T), a dépendant
de la conductibilité calorifique de la substance qui forme
le cylindre; nous avons donc

dQ dv
'd—v- a—t- —a(T(,-—T).

. . ) o de o
Si la détente est trés rapide P est trés grand; comme
. dQ- A A . .
T,—T est fini, o doit alors éire trés petit. Par consé-
quent, une détente brusque est trés sensiblement adiaba-
tique.
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. . ) do \ .
8i, au contraire, la détente est lente, —- est trés petit;

dt
aqQ . . 5 . .
—, st fini el la différence T, — T reste trés petite. La dé-

tente isotherme se produit donc lorsque la détente est trés
lente.

72. Expériences de Clément et Desormes. — Calcul de g

— Appliquons ces résultats a I'expérience de Clément et
Desormes.

I’appareil de ces physiciens se compose d’un grand ballon
de verre fermé & sa partie supérieure par un robinet; on
peut, en aspirant par un tube latéral, diminuer la pression
de l'air contenu dans le ballon; un manomeétre indique les
variations de pression. Pour faire une expérience, on com-
mence par raréfier 'air et I’on note I’excés de la pression
atmosphérique sur celle de I'air du hallon. On ouvre alors
le robinet pendant un temps excessivement court; lair
exlérieur se précipite dans le ballon et comprime l'air qui
s’y trouve, d’ou résulte une élévation de température.
Quand la température a repris sa valcur iniliale, on note la
dénivellation du liquide dans le manométre.

Soit p la pression atmosphérique, et soit p — dp la pres-
sion de l’air dans le ballon aprés raréfaction. Quand on
ouvre le robinet, la pression prend presque instantanément
la valeur p; par suite, la transformation est adiabatique et
Paccroissement de pression est dp. Si nous désignons
par do la variation du volume spécifique qui en résulte,

nous avons

dQ:C%&v—i—cﬁ&p:o,
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et pour la variation de température
S F PR
oT = Ré« ~+ R_6p.

Lorsque, le robinet étant fermé, le gaz reprend peu & peu
sa température initiale, son volume ne varie pas si toute-
fois on néglige la dilatation du ballon; donc ¢ reste con-
stant et p diminue de dp, en appelant p — dp la pression
finale. Par suite, I’abaissement de température 0T qui a
lieu dans cette phase de ’expérience est donné par

Entre ces deux derniéres équations, éliminons ¢T; il vient
pov 4+ vop=vdp.
Eliminons d¢ entre celle-ci et 1a premiére ; nous obtenons
C(vdp —vdp)+cvdp —o,
d’ou
__ 9%
¢ op—dp

La mesure de g est donc trés simple, puisqu’elle se ra-

méne i deux lectures manométriques. Mais au moment ol
I'on ouvre le robinet du ballon il se produit, par saite de
I’élasticité de I’air, une série d’oscillations périodiques qui
font alternativement croitre et décroftre la pression de P'air
enfermé. On n’est donc pas certain que la pression soil p
au moment ou l'on ferme le robinet; il n'y a d’autre reméde
que de prendre la moyenne d’un grand nombre d’expé-
riences.
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Des mesures de Ciément et Desormes, Laplace avait dé-

. C - .
duit 1,354 pour le rapport e Les expériences plus soi-

gnées de M. Rontgen ont donné 1,4053.

C .
73. Galcul de 7 @u moyen de la vitesse du son. -— L’ex-
périence de Clément et Desormes n’est pas la seule qui per-
mette de calculer g On peut, de la valeur de la vitesse de

propagation du son dans un gaz, déduire la valeur du rap-
port des deux chaleurs spécifiques.

Soient z, ¥, 5 les coordonnées d’une molécule A d'une
masse gazeuse en équilibre. Si nous négligeons ’action de
la pesanteur sur ce gaz, p et ¢ ont la méme valeur en tout
point. Communiquons un ébranlement au fluide. Les coor-
données de la molécule A deviennent z + £, y + 1{, 2+
la pression en ce point devient p + 7, et le volume spéci-
fique v + ¢. Par suite de cet ébranlement, un élément de
volume du fluide subit une compression ou une détente
brusque; la transformation est donc adiabatique et nous
avons

v

dQ=CL dv+ zdp=o,

ou, en remplacant dv et dp par ¢ et n et supprimant le fac-
teur —"R’
(1) Cpo +cvrn=o.

74. Cherchons ¢ en fonction des déplacements &, , ¢.
Considérons un parallélépipéde rectangle ABCDGH
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( fig. 1o), ayant pour sommet le point A occupé par la mo-
lécule considérée dans sa position d’équilibre, et dont les
arétes, de longueurs dz, dy, dz, sont paralléles aux axes de
coordonnées. Le volume de ce parallélépipéde estdx dy ds;

Fig. 10.

Y

d’autre part, si dm est la masse du gaz qu’il limite, ce vo-
lume est exprimé par v dm; nous avons donc

(2) dx dy dz =vdm.

Aprés I’ébranlement, ce volume devient (v + ¢) dm. Pour
en trouver une autre expression, admettons qu’'on puisse
encore le considérer comme un parallélépipéde oblique. Le
volume est alors donné par un déterminant & 3 colonnes,
et les éléments de chacune de ces colonnes sont respective-
ment les projections sur les axes de chacune des arétes AE,
AD et AB.

Or, avant le déplacement, les coordonnées de A sont z,
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¥, 5, et celles de E,  + dz, y, 5. Aprés le déplacement,
les coordonnées de A sont x + £, ¥ +n, 2+ §; celles de E,

dag

d
x—q—dx—%—&—i——édx, y—i—n-&—@dx, ‘.+C+——dv

dx dx

Par conséquent, les projections de 'aréte AE sont, aprés le
déplacement,

dt dn g
dm<l+a;>a dx%, dxg;-

Si nous écrivons par analogie les projections des autres
arétes, nous obtenons, pour le volume du paralléiépipéde

déformé,
dx(l :y— 5—5> % dz Z—E
(v + @)dm = dx-Z—E dy(n+%> d‘ZlZ
d.z'gé dy% dz<1 -+ -Z—i)

En effectuant les opérations puis divisant par
vdm =dx dy ds,

nous obtenons, en négligeant les carrés et les produits de £,

n, { et de leurs dérivées,

< |-

=+ 4+
Portons cette valeur dans la relation (1), il vient :

(3) —_ C(Em—ﬁ—‘ﬂy'i— %),

T
P
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75. Transformons cette nouvelle relation.

En négligeant les déformations des angles et des faces du
parallélépipéde rectangle pendant le déplacement, la pres-
sion sur la face ABCD reste paralléle a I’axe des x et prend
pour valeur

dyds(p + m).

La pression sur la {ace opposée est
| dm
—dyd/.,(p-{*-ﬂ'—{-— Zﬁ—da:)

Les pressions sur les autres faces du parallélépipéde étant
normaies a I'axe des x et I’action de la pesanteur étant né-
gligée, la somme des projections sur 'axe des « des forces
qui agissent sur le parallélépipéde se réduit & la somme
algébrique des deux quantités précédentes :

dn
- Ir dz dy ds.

De la méme maniére, nous trouverions, pour la somme
des projections de ces forces sur les axes des y et des s,

dn dm
— —&;dxdydq, — (—Edardydz.

Appliquons le principe de d’Alembert, ¢’est-2-dire écri-
vons que le parallélépipéde est en équilibre sous ’action de
la force d’inertie et des forces réelles qui le sollicitent;
nous obtiendrons les trois équations du mouvement dont la
premiére est
fl_’g __ dnm

— ——dx dy daz.

dm dee dr

Par suite, en tenant compte de la relation (2), ces trois
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équations sont

At drn )

dae = dz "

n __ dr

ag — T dy "

& dr, :
ac—  dz

Nous en tirons, en dérivant la premiére par rapport a z,

la deuxiéme par rapport & y, la troisiéme par rapport a z,
et additionnant,

a ., b
W(Ea;'*"‘ny'*'gz):"vAﬂ-

Nous aurons donc, en remplacant, dans cette expression,
la somme &, + )+ £, par sa valeur tirée de larelation (3),
ar G
4 — — — pyv AT,
(‘4) dtg ¢ P T
76. La variation de pression 7 est une fonction des coor-
données z, ¥, z du point considéré et du temps ¢. Cherchons
son expression quand la propagation de I'ébranlement se
fait par ondes sphériques. Alors = ne dépend que de ¢ et de
la distance » du point considéré & I'origine de l'ébranle-
~ment. Posons
(5) ™= ’é)
f désignant une fonction de r el de ¢.

La somme An des dérivées secondes sera une fonction

df df

linéaire de f, o) gt auon pourrait obtenir directement,
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mais qu’il est plus facile de calculer par la méthode des
coefficients indéterminés. A cet effet, posons :

(6) An—Af+Bdf+C f

Sil’on suppose f—1, on a

An=A
et, d’autre part,

Au moyen de cette expression de =w, calculons Arm, en
supposant que l'origine des coordonnées coincide avec le
centre d’ébranlement, c¢’est-a-dire

rt =zt 4 yt4 3

nous avons
dr 1 dr oz
dz —  ridz ¥
d*n 1 3 x?
dz? — 18 s’
Ar— — = 5 —o.

On doit donc avoir
A=o
Supposons maintenant f = r; nous avons, d'une part,

An =B,
d’autre part,

T=1, Am —=o;

nous en concluons que B est nul.
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Enfin, admettons que l'on ait f=r2; il vient alors, en

portant cette valeur dans 'expression (6),

Anr = 2C

W
et, en calculant les dérivées de m = r,

An =

2-
r’

par conséquent,
1

C=-.

P
L’expression (6) de Aw se réduit donc &

Am — 1 d’f_

T rdr?

77. Remplacons, dans la relation (4), An par la valeur

12
précédente et Cd;: par sa valeur déduite de (5); nous obte-

nons :
af ¢ . af
dair Pl
ou
2 2
Df _ ]
dt? dr?
en posant
a? = (—: %
=2 Pv

Nous en déduisons, pour'la valeur de la fonction f,
S=f(r—at)+ f'(r+at)
et, par suite,

n—_—-lr-f(r—at)+-’17f’(r+at).

Les variations de pression se propagent donc suivanl
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deux ondes, 'une centrifuge, avec une vitesse a, I'autre
centripéte, avec une vitesse — a. Cette derniére onde ne
correspond & aucune réalité physique et il n’y a pas lieu de
Ia considérer. Quant a 'onde centrifuge, c¢’est précisément
I’onde sonore; par clonséquent, a représente la vitesse de
la propagation du son et le rapport des chaleurs spécifiques
est 1ié & cette vitesse par la formule

C_  a®

¢ pv

78. Appliquons cette formule a I’air en prenant le métre,
la’ seconde, le kilogramme, pour unités de longueur, de
temps et de masse. Nous avons, d’aprés les expériences de
Regnault sur la vitesse du son,

a—=331m,

a 0° et & la pression atmosphérique. Cette pression, sur 1™,
est
= 10330 % 9,81,

en prenant 9,81 pour P'accélération due A la pesanteur. La
masse du métre cube est 1,293 et, par conséquent, le vo-

lume spécifique est
1

T 1,293

En portant ces valeurs dans la formule (7), nous obte-
nons

%‘: (331)* >< 1,293 — 4

10330 X< 9,8

Cest le nombre que nous avons adopté (65) daus le

calcul de E; il différe peu du nombre trouvé par Rontgen,
par la méthode de Clément et Desormes.




CHAPITRE VI.

QUELQUES VERIFICATIONS DU PRINCIPE DE LA CONSERVATION
DE I’ENERGIE.

79. L'état d'un corps ne peut%rs étre défini par
deux variables. — Les vérifications précédentes du prin-
cipe de I’équivalence constituent Jautant de vérifications du
principe de la conservation de I’énergie, mais dans un cas
trés particulier : celui on I’état physique des corps peut étre
exprimé au moyen de deux variables indépendantes p et T
ouvetT.

Or, dans un grand nombre de cas, ces deux variables sont
insuffisantes pour définir complétement I’état d’'un corps.
Ainsi, quand on se donne la pression ou le volume spéci-
fique de ’eau & une température déterminée, mais comprise
entre certaines limites, on ignore encore si '’eau est a 'élat
solide, liquide ou gazeux, puisque ’eau peut, dans certaines
conditions, exislter sous ces trois états & la méme tempéra-
ture.

Dans d’autres cas, les fluides en mouvement et les solides
élastiques par exemple, 'une des variables, p ou ¢, n’a plus
de signification précise, car la pression et le volume spéci-

fique changent d’un point 4 un autre; I’état d’un de ces
P.
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corps ne peut donc encore étre déterminé au moyen des
variables p et T ou v et T.

Enfin le corps considéré peut posséder une charge sta-
tique d’électricité ou étre traversé par un courant; de nou-
velles variables sont alors nécessaires pour définir 1’état du
corps.

Il est donc intéressant de vérifier 'exactitude du principe
de I’énergie dans ces cas particuliers. Cetle vérification
consiste 3 montrer qu'en désignant par W la demi-force
vive du systéme et en appelant énergie interne U une cer-
taine fonction des quantités qui définissent I’état physique
des corps du systéme, on a pour un systéme isolé

dW 4 dU =o.

Si le systéme recoit un travail extérieur dz, la relation a

vérifier est
dW +- dU = dr,

et, si le systéme recoit en outre une quantité de chaleur dQ
de 'extérieur, la relation qu’il faut vérifier est

AW -+ dU :-’d@
—

~
80. Le principe s’applique a un systéme de corps élec-

trisés. — Considérons un systéme de conducteurs électrisés
possédant des charges m,, m,, ...; leurs potentiels sont
des fonctions linéaires de ces charges.

Pour plus de simplicité admettons qu’il n’y ait que deux
conducteurs en présence; alors nous avons pour les poten-

tiels
V1: A m; —+ B ms,

V,= Bm;+ Cm,.
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Les coefficients A, B, C sont des fonctions des capacités
des conducteurs et de leurs coefficients d’influence électro-
statique; ils dépendent donc des posilions relatives des
conducteurs, mais ne dépendent pas de leurs charges.

Pour avoir I'énergie électrique de ce systéme multiplions
la premiére relation par m,, la seconde par m, et addition-
nons; nous obtenons

U= éZmV: é(Amf—}-zBmlmz—k Cm?).

Considérons d’abord le cas ou les conducteurs se dé-
placent en restant isolés, de telle sorte que les charges m,
et m, soient constantes. Si nous supposons la variation de
I’énergie cinétique nulle ou négligeable, la variation de
I'énergie totale se réduit a dU, el, par conséquent, si le
principe de la conservation de I'’énergie s’applique, le tra-
vail extérieur accompli par le systéme est — dU, c’est-
a-dire

1
— —(m?3 dA + 2am,m, dB + m? dC).
2
Or c’esL ce que 'expérience vérifie dans tous les cas.

81. Supposons maintenant que, les conducteurs restant
fixes, on les mette en comnmunication. Alors A, B, C restent
constants et nous avons

dU = (Am;+ Bm,)dm,+ (Bm;+ Cm,) dm,,

ou
dU =V, dm, + V,dm,.

Mais, si nous appelons ¢ 'intensité du courant qui se pro-
duit dans le fil de communication et si nous supposons que
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I'on ait V,;>V,, les charges respectives des deux corps
scront, au bout du temps dt,

my—idt el m,-+ idt;
par conséquent, nous avous
dm,—=—idt et dm,=idt,

¢t dU devient
dU =idt(V,—V,).

D’ailleurs, d’aprés la loi d’Ohm,
V,—V,= R,
R étant la résistance du fil de communication; par suite,
dU —=— Radt.

Celte variation de I'énergie interne ne peut se retrounver
sous forme de travail extérieur, puisque les conducteurs
auxquels sont appliquées les forces du systéme ne se dé-
placent pas. Mais elle peut se retrouver sous forme de cha-
leur, et alors le produit E dQ de I’équivalent mécanique par
Ja quantité de chaleur fournie, exprimée en calories, doit,
si le principe de la conservation de I'énergie s’applique,
étre égal & la variation de I'énergie du systéme. Celle-ci se
réduisant a la variation de I’énergie interne puisque les
conducteurs restent en repos, il faut donc vérifier I'égalité

—Ri*dt = EdQ.

Or, d’aprés la loi de Joule, la quantité de chaleur déve-
loppée par le passage du courant dans le fil de communica-

tion est, en calories, AR d¢; par suile, la quantité de cha-
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leur fournie au systéme pendant la transformation considérée

estl
dQ =— AR de

et I'égalité précédente est bien vérifiée.

82. Cas des piles hydro-électriques. — Considérons le
systéme formé par la pile et un conducteur reliant ses poles.

Dans la pile se produit une réaction chimique qui produi-
rait une certaine quantité de chaleur si elle s’effectuait en
dehors du circuit. Lorsque les pdles sont réunis par un
conducteur, la quantité de chaleur recueillie dans la pile
est plus faible que la précédente. Donc I'énergie chimique
de la pile se divise en deux parties : l'une sert A échauffer
les liquides de la pile, 'autre 4 produire le courant. Cette
derunjére portion se nomime énergie voltaique et ’expérience
montre que la quantité d’énergie voltaique dépensée ainsi
-pendant le temps dt est égale & ¢{ d¢, en appelant ¢ la force
électromotrice de la pile. Les corps du systéme étant en
repos, il faut, comme dans le paragraphe précédent, que
cette variation soit égale a EdQ. Mais la quantité de cha-
leur fournie au systéme est donnée par la loi de Joule; elle

est donc —EIRi’ dt et I'égalité qu’il s’agit de vérifier est
alors
eidt=Rardt
ou
¢e=Ri.
Cette égalité est évidemment satisfaite, puisqu’elle ex-
prime la loi d’Ohm.

83. Phénomeénes électrodynamiques. — L’énergie interne
d’'un systéme de conducteurs traversés par des courants
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dépend nécessairement des intensités de ces courants; pour
avoir sa valeur, il faul ajouler & I’énergie interne du sys-
téme, lorsque toutes les intensités sont nulles, un terme T
que Maxwell appelle V'énergie électrokinétique du systéme.

Prenons, pour simplifier, les cas ou le systéme ne com-

prend que deux couranls; alors T a pour valeur
(1) ng(Li$+zMi,z’2+Ni§),

M étant le coefficient d’induction mutuelle des deux cir-
cuits, L et N les coefficients de self-induction de chacun
d’eux. Si les courants sont variables et si les conducteurs se
déplacent ou se déforment, I’énergie électrokinétique varie
et sa variation d7T représente la variation de I'énergie in-
terne du systéme. Pour vérifier le principe de la conser-
vation de I’énergie il faut donc vérifier que dT est égal 3 la
somme de toutes les énergies que recoit le systéme.

D’abord les conducteurs produisent un travail extérieur
dont la valeur est

é(i} dL + 26, i, dM + i2 dN).

Il y a en oulre une certaine quantité de chaleur dégagée
dans les conducteurs; cette quantilé, exprimée en unités
mécaniques, est, d’aprés la loi de Joule,

R, i det -+ R,k de.

Enfin il y a de ’énergie voltaique fournie au systéme par
les piles; cette énergie est

E i, dt +E,i, dt,
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en appelant E; et E; les forces électromotrices des deux
piles.

Nous devons donc vérifier I'égalité
dT =— % (it dL + 2i,iy dM + 2 dN)
— (Ry2dt + Rei2 dt) + E, i, dt + E, i, dt.

Or on sait que la force électromotrice d’induction déve-
loppée dans I'un des circuits a pour expression

d . .
— d_t(Ll’+M12);

par conséquent le produit R,¢, qui, d’aprés la loi d’Ohm,
est égal a la force électromotrice tolale, a pour valeur

. d . .
R,i,= E,— o (Li;+ Mi,).
Nous en déduisons
E, iy dt — R, dt = i,d(Li,+ Mi,).

Nous aurions une égalité analogue pour 'autre circuit, et,
par suite, nous pouvons écrire 1’égalité qu’il s’agit de vérifier

ar = — é(i: dL + 28,0y dM +- i2 dN)
+ iy d(Li 4+ Mé,) + iyd(Mi, + Ni,)
ou, en effectuant les différentiations et simplifiant,
dT = %(if dL + 2,y dM + 2 dN)
+ Li, diy+ Mi, diy + Mi, diy+ Ni, di,.

Or,le second membre est bien 'expression de la différen-
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tielle de I’énergie électrokinétique définie parla formule (1)
Le principe de la conservation de ’énergie s’applique donc

bien aux phénoménes électrodynamiques.

84. Cas des solides élastiques. — Considérons un paral-
1élépipéde rectangle infiniment petit dont les arétes sont

paralléles aux axes de coordonnées. Soient

Px.m ny’ sz’
Pyxa P_\‘yv Pyz,
Pz.m. szv Pzz

les composantes suivant les trois axes des pressions par
unité de surface qui s’exercent sur trois faces issues d’un
méme sommet A el normales : la premiére 4 I'axe des z, la
seconde a l'axe des y, la troisiéme a I'axe des z. La théoric
de I’élasticité apprend que le Tableau de ces neuf quantités
est symélrique par rapport 4 sa diagonale; en d’autres
termes, que ces neuf quantités se réduisent a six.

Supposons que le parallélépipéde subisse une déforma-
tion et évaluons le travail des pressions qui s’exercent sur
toutes ses faces.

Les coordonnées x, y, z du point A deviennent, aprés la
déformation,

x+& y+m=n, 5+

par conséquent, le travail de la pression sur la face normale
3 'axe des x et passant par A est

(Przl + Pyyn + P, 8) dy ds.

Les coordonnées du point correspondant & A sur la face
opposée du parallélépipede sont, avant la déformation,
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x +dx, v, z et, aprés la déformation,

dt dn _ Cdr
-T+E+d»l‘+zi;dx, y+ﬂ+;-{—-a;d.l', 4+C-1——(5d1‘,

le travail de la pression sur cette face est donc
dz
._[ Pxx<£+ aida:)
dn ’ d;
+ Py (n + ‘—i;dav> + P,z(c + d_x_dz>] dy da.

La somme de ces travaux esl

d
— <Pm Ef? +

Nous obliendrons deux autres expressions analogues pour

dn

Poy

+ P >d:1:d) ds.

xzd

les faces perpendiculaires aux axes des y et des 3.

Additionnons ces trois expressions el remplagons le pro-
duit dx dy ds par son égal vdm, ¢ étant le volume spéci-
figne au point A et dm la masse du parallélépipéde; nous
avons

dt dn da; dn dft
B *_ + —
[} xE g Prr, dy Pe dsz Py <da¢ dv>

dr  dt d n\ 7 .
+sz<%+jz‘>+l)yz<a—)—/+‘—1;>]‘d”l.

L’intégrale de cette expression étendue i I'espace occupé
par le corps donnera le travail total des forces extérieures
pendant la déformation.

Remarquons que, sile corps est isotrope, on a

PI.‘IJ: Pyy:Pzz:P)
Px_’y-—pxz—-P 5= 03
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par conséquent, ’expression précédente du travail des forces
extérieures se réduit alors a
d d- d
-—-p( E+_ﬁ+_§_ vdm

dz dy ds
ou

—~p#vdm =—pdvdm.

Nous retrouvons donc, comme au paragraphe 64, — pdv
pour le travail des forces extérieures rapportées & I'unité de
masse.

85. Mais, quoique dans le cas des solides 'expression du
travail soit plus complexe que dans le cas d’un fluide en
équilibre, le principe de la conservation de I’énergie n'en
est pas moins vérifié. L’expérience montre en effet que, si
le solide s’échauffe par suite de la déformation, la variation
d’énergie inlerne résultant de cet échauffement est égale au
travail des forces ex(érieures pendant la déformation.

Ainsi prenons I'expérience d’Ediund. Un fil métallique
vertical maintenu par son extrémité supérieure est d’abord
éliré par une force p agissant i son exirémité inférieure;
il est ensuite ramené & sa longueur primilive en supprimant
I’action de cette force. Si ¢ est 'allongement du fil pendant
la premiére phase de I'expérience, le travail des forces
extérieures est pe. Pendant celte phase, le fil se refroidit
par suite de lallongement; pe'ndént la phase suivante, il
s’échauffe. De ces deux phases résulte un échauffement.
Dans une troisiéme phase le fil se refroidit en cédant de la
chaleur & Vextérieur par conductibilité et revient ainsi i
son étal primitif, sa température et sa longueur étant rede-
venues les mémes. La quantité de chaleur ¢Q ainsi cédée a
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I'extérieur a pour valeur adT, a étant la capacité calori-
fique du fil que I'on déduit de ses dimensions et de sa cha-
leur spécifique, et 8T ’excés de la température a la finde la
seconde phase sur la température initizle, excés qui est
mesuré au meyen d'une pince thermo-électrique. Le (il
ayant décril un cycle fermé, on doit avoir

EdQ =pe.

Cest ce qui a lieu, car, si 'on calcule E au moyen de cette
relation, on trouve des nombres trés voisins de ceux de
Joule et de M. Rowland; pour le laiton, par exemple, on a
428,3.

On remarquera que dans celle expérience nous sommes
placés dans un cas ol la pression n’est pas la méme dans
tous les sens. Un élément de volume du fil est soumis en
effet & une Lension considérable dans le sens vertical et &
une pression sensiblement nulle dans le sens horizontal.

86. Cas des fluides pesants en mouvement. — Dans ce
cas la pression en un point a la méme valeur, quelle que
soit la direction de I'élément sur laquelle 8lle s’exerce;
mais elle n’est pas la méme en tout point du fluide.

Soient p la valeur de cette pression sur un élément de la
surface du fluide; «, 3, y les cosinus directeurs du segment
de la normale & cet élément extérieur au fluide. Soient x,
Y, & les coordonnées du centre de gravité de I’élément au
temps t; x + &, ¥ —F-n, z + £ les coordonnées de ce méme
centre de gl;a\'ité au temps ¢ + d¢, de sorte que

dx
E——md"
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Le travail des pressions extérieures sur cet élément est
— pde(at + Bn + y8),

et le travail de ces forces sur toute la surface da fluide,
dr:—fp(ag 4 B+ 77) do.

En appelant dg la quantité de chaleur regue de I'extérieur,
par conductibilité ou rayonnement, par 'unité de masse du
fluide, la quantité dQ regue par le fluide tout entier est

B dQ:qudm,

dm étant la masse d’un élément de volume.
De méme, en désignant par « I'énergie interne rapportée
a I'unité de masse, nous avens pour l’énergie interne U de

U::fudm.

Les forces extérieures sont de deux sortes :

tout le fluide

1° Les pre;sions extérieures dont le travail dr a été évalué
plus haut;

2° La pesanteur dont le travail —dV est la différentielle
d’un certain potenliel V qu’il nous reste 4 évaluer.

On en obtiendra la valeur, 4 une constante prés, en mul-
tipliant le poids du fluide par la distance de son centre de

gravité au plan des xy supposé horizontal; par conséquent,

V= [gza’m.
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Enfin ’énergie cinétique sensibie a pour expression

dm (dx? = dy’ dz?
W — 22 3.
f . det TaE T dt’)
87. Ecrivons les équations du mouvement du fluide.
Si le fluide était en repos, nous aurions, d’apres les équa-
tions fondamentales de 1 Hydrostatique,
dp dp dp
2z = P% =t =0l
Xdm, Ydm, Ldm étant les composantes suivant les axes
des forces exlérieures agissant sur I’élément dm. Par con-
séquent, les équations du mouvement seront, d’aprés le
principe de d’Alembert,

dp d*x
dz = PX—pP g

dp _ &y
ay =PV
dp . diz
a = Pl—egm

I .y
ou, en remplacant p par ; et remarquant que, le fluide

n’étant soumis qu’a Paction de la pesanteur, X =Y =o,
Zdm—=—gdm,

dp __ ds

Yde — de’
vdp ____diy
ay =T
)dp_ 6_!_2—5 o
’d: — " de T &

88. Au moyen de ces équations transformons ’expression

du travail dr des forces extérieures.
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Appliquons la relation connue

fade_fd"

en y faisant successivement F égal & pZ, pn, pZ; nous obhte-
nons, en remplacant dans les intégrales triples dr par ¢ dm,

focpgdm_f&-—vdm—}—[p——mlm,

_ (al, A0
f@pndw_fndy‘dm+fpdycdm,
fyptdw::fc%vdm—&—fp%vdm,

et, par suite,

_ dp dp _ .dp\
d‘t'_—f<£%+‘ngy+§d—z>(dm

_f<§—i + Z:; dt)pv dm

drr—-f@z-v- +ndp +C—>vdm —fpa’vdm

' puisque

ou

4 dn AL dv
T T

8i maintenant nous remplacons les dérivées partielles de p
par leurs valeurs déduites des équations du mouvement,
nous aurons

e e )
<
l

+fg§dm——fpdvdm.
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89. Calculons dU, dV, dW.

L’énergie interne '« de I'unité de masse est une fonction de
la pression et du volume spécifique; pour un élément de
volume trés petit ces deux quantités peuvent étre considé-
rées comme constantes, et par conséquent nous pouvons

écrire, comme dans le cas d’un fluide en repos,
du—=—dqg —Apdy

pour la variation de I’énergie interne rapportée a l'unité de
masse; nous aurons donc, en calories,

(3) dU:fdudm:qudm—-Afpdvdm.

La variation de V est

AV :fg dz dm,

ou, puisque nous avons désigné par { 'accroissement de
I'ordonnée s,

(4) dV:fngm.

La variation de ’énergie cinétique a pour valeur

) 2 2 - 2
dW:fdm<c—l£i£+dyd +d @z >dt

de de dt de de:
mais ,
dx , dy . dz
Edt g, i dt =1, 7 —dt=2¢;

par conséquent,

d.z' d’ dz
(5) dW fdm( 2. dt’+c37?>'
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90. Pour que le principe de la conservation de I'énergie
soit vérifié, il faut que la variation de I’énergie totale soit ‘
égale a dr + EdQ.

La variation de I'énergie totale est, d’aprés les expres-
sions (3), (4) et (5),

d*x d*y
dW + dV + EdU = fdm( P g s >

+fg§dm+Equdm —fpdvdm.

La somme d7 + EdQ déduite des expressions (1) et (2)

est

d
d‘r—+—EdQ-f< dt’ dt{—l—tdl,)dm

—l—fgtdm —fpdvdm—{—Equdni.

Les seconds membres des deux derniéres égalités étant
identiques, le principe de la conservation de 1'énergie cst
donc encore satisfait.



CHAPITRE VII.

LE PRINCIPE DE CARNOT-CLAUSIUS.

91. Principe de Carnot. — Nous avons vu au Chapitre III
comment Carnot démontre le théoréme qui porte son nom
et qu'il énonce ainsi : ’

Dans une machine parfaite, la puissance motrice de la
chaleur est indépendante des agents mis en ceuvre pour la
réaliser; sa quantité est fixée par la température des co}'ps
" entre lesquels se fait en dernier résultat le transport du

calorigue.

Pour Carnot, une machine parfaite est une machine pour
laquelle le cycle fermé des transformations est réversible,
c’est-a-dire est un cycle de Carnot; la puissance motrice
T
Q

de Carnot équivaut au suivant qui a déja été démontré (42) :

~ est le rendement — de ce cycle. Par conséquent, I’énoncé

Le rendement du cycle de Carnot ne dépend que des tem-

pératures des isothermes.

" La démonstration.de Carnot repose, on se le rappelle, sur
deux postulats : Pimpossibilité du mouvement perpétuel et

la conservation du calorique.
P. ' 8

.~
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Ce dernier postulat étant faux, la démonstration de Carnot
doit étre rejetée. '

On pouvait donc, aprés que le principe de I'équivalence
fut bien établi, croire que le théoréme lui-méme était défi-
nitivement condamné. Ce fut I'honneur de Clausius de ne
pas s’étre laissé entrainer & ce jugement superficiel, mais
au contraire d’avoir cherché el d’avoir réussi a concilier le
principe de Meyer avec celui de Carnot que divers faits
expérimentaux semblaient confirmer.

Il suffisait pour cela de changer, comme on va le voir,
peu de chose 4 la démonstration de Sadi Carnot.

92. Reprenons donc la démonstration du paragraphe 44.

Supposons que, contrairement a la proposition précé-
dente, on puisse avoir, pour deux machines M et M’ fonc-
" tionnant entre les mémes limites de température suivant
deux cycles de Carnot,

T’

(n 'Q‘Tl

- T
Qi

Associons les deux machines de facon que M’ fonctionne
dans le sens direct en M et en sens inverse. Le travail de
cetle machine complexe quand M et'M’ décrivent un cycle

complet est
m't'—mr,

m et m’ étant les masses du corps qui se transforme dans
l'une et 'autre de ces machines. La quantité de chaleur

prise a la source chaude a pour valeur

m'Qi—mQ,,
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et celle qui est cédée a la source froide,
m'Q;—mQ,.

Nous pouvons choisir les masses m el m' de maniére que
la chaleur empruntée a la source chaude soit nulle,

(2) m' Qi —mQ,=o;

alors de cette égalilé et de I'inégalité (1) il résulte

!

m't— mt> o,

c’est-a-dire que la machine formée par I'accouplement de M
et M’ produit un travail positif.

93. Jusqu'ici nous n’avons rien changé a la démonstra-
" tion de Carnot. Continuons-la en introduisant le principe
de I'équivalence.

Le corps qui se transforme dans M, empruntant une quan-
tité Q, & la source chaude, mais en cédant Q, a la source
froide, ne recgoit en réalité de l'extérieur qu'une quan-
tité Q,— Q, par unité de masse. Le tra\}ail extérieur cor-
respondant produit pendant cetie transformation est 7. Par

conséquent, d’aprés le principe de I'équivalence,
Qi—Qy=An~.
Nous aurions de méme
Qi — Qi=Ar"

De ces deux égalités nous déduisons, en tenant cbmpte
de la relation (2),

m'Q,—mQ,=— A(m'7'— mr).
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Par conséquent, d’aprés la conclusion précédente, la cha-
leur cédée A la source froide esl négative; en d’autres
termes, la machine emprunte de la chaleur 4 la source
froide.

La source froide ne revenant pas a son état primitif, nous
ne pouvons dire, comme au paragraphe 41, que_la produc-
tion de travail positif par la machine considérée soit incom-
patible avec le principe de I'impossibilité du mouvement -
perpétuel.

Tout ce que nous pouvons déduire du résultat précédent,
c’est que : si le principe de Carnot est faux, il est possible
de produire indéfiniment du travail en empruntant de la

chaleur a une source froide.

94. Nous pourrions conduire autrement le raisonnement
et nous serions amenés i une conclusion aussi peu accep-
table que la précédente.

Ainsi supposons que m et m' soient tels que

m't'—mr=—o,

c’est-a-dire que le travail de la machine résultant de 'ac-
couplement de M et de M’ soit ‘nul. Alors de cette égalilé
et de l'inégalité (1) on déduit

m Qi —mQ;<o.

D’ailleurs Vapplication du principe de I’équivalence
donne, puisque le travail produit est nul,

m' Q — m Qu=m'Q; ~ mQs.

La quantité de chaleur empruntée a la source chaude
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est donc négalive et égale en valeur absolue a la quantité
cédée a la source froide qui est aussi négative; en d’autres
termes, il y a une certaine quantité de chaleur empruntée
4 la source froide et une égale quantité cédée a la source
chaude.

Nous arrivons donc a celte conclusion : si le principe de
Carnot est faux, i/ est possible de transporter de la chaleur
d’un corps froid sur un corps chaud sans dépense de travail

et sans aucune modification du corps qui se transforme.

95. Principe de Clausius. — La négation de la possibi-
lité d’'un transport de chalcur dans ces conditions constitue
le prioncipe de Clausius : Il est impossible de transporter
directement ou indirectement de la chaleur d’un corps
Jroid sur un corps chaud @ moins qu'il i’y ait en méme
temps destruction de travail ou transport de chaleur d’un
corps chaud sur un corps froid.

Ce principe parait confirmé par tous les faits expérimen-
taux; si on Padmet, il résulte de la démonstration précé-
dente que I’on ne peut avoir

7 T
(AR

On ne peut avoir non plus
7 < T
NT ol
Q T Q
car si ’on reprend la démonstration en considérant la ma-
chine formée par I'accouplement de M, marchant dans le
sens direct, et de M’, marchant dans le sens inverse, cette

2,

inégalilé conduit encore & une conséquence en contradic-
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tion avec le principe de Clausius. Les rendements des deux
cycles de Carnot considérés doivent donc étre égaux; nous
retrouvons le théoréme de Carnot.

C’est le principe de Clausius qu’on prend généralement
aujourd’hui comme second principe de la Thermodyna-
mique. Le théoréme de Carnot étant une conséquence
presque immédiate de ce principe, Clausius, avec une mo-
destie qui lui fait honneur, lui donna le nom de Principe
de Carnot, bien qu’il I'elt énoncé sans avoir connaissance
des travaux de Sadi Carnot.

96. Les objections de Hirn. — L’énoucé primitif de Clau-
sius, quoique identique, dans le fond, & celui que nous
venons de donner, n’était pas aussi explicite; Clausius
disait : La chaleur ne peut passer d’elle-méme d’un corps
Jroid sur un corps chaud. Hirn essaya de montrer que,
dans certains cas, ce principe est en défaut. Exposons et
réfutons en méme temps les objections de Hirn.

Considérons un cylindre ABCD ( fig. 11) contenant un

Fig. 1.

piston EF de part et d’autre duquel se trouvent deux masses
gazeuses & des températures différentes T, et T,. Supposons
le piston et les parois du cylindre autres que la paroi AB
imperméables a la chaletn', et admettous que la paroi AB
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soil en contact avec un corps & une température T plus
grande que T, mais plus petite que T,. Ce corps céde de la
chaleur au gaz enfermé dans ABEF; par suite, ce gaz éprouve
une dilatation et pousse le piston EF; il en résulte une com-
pression adiabatique du gaz enfermé dans l'enceinte EFCD
imperméable A la chaleur, et, par conséquent, une éléva-
tion de température de ce gaz. Ainsi de la chaleur a été
transportée d'un corps a la température T} a un gaz dont la
température T, est plus grande que T;.

Mais ce transport de chaleur n’est pas en contradiction
avec le principe de Clausius. La chaleur est passée, il est
vrai, du corps froid au corps chaud; mais il y a eu en méme
temps passage de chaleur du corps dont la température
est T| au gaz dont la température est T,, c’est-a-dire d’un
corps chaud sur un corps froid. Il est vrai que Hirn suppo-
sait T infiniment peu supérieur 2 T,; mais que la diffé-
rence T - T, soit infiniment petite ou finie, elle existe et,
si elle est infiniment petite, ’échange de chaleur, ainsi que
la dilatation et la compression des deux gaz, s’arrétera dés
que T, sera devenu égal A T}, c’est-a-dire au bout d’un
temps infiniment petit. La quantité de chaleur cédée sera
de méme ordre de grandeur que la différence T} — T,.

97. Passons 4 la deuxiéme objection de Hirn. Prenons
deux cylindres A et B de méme section (fig. 12) dans les-
qhels se meuvent deux pistons liés de telle sorte que l'un
s’abaisse d'une quantité égale A celle dont 'autre s’éléve.
Ces deux cylindres sont imperméables 3 la chaleur et sont
reliés par un canal de communication qui laisse passer-la
chaleur.
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Supposons le piston du cylindre B au bas de sa course,
le cylindre A rempli d’air & o° et le tube de communication
chauffé a roo°. Si nous soulevons le piston B, l’air & 100°
contenu dans ce tube passe dans le cylindre B et est rem-
placé par une portion de l'air froid de A. Cet air froid se

Fig. 12.

dilate et comprime I'air contenu dans les deux cylindres;
la tempéralure de V'air de A devient plus grande que o°,
celle de I’air de B plus grande que 100°. 8i nous continuons
A soulever le piston B, une nouvelle guantité d’air & 100°
pénétre dans B et en méme temps une cerlaine quantité
d’air froid de A s’échauffe A 100° dans le canal de conmu-
nication; une nouvelle compression se produit et la tempé-
rature s’éléve dans chacun des cylindres. Le calcul montre
que, lorsque le piston A est au bas de sa course, la tempé-
rature de l'air dans B est 120°. Ainsi, dit Hirn, on a pu
échauffer de I'air jusqu’d r20° avec une source & 100° sans
qu’il y ait eu de travail dépensé, puisque le piston A s’est
abaissé d’une quantité égale a celle dont B s’est élevé.
Mais cette ol)jecti.on est aussi facile & réfuter que la pré-
cédente. Il y a encore passage de la chaleur d’'un corps
chaud sur un corps froid : de la source qui maintient le
tube de communication a 100° au gaz froid qui s'écoule
de A. Une portion de cette chaleur sert & échauffer ce gaz;
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une autre est employée A élever la températare du gaz déja
passé dans B. Ainsi il y a simultanément tralnsport de cha-
leur d’un corps chaud sur un corps froid et transport de
chaleur d’'un corps froid sur un corps chaud, ce que ne
contredit pas le principe de Clausius.

88. Si I'on faisait 'expérience inverse, ¢’est-a-dire si I'on
faisait passer l'air & 120° du cylindre B dans le cylindre A a
travers le tube de communication maintenu a 100°, on trou-
verait que, lorsque le piston B est au bas de sa course, la
ternpérature du gaz est redevenue o°. Au premier abord, il
semble encore que la chaleur est passée d’elle-méme d’'un
corps froid a un corps chaud : du gaz dont la température
finale est o° & la source dont la température est 100°. En
réalité, il y a eu en méme temps passage de chaieur du gaz
4 120° du cylindre B & la source, c’est--dire d'un corps

" chaud a un corps froid.

Les objections de Hirn ne résistent donc pas ala critique.
Il n’en pouvait étre autrement.

Hirn aurait pu, par des expériences nouvelles, montrer
que les lois auxqueiles satisfont les gaz ne sont pas celles
quisont géné‘ralement admises, il pouvait méme ainsi réfu-
ter le principe de Clausius, mais il n’a pas opéré ainsi; il a,
sans faire aucune expérience nouvelle, raisonné sur les gaz
parfaits en leur appliquant les lois classiques de Mariotte
el de Gay-Lussac, ainsi que les lois de Regunault sur la
constance des chaleurs spécifiques. Or, nous verrons que
ces lois entrainent comme conséquence le principe de
Carnot. 1l était donc illusoire d'y chercherla réfutation de
ce principe.
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99. Enoncé a I'abri des objections précédentes. — Ima-
ginons un systéme soustrait & loute action extérieure et
composé de n corps, A;, A,, ..., A,, dont ’état ne dépend
que de deux variables indépendantes, la température T et
le volume spécifique ¢. Supposons que la température T, du
corps A, soit plus élevée que la température T, de A, et fai-
sons subir au systéme une transformation qui 'améne 2
I’état suivant : tous les corps du systéme, sauf A, et A,, sont
dans leur état initial; les volumes spécifiques de A; et A,
ont la méme valeur qu’avant la transformation. Dans ces
conditions, il est impossible que A, se soit échauffé et que A,
se soit refroidi. Tel doit 8tre I’énoncé du principe de Clau-
sius pour étre A I'abri de toute objection.

Ainsi, cet énoncé suppose trois restrictions : 1° le systéme
est isolé, c’est-a-dire qu’il n’emprunte ni ne céde de chaleur
A 'extérieur, qu’il n'accomplit aucun travail extérieur posi-
tif ou négatif; 2° tous les corps du systéme, sauf deux,
reviennent a leur état primitif, en d’autres termes, décrivent
des cycles fermés; 3° les deux autres corps reprennent leur
volume spécifique initial.

En effet, sans cette troisiéme restriction, nous pouvons
comprimer adiabatiquement le corps A, et détendre adiaba-
tiquement le corps A,; en utilisant le travail résultant de
celte détente a la compression de A, le systéme ne recoit
aucun travail de 'extérieur; il ne recoit pas non plus de
chaleur, puisque la compression et la détente sont adiaba-
tiques; les deux premiéres restrictions sont donc satisfaites.
Cependant, le corps le plus chaud A, s’est échauffé par suite
de la compression, le corps le plus froid A, s’est refroidi
par suite de la détente. Le principe de Clausius pourrait



LE PRINCIPE DE CARNOT-CLAUSIUS. 123

donc se trouver en défaut dans quelques cas si 'on négli-
geait la troisiéme restriction.

100. La nécessité de la premiére restriction ne fait aucun
doute. Néanmoins, monlrons, en précisant les conditions
nécessaires, qu’il est possible de faire passer de'la chaleur
d’un corps froid sur un corps chaud en fournissant du tra-
vail au systéme.

Considérons une machine thermique ; soient p et ¢ les
variables qui définissent I'état du corps C qui se transforme
et dont nous supposerons la masse égale & 1%, Quand ce
corps décrit un cycle fermé, le travail extérieur produft est

T :fp dv, 'intégrale étant prise le long de la courbe repré-

sentative de la transformation; ce travail est positif si le
point représentatif se meut sur cette courbe dans le sens
des aiguilles d’'une montre ; il est négatif lorsque la courbe
est parcourue dans le sens rétrograde. D’aprés le priricipe
de I'équivalence, ce travail est égal au produit de E par la
quantité de chaleur fournie au corps. Si donc nous appe-
lons Q, la quantité de chaleur fournie a4 C par la source
chaude de la machine thermique, Q, la quantité que ce
corps céde a la source froide, nous avons

(1) Q,—Q.==Ar.

Lorsque le cycle de C est compris entre les isothermes
correspondant aux températures T, et T, des sources
chaude et froide, la température de C est toujours infé-
rieure & Ty; ce corps ne peut donc céder de la chaleur a la

source chaude, il ne peut que lui en prendre; par suite,
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Q, est nécessairement positif, quel que soit le sens dans
lequel le cycle est décrit. Pour des raisons analogues, Q,
est positif. On ne peut donc, dans ces conditions, emprun-
ter de la chaleur a la source froide pour la porter sur la
source chaude, méme lorsque, le cycle étant décrit dans le
sens rétrograde, on fournit du travail au systéme.

Mais supposons la courbe représentative des tranforma-
tions du corps C formée de deux adiabatiques AD et BC
(fig. 13) réunies par des arcs de courbe quelconques com-

Fig. 13.

prenant entre eux les isothermes T, et T, correspondant
aux sources chaude et froide. Quand le cycle est décrit dans
le sens rétrograde, la quantité de chaleur que le corps aban-
doune pendant la transformation BA peut étre supposée
cédée A la source chaude, puisque celle-ci est & une tempé-
rature inférieure au corps; par conséquent, la quantité de
chaleur Q, empruntée a la source chaude est alors néga-
tive. La quantité de chaleur absorbée par le corps pendant
la transformation DC peut étre supposée empruntée a la
source froide, dont la température T, est supérieure a celle
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du corps ; par suite, Q, est négatif. Dans ces conditions, de
la chaleur est empruntée A la source froide et transportée &
la source chaude. Dailleurs, puisque  est négatif, la rela-
tion (1) montre que Q, est plus grand, en valeur absolue,
que Q,; la quantité de chaleur transportée & la source
chaude est donc plus grande que celle qui est prise a la

source froide.

104. Autre énoncé du second principe de la Thermodyna-
mique. — On énonce quelquefois ce principe sous la forme
suivante : Il est impossible de faire fonctionner une ma-
chine thermique avec une seule source de chaleur.

De cet énoncé et de la conclusion du § 93 il résulte que
!

. . . T
le coefficient économique ~~ d'un cycle de Carnot ne peut
1

étre plus grand que le coefficient = d'un cycle de méme
1

genre fonclionnant entre les mémes limites de température.

. T . . .
Le coefficient — du second cycle, qui est aussi un cycle de
. q y

Carnot, ne peut, pour les mémes raisons, étre plus grand.

s

-

que W Ces deux coefficients sont donc égaux; par suite,
1

le théoréme de Carnot' est une conséquence de cel énoncé.
D’ailleurs, il est évident que, réciproquement, si le théo-
réme de Carnot est vrai, I’énoncé précédenl I’est aussi; ces
deux propositions sont donc équivalentes.

Mais le théoréme de Carnot est aussi une conséquence de
’énoncé de Clausius et, réciproquement, le principe de
Clausius se déduit du théoréme de Carnot. Par conséquent,
I’énoncé de Clausius doit étre équivalent a I'énoncé précé-
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dent; il est donc indifférent de prendre I'un ou 'autre de

ces énoncés pour second principe de la Thermodynamique.

102. D’ailleurs on peut, d’'une autre maniére, ‘montrer
I’équivalence de ces deux énoncés. '

Montrons d’abord que, si le principe de Clausius était
faux, on pourrait faire fonctionner une machine avec une
seule source.

Soient A et B les deux sources de la machine thermique,
dont les températures sont T, et T,. Si nous faisons fone-
tionner cette machine dans le sens direct, nous obtiendrons
un travail 7 en empruntant une quantité de chaleur Q, ala
source chaude A et en cédant une quantité Q, a la source
froide B. Mais, si le principe de Clausius ne s’appliquait pas
aux corps A et B, nous pourrions ensuite emprunter une
quantité de chaleur Q, & la source froide et la céder a la
source chaude sans dépenser de travail. Par conséquent, a
la suite de ces deux opérations, la source chaude repren-
drait son état initial et nous aurions obtenu un travail ¢ en
empruntant une quantité de chaleur Q, — Q, a la source
froide.

103. Réciproquement, s’il était possible de produire du
travail avec une seule source de chaieur, on pourrait trans-
porter de la chaleur d’un corps froid sur un corps chaud
sans dépense de travail.

En effet, le travail = produit en empruntant une quantité
de chaleur Q & une source dont la température est T, peut
étre transformé en force vive et cette force vive transfor-
mée en chaleur par frottement. Comme rien n’empéche de
supposer la température T, des corps qui frottent plus grande
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que T,, nous aurions transport de chaleur d’un corps froid
sur un corps chaud sans qu’il y ait dépense de travail.

Le raisonnement suivant conduit au méme résultat : soit
encore 7 le travail produit par une machine M en empruntant
une (quantité de chaleur Q & une source dont la température
est T,. Associons A celte source une autre source a une tem-
pérature supérieure T, et faisons fonctionner, dans le sens
rétrograde, une machine thermique M’ entre ces deux
sources; nous pourrions obtenir un travail — = en emprun-
tant une quantité de chaleur — Q, a la source chaude et en
cédant une quantité — Q, i la source dont la température
est T,. L’ensemble des deux machines M et M’ produira un
travail nul en empruntant une quantité de chaleur positive
Q + Q, & la source dont la température est T, et en cédant
une quantité positive Q, (qui doit étre évidemment égale
a Q+ Q,) a la source dont la température est T,. Nous
aurons donc transport de chaleur de la source froide a la
source chaude sans aucune dépense de travail.

Ainsi, I'un des énoncés des § 95 et 101 ne peut étre en
déflaut sans que l'autre le soit aussi; par conséquent, ces
deux énoncés sont bien équivalents.

-104. Dans I'énoncé du § 104, il n’est pas fait mention de
la température de la source qui fournit la chaleur; elle
peul donc étre supposée quelconque. Démontrons en effet
que, si cet énoncé est vrai lorsque la chaleur est empruntée
4 une source B dont la température est T,, il I'est encore
lorsque ’emprunt de chaleur est fait & une source A dont
la température est T,.

La démonstration peut évidemment se ramener a faire
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voir que, s’il était possible de produire du travail avec la
source A seule, il serait également possible d’en produire
avec la source B, quelle que soit la température de cette
source.

Supposons d’abord T,> T,. Avec la source A nous pour-
rions, d’aprés notre hypothése, produire un travail 7 en
empruntant une quantité de chaleur Q, & cette source, Mais
nous pouvons faire fonctionner une machine dans le sens
direct entre les sources B et A, de maniére a produire un
travail 7" en empruntant une quantité de chaleur Q, a la
source chaude B et en cédant une quantité de chaleur Q,
a la source froide A. L’ensemble de ces deux opérations
donunerait un travail positif T + 7’; une quantité de chaleur Q,
serail empruntée a la source B; quant 4 la source A, elle
reprendrait son état primitif. Nous aurions donc produit du
travail en empruhtant de la chaleur uniquement i la source B.

Admettons maintenant qu’'on ait T,<<T;. Dans une pre-
miére opération, nous pourrions encore produire un tra-
vail T en empruntant une quantité de chaleur Q, 4 la source A.
Prenons cette source comme source chaude d’'une machine
thermique dont B serait la source froide. Si le cycle de cette
machine est formé, comme dans le dernier considéré au
- § 400, de deux adiabatiques réunies par des courbes quel-
conques comprenant entre elles les isothermes T, et T,, il
est possible, en fournissant un travail 7 & cette machine,
d’emprunter une quantité de'chaleur Q, & Ia source froide
et d’en céder une gquantité Q, & la source chaude. Par suite,
a la fin de ces deux opérations, cette source chaude A re-
viendrait & son état primitif, et un travail 7 — 7’ aurait été
produit. Or, ce travail est positif; en effet, d’aprés le prin-
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cipe de I’équivalence,
Qi=Ar, Q:— Qy=—A7;

par conséquent,
Q:=A(r—17');

comme la chaleur Q, fournie au corps qui se transforme est
positive, le travail 7 — ¢’ doit I’étre aussi. Nous aurions donc
encore production d’un travail positif en empruntant de la
chaleur 2 la source B.

405. Nous pouvons également démonl\,'rer que si le prin-
cipe de Clausius, énoncé sous la forme du § 99, est vrai
lorsque les deux corps considérés A’ et B/ sont a des tem-
pératures T’ et T, il ’est encore pour deux autres corps A
et B a des températures quelconques T, et T,.

D’aprés ce que nous avons dit au § 102, si le principe de
Clausius ne s’appliquait pas aux corps A et B, il serait pos-
sible de produire du travail en empruntant de la chaleur a
un seul de ces corps. Mais, d’aprés le paragraphe précé-
dent, cette production de travail pourrait également se faire
en empruntant de la chaleur & un lieu quelconque des -
corps A’ et B/, 2 B/ par exemple, dont nous supposerons la
température inférieure a celle de A’. En transformant ce
travail en chaleur par frottement, nous pourrions échauffer
le corps A’, et nous: aurions transport de chaleur d'un
corps B’ &4 un corps plus chaud A’ sans dépense de travail.
Par conséquent, si le principe de Clausius est faux pour les
corps A et B, il I'est aussi pour les corps A’ et B’ dont les
températures sont quelconques. 1l est donc démontré que,

si ce principe est vrai pour deux corps a des températures
P. 9
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déterminées, il ne peut étre en défaut pour des corps a
toute autre température.

Une conséquence importante de cette démonstration est
que le principe de Clausius ne pourrait étre faux, dans le
cas des températures trés élevées, que s’il I’était pour des
températures ordinaires. Comme dans ce dernier cas ce
principe n’a jamais été trouvé en défaut, nous pouvons l'ap-
pliquer aux corps dont les températures sont trés élevées
(ou trés basses).

Nous avons vu plus haut, au § 15, que si deux corps sont
en équilibre de température avec un méme troisiéme, ils
sont en équilibre de température enire eux. Ce fait expéri-
mental est un cas particulier du principe de Clausius.

En effet, on voit d’abord que c’est un cas limite de I’énoncé
plus général suivant : Si le corps A peut céder de la chaleur
au corps B de telle facon que sa température doive étre
regardée comme plus élevée, et si le corps B peut céder de la

chaleur au corps C de telle sorte que
temp. A > temp. B, temp. B > temp. C,

" il ne peut pas arriver que le corps C puisse céder de la cha-

leur a A, ce qui supposerait
temp. A < temp. C.

Et, en effet, B pourrait céder de la chaleur & C, qui la
céderait ensuite 4 A, de telle sorte que, finalement, le corps

froid B aurait cédé de la chaleur au corps chaud A, contrai-
rement au principe de Clausius.



CHAPITRE VIII.

QUELQUES CONSEQUENCES DU PRINCIPE DE CARNOT.
ENTROPIE. — FONCTIONS CARACTERISTIQUES.

106. Signes des quantités de chaleur mises en jeu dans
une machine thermique. — Nous avons admis jusqu’ici que
lorsqu’une machine thermique fonctionne dans le sens di-
rect, c’est-a-dire en produisant un travail positif r, la quan-
tité de chaleur Q, empruntée i la source chaude et la quan-
tité Q, cédée 2 la source froide sont positives. Ce n’est pas
évident, mais le principe de Clausius permet de le dé-
. montrer.

D’aprés le principe de I’équivalence, nous avons
Qi—Qs=Arx.

Puisque t est positif, la différence Q, — Q, est positive. Si
donc Q, est positif, Q, I’est aussi. Il suffit, par suite, de dé-
montrer que Q, ne peut étre négatif.

Admettons que Q, soit négatif et soit — Q} sa valeur.
Alors, pour produire le travail 7, la machine fait un emprunt
de chaleur aux deux sources : elle emprunte Q, a la source
chaude, Q, i la source froide. Or, nous pouvons faire passer
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une quantité de chaleur Q) de la source chaude  la source
froide sans produire ni dépenser de travail et ramener ainsi
la source froide a son état initial. Par ’ensemble des deux
opérations, nous produirons un travail pesitif r en emprun-
tant une quantité de chaleur Q;—+ Q; uniquement a la
source chaude. Celte conséquence étant contraire au prin-
cipe de Claudius, Q, ne peut étre négatif.

107. Quelques propriétés des isothermes et des adiaba-
tiques. — Ce méme principe permet de démontrer quelques
propriétés des lignes isothermes et des lignes adiabatiques.

1° Une isotherme et une adiabatique ne peucent se couper

en deux points.
Soient ACB et ADB (fig. 14) une isotherme et une adia-

Fig. 14.

D

batique se coupant aux points A et B. Si un corps décrit le
cycle fermé ACDB dans le sens indiqué par les lettres, il
produit un travail positif ¢ en empruntant une quantité de

s

chaleur positive Q,. Cette (uantité Q, est égale i linté-
gralefdQ prise seulement le long de 'isotherme, puisque

pour chaque élément de 'adiabalique dQ est nul. Si pour
chaque élément de l'isotherme dQ est positif, nous pou-

vons considérer la chaleur regue par le corps qui se trans-
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forme comme fournie par un corps.é une température plus
élevée que l'isotherme; nous aurions donc production de
travail en empruntant de la chaleur & une seule source, ce
qui est contraire au principe de Clausius.

Nous arriverions i la méme conclusion si nous supposions
que 4Q n’a pas le méme signe pour tous les éléments de
I'isotherme. Admettons, par exemple, que 4Q soit négatif
de A en C et positif de C en B. Joignons le point C aux
points A et B par des arcs de courbe trés peu différents de
I’isotherme, mais situés I'un au-dessous, I'autre au-dessus
de cetle ligne. Pour I'unde ces arcs, la témpérature est
“inférieure a celle dé l'isotherme; pour l'autre, elle est su-
périeure; supposons qu’a un arc situé au-dessus de I'iso-
therme corresponde une température plus élevée, et soient
AMC et CNB les arcs qui réunissent C a A et B, Si le corps
qui se transforme décrit le cycle AMCNBD, le travail pro-
duit sera égal A 7, & des infiniment petits prés; d’autre part,
le corps cédera dela chaleur le long de 'arc AMC et en em-
pruntera le long de I'arc CNB, car, ces arcs étant infiniment
voisins de l'isotherme, les quantités dQ qui se rapportent
4 des éléments correspondants ne peuvent différer qu’infi-
niment peu et ont par conséquent méme sighe. Or, la cha-
leur cédée le long de AMC peut étre absorbée par une
source dont la température est celle de I'isotherme, celle-ci
étant inférieure a celle du corps qui se transforme sui-
vant AMC; I'emprunt de chaleur résultant de la transfor-
mation CNB peut également étre fait & la méme source,
puisque le corps est alors & une température inférieure a
celle de cette source. Nous aurions donc encore production

de travail avec une seule source:"
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Ainsi, quel que soit le signe de dQ, une adiabatique et
une isotherme ne peuvent se couper en deux points.

108. 2° Une adiabatique et une isotherme ne peuvent se
toucher,

En effet, si adiabatique DE (fig. 13) était tangente a 'iso-

Fig. 15.

therme ABC, une isotherme infiniment voisine A’'B'C’ cou-
. perait I’adiabatique en deux points.

109. 3° Deux ac.iiabatiques ne peuvent se couper.

Fig. 16.

Car si nous considérons le cycle formé par les deux adia-
batiques AB et AC (fig. 16), quise coupent au point A, et
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par P'isotherme BC, nous arriverions, en répétant le raison-
nement du § 107, & une conséquence en contradiction avec
Ie principe de Clausius.

110. 4o Le long d’une adiabatique la température varie

toujours dans le méme sens.

8’il en était autrement en deux points de I'adiabatique,
13 température pourrait avoir la méme valeur et, par suite,
une méme isotherme couperait I'adiabatique en deux points.

111. 5° Le long d’une isotherme la quantité de cha- -
leur dQ fournie au corps et correspondant ¢ un élément de

cette ligne a toujours le méme signe.

En effet, la quantité dQ ne peut changer de signe qu’en
devenant nulle; au point correspondant & dQ —o, Yiso-
therme considérée serait tangente 3 une adiabatique, ce qui
ne peut avoir lieu.

142. Cycle de Carnot. — De ces propriétésil résulte que,
si nous tracons deux isothermes et deux adiabatiques, nous

Fig. 17.

ne pouvons avoir que quatre points de rencontre. Nous de-
vons donc représenter un cycle de Carnot par un quadri-
latére curviligne ABCD‘(ﬁg. 17).
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Cependant nous faisons encore une hypothése : nous-ad-
mettons implicitement que deux isothermes ne peuvent se
couper. En général, cette hypothése est exacte; mais, pour
certains cofps qui, comme l'eau, présentent un maximum
de densité, & des valeurs déterminées de p et de v peuvent
correspondre deux valeurs de la température; les deux iso-
thermes relatives a ces températures se coupent donc. Mais
ce cas est exceptionnel; aussi le laisserons-nous de cbt‘é.
Drailleurs il ne constitue pas une difficulté, car en prenant ¢
et T comme variables indépendantes, au ’]ieu de pety,
nous n‘aurions que quatre points de rencontre.

143. Considérons un corps dont le point figuratif décrit
un cycle de Carnot. Le long de I'isotherme AB, il emprunte
une quantité de chaleur Q, égale 4 la valeur de linté-

B
grale f dQ; le long de l'isotherme DC, ce corps céde
A
C
une quantité de chaleur Q, dont la valeur est —f a0
n

D
ou f dQ, I'élément dQ de ces intégrales étant
C

L dT dT
dQ_Lwdv—i—c@-dp.

Montrons que Q, et Q, sont positifs.
Le cycle étant décrit dans le sens direct, le travail pro-
duit 7 est positif; puisque Fon a

AT = Ql - Q29
la différence Q,— Q, est positive et I'on ne peut avoir

Qi<0 et Qg> o.
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11 est également impossible que Q, et Q, soient négatifs,
c’esi-a-dire que de la chaleur soit cédée par le corps le
long de AB et empruntée le long de CD. En effet, la cha-
leur Q, cédée le long de AB pourrait éire absorbée par une
source dont la tempérélure T serait comprise entre T, et T,.
Cette méme source pourrait fournir la quantité de cha-
leur Q, que le corps emprunte le long de CD. Nous aurions
donc une machine thermique fonctionnant avec une seule
source.

Il ne nous reste plus qu'a faire voir que I'on ne peut
avoir Q, > o et Q,<< o. Dans ce cas, le corps emprunterait
des quantités de chaleur positives le long de AB et le long
de CD. Ces quantités de chaleur pourraient étre fournies
par une source dont la température T serait supérieure
a T, ; nous aurons donc encore production de travail avec
une seule source.

Ainsi, lorsque le cyéle de Carnot est décrit dans le sens
direct, 7, Q, et Q, sont des guantités positives. Si nous le
décrivons dans le sens rétrograde, r sera négatif ; la quantité
de chaleur Q, empruntée le long de BA et la quantité Q,
cédée le long de DC seront également négatives. Nous
avons d’ailleurs montré (§ 39) qu’il est possible de consi~
dérer la quantité Q, corhme cédée A la source 3 tempéra-
ture T, et la quantité Q, comme empruntée & la source
dont la température est T,.

114. Le coefficient économique d'un cycle de Carnot ne
dépend que des températures des isothermes. — Revenons
-sur la démonstration du théoréme de Carnot, en cherchant
a nous affranchir d’une objection plus spécieuse que réel-
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lement grave. Dans cette démonstration, on suppose que
les températures T, et T, des deux isothermes sont les
mémes que celles des deux sources; or, I’échange de cha-
leur ne peut se faire qu’entre deux corps dont la tempéra-
ture est différente. '

Un cycle de Carnot est entiérement déterminé quand on
connait les adiabatiques et les isothermes qui le forment.
Lorsque la relation fondamentale du corps qui se trans-
forme est donnée, les isothermes sont déterminées par
leurs températures T et T,, les adiabatiques par les valeurs
correspondantes d’'une quelconque des variables indépen-
dantes, les valeurs ¢, et ¢, du volume spécifique par exemple.
Le coefficient économique d’un cycle de Carnot est donc
une fonction de ces quatre quantités Ty, T,, ¢, ¢, et du
corps C qui se transforme, puisque de la nature de ce corps
dépend la forme de la relation fondamentale. Posons donc

67 = f('Ty, Ts, 01, 93 C).

Cette fonction f est une fonction continue des quan-
tités Ty, T,, ¢4, v4, car, si l’on fait varier ces quantités d’une
maniére coritinue, le cycle se déforme de la méme maniére
et les valeurs de 7 et Q sont continues. Démontrons qu’elle
ne dépend que des températures des isothermes.

145, Considérons deux corps C et C’' qui se transforment
entre les mémes sources de chaleur en décrivant des cycles K
et K/, le premier dans le sens direct, le second dans le sens
rétrograde. Pour que cela soit possible, il faut que les tem-
pératures satisfassent a certaines inégalités: soient T, et T,
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les températures des deux sources chaude et froide, T
et T, celles des isothermes du premier cycle, T et T}, celles
des isothermes du second cycle; on doit avoir

-

T>T,>T,>T,>T,>T,.

Appelons 7 le travail produit par le premier corps, Q, la
quantité de chaleur qu’il emprunte a la source chaude, Q,
celle qu’il céde a la source froide, et désignons par — 7/,
—Q), —Qj les valeurs des mémes quantités qui corres-
pondent au second cycle. Nous allons démontrer que Yon a

T < T,

Q.7 Q}

Prenons une machine M fonctionnant dans le sens direct
suivant le cycle K et associons-lui une machine M’ fonc-
tionnant dans le sens rétrograde, suivant le cycle K'. 8i m
et m' sont les masses des.corps C et ¢’ qui se transforment
dans ces machines, nous aurons pour la chaleur empruntée
a la source chaude par leur ensemble

mQ,—m'Q).

Les quantités Q, et Q} étant positives (4106), nous pouvons
prendre pour m et m' des valeurs telles que cette quantité
soit nulle. Mais alors le travail produit par les deux ma-
chines mt — m’z’ ne peut étre positif, car nous aurions pro-
duction de travail avec une seule source de chaleur; il faut

donc
mrt—m'7t'Zo,

ou, en remplacant m et m' par les quantités ~ et 61'— qui
. 1

Q.
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leur sont proportionnelles par suite de ’hypothése qde
nous avons faite,
T T .
— — — %0,
Q Q- -
Le coefficient d’'un cycle décrit dans le sens direct est donc
au plus égal & celui d’'un cycle dans le sens rétrograde.

118. Considérons maintenant deux cycles de Carnot K et
K’ définis par les quantités T’, T}, ¢}, ¢, pour le premier,
T, Ty, ¢4, v, pour e second. Faisons décrire au corps C le
premier cycle dans le sens direct et au corps C' le cycle K’
dans le sens'rétrograde entre deux mémes sources de cha-
leur dont les températures sont T, et T,. Pour que cela soit
possible nous devons avoir, comme nous ’avons déja dit,

T, < T, T, >T,, T >T,, T, < T,,

et si ces conditions sont réalisées nous aurons, d’aprés le
paragraphe précédent,

(1) f(T,n le’ ",19 Vlz’ C)gf(T"n T,’z’ "'"n V":’ Cl)'

Si nous supposons que les températures des isothermes
et des sources satisfont aux inégalités

T\ >T, Ty<T, Ti<Ty, T;>T,
nous pouvons décrire le cycle K dans le sens rétrograde et
le cycle K’ dans le sens direct : par suite nous avons

(2) ST, Ty 04 09, O) 2/(TY, Ty ¢4, ¢y, C).

La fonction f étant continue, nous pouvons faire tendre T}
et T] vers T, et T, et T; vers T, sans que les signes des
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inégalités (1) et (2) changent; nous aurons donc, a la limite,

f(Th T?a V,u V’z’ C)éf(Tn T29 V;:vvuz’ CI);
f(TU Tz, vlp V;9 C)if(TnTz, V’;’ V"z’ Cl)s

inégalités qui ne peuvent étre satisfaites simultanément
que si l'on a

f(TU T!: V,u vlzy C) zf(Tl) Th V”“ V"g’ CI)-

La valeur de la fonction f ne doit donc pas dépendre des
valeurs de ¢, et de v, ni de la nature du corps C; en un
mot, la fonction de Carnot ne dépend que des tempéra-
tures T, et T, des isothermes. Nous avons vu que Carnot
était arrivé a cette conclusion bien qu’en s’appuyantsur des

notions inexactes.

117. Le coefficient économique d'un cycle quelcongue
est au plus égal a celui d’un cycle de Garnot. — Soient K
un cycle quelconque et K’ un cycle de Carnot fonctionnant
entre les mémes sources. Nous pouvons décrire le cycle K’
dans le sens rétrograde; il suffit pour cela que les tempé-
ratures T} et T, des isothermes de ce cycle comprennent
entre elles les températures T, et T, des sources. D’aprés

(145), le coefficient économique Q‘E— du cycle K est au plus
i

du cycle K'. Ce dernier est égal a la -

T’
Qi

fonction de Carnot relative & ce cycle, fonction que nous

égal au coefficient

pouvons écrive f(T), T,) puisqu’elle ne dépend que de T}
. 2 ) puisq

et T, ; nous avons donc

i_< I '
Q; ST, TY).
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Mais nous pouvons considérer les lempératures des iso-
thermes comme infiniment peu différentes de celles des
sources; la fonction f étant continue, nous aurons i la
limite

9 /(T Ta).

Le coefficient économique d’un cycle quelconque est donc
au plus éga)l a celui d’un cycle de Carnot dont les tempéra-
tures des isothermes sont celles des sources,

148. Expression de la fonction de Carnot. — Nous avons
vu (43) que I’hypothése de la conservation du calorique
conduisait & considérer la fonction de Carnot comme la diffé-

Fig. 18.

A

rence f(T,) — f(T,) de deux fonctions d’'une seule variable,
et nous avons dit que cette conséquence était inexacte.
" Montrons-le et cherchons la valeur de cette fonction.
Considérons trois isothermes AB, CD, EF ( fig. 18) corres-
pondant aux températures T,, T,, T, et coupées par deux
adiabatiques AE et BF. Soient .

Q.:fABdQ, _;Q,:fcndq, QS:fEFdQ
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les quantités de chaleur qu’il faut fournir au corps qui se
transforme quand son point figuratif décrit les arcs AB, CD,

EF de ces isothermes. Pour le cycle de Carnot ABCD, nous
avons

g, =/(TuTa),
et, d’apreés le principe de I'équivalence,
Qx‘— Q.=Ar~.
De ces deux égalités nous tirons

%ZI—A&:I—A/'(T,, T,).

" Nous pouvons donc écrire

"8":' =o(Ty, Ty).

Pour les deux cycles CDFE et ABFE, nous aurons égale-

ment

'g‘:' = cP(Th Ts),

% = (T, Ts).
Ces trois derniéres égalités nous donnent

. T, T;)
T,, T _-—‘P(_',_L,
q’( 1 2) CP(T:, ra)

ou, en regardant T; comme une counstante,

o ___q)(Ti).
?( li’ rz)——- (P(rrz)
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Nous avons donc, d’aprés la valeur de ¢,

— — I _ 9(Ty)
! Af(T“TE)_-@(ThTz)_ CP(Ti)’

et nous tirons de cette relation

T,) — o(T,)
AS(T, Ty = 2T — 2Ty,
T = "0
449. Définition de la température absolue. — Mais

S(T,, T,) est positif, puisque sa valeur est Zoet que les
1

deux termes 7 et Q, de (;e rapport sont positifs ou négatifs
en méme temps. Par conséquent, ¢(T,) — ¢(T,) est positif;
en d’autres termes, ¢(T) est une fonction croissante en
méme temps que T. Or, nous avons fait remarquer (17) que
la température d’'un corps est aussi bien définie, soit par la
mesure ¢ au moyen d’an thermomeétre quelconque, soit par
la valeur d’une fonction 6(¢) de cette températufe assujettie
seulement & la condition d’étre croissante en méme temps
que ¢. Nous pouvons donc évaluer les températures par les
valeurs de la fonction ¢(T). Ce sera la fonction ¢(T) ainsi
définie que nous appellerons la températuré absolue. C'est la
définition que nous avions annoncée (17) et qui, on le voit,
ne renferme plus rien d’arbitraire. Nous désignerons désor-
mais cette température absolue par T, puisque la définition
de T était restée jusqu’ici arbitraire. Nous verrous (141)
comment la température absolue ainsi définie peut étre dé- -
terminée expérimentalement. Nous aurons alors
—T,

T,
Af(T,, Ty) : —_'I_',_—
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et par suite .
f(T], 'rg) :EB%IE;
1

telle est I’expression rigoureuse de la fonction de Carnot. Il
en résulte pour la valeur du rendement d’un cycle de Carnot
Q: T:
Si nous portons cette valeur de la fonction de Carnot dans
Ia relation

Qi —_ Qi: At
fournie par le principe de I’équivalence, nous obtenons

Q— Q= Q, =T _T’

.

et par conséquent

I
|
LI

He
Se

‘On peut exprimer ce résultat en disant que la valeur de
d
I'intégrale fTQ prise le long d’un cycle de Carnot est nulle,

dQ représentant la chaleur absorbée par le corps qui se
transforme quand son point figuratif décrit un élément du
cycle.

En effet, la température étant constante quand le point se
meut sur une isotherme, nous aurons, pour l'isotherme AB,

dQ_,I ___Ql
T —T‘,fA W=
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et, pour l'isotherme DC,

o fa0mm i [0

Le long des adiabatiques dQ est nul; par conséquent, la
valeur de 'intégrale pour le cycle de Carnot tout entier se
réduit & la somme des valeurs précédentes; nous avons

‘donc bien
[R_ % _o._,
VI‘ T‘ Vl‘ -
4120. Théoréme de Clausius. — Clausius a montré que

lintégrale est encore nulle lorsqu’un corps, dont U’état

d
T
est compléetement défini par deux variables p et v, décrit un
cycle fermé quelconque.

La chaleur ahsorbée par un corps dans une transforma-
tion élémentaire a pour expression (25)

.dT dT
dQ—L-C—_t—v-dV—l—Ca}—)dp.

Nous avons donc pour l'intégrale considérée

fC(_i_E chd
— rl\ T‘d? P’

ou
(1) f%g:fMdvﬂ-Ndp,
en posant

Mep G N=ig
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. Mais on peut transformer 'intégrale curviligne qui forme
le second membre de I'égalité (1) en une intégrale double
étendue A l'aire limitée par le cycle fermé; nous obtenons

en effectuant cette transformation

f « f dM dN)dde
dQ

Par conséquent, pour démontrer que l’intégralef—,r est

nulle, il suffit de faire voir que I’on a

(2) dM dN —o
dp dv
en tout point intérieur au cycle fermé.
Admettons que, pour une certaine région intérieure a
ce cycle, la différence précédente soit positive. Pour un

cycle fermé entiérement compris dans celte région nous
. d . . N
aurgonsf—,—l;g > 0, puisque tous les éléments de Iinté-

grale seraient positifs. Or, rien n'empéche d’admettre (iuq
ce cycle fermé est un cycle de Carnot. On peut toujours en
effet construire un cycle de Carnot avec deux adiabatiques
el deux isothermes assez rapprochées pour que le cycle soit
tout entier contenu dans une région du plan si petite qu’elle
soit. Nous arriverons alors & cette conclusion que l'inté-

gralef 19 peut étre positive pour un cycle de Carnot cette
conclusion étant en contradiction avec la propneté démon-
trée dans le paragraphe précédent, la différence %I - ‘;—g
ue peul étre positive. Elle ne peut non plus étre négative,

car le méme raisonnement montrerait qu’>alors Pintégrale
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fi’l‘q pourrait étre négative pour un cycle de Carnot. L’éga-

lité (2) doit donc étre satisfaite dans toutes les régions du
cycle si petites qu’elles soient et I'intégrale considérée est

bien nulle.

121. Entropie. — Supposons toujours que le corps qui
se transforme est tel que son état soit complétement défini
par les deux variables p et ¢, et considérons deux états de

Fig. 19.
N

N

ce corps déterminés par les points M et N (fig. 19). Appe-
lons a la valeur de l’intégralef‘d—,—l‘Q lorsque le point repré-

sentatif passe de M en N en suivant le chemin de MPN, et
b la valeur de cette intégrale lorsque le point représentatif

suit le chemin MQN. 8i I'on décrit ce dernier chemin en

sens inverse, de N en M, la valeur de / fITQ est — b, puisque

le signe de dQ change avec lesens danslequel est décrit I’é1é-
ment correspondant. Nous avons donc pour le cycle fermé
MPNQM, décrit dans le sens indiqué par les lettres,

f% =a-—>.
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)

Or, d’aprés le théoréme de Clausius, cette intégrale est

nulle et I'on doit avoir a = 6; la valeur de l’intégra&le»f‘—i,i,Q

est donc indépendante des transformations subies par le
corps pour passer d’'un état & un autre, elle ne dépend que
de ces états. En d’autres termes, cette intégrale est une
fonction de p et v qui ne dépend que des valeurs des va-
riables aux limites.

On a donné & cette fonction le nom d’entropie du corps;
I’entropie 8 d’'un corps n’est donc déterminée qu’da une
constante prés; sa différentielle est

dS:d,Ig.,

Si nous introduisons cette fonction dans Vénoncé du
théoréme de Clausius, cet énoncé devient : Lorsqu’un corps,
dont létat est complétement défini au moyen de deux va-
‘riables, décrit un cycle fermé, la variation de son entropie
est nulle. .

122. L'entropie d’'un systéme isolé va constamment en
croissant. — L’entropie S d’'un systéme est {a somme

S=8+8,+8,4+...+8,

des entropies des corps A, A,, ..., A, qui forment le sys-
;téme. Montrons que, lorsqu’un systéme isolé se transforme,
son entropie va constamment en augmentant,

Quelles que soient les transformations du sysiéme, 1'en-
tropie de 'un des corps ne peut varier que s'il recoit de la
chaleur, soit que cette chaleur ait é1é produite par le frot-
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tement aux dépens de la force vive du systéme, soit qu’elle
ait été empruntée par conductibilité ou rayonnement aux
autres corps du systéme, puisque ce systéme est supposé
isolé. La destruction de travail par frottemenl augmente
Pentropie des corps qui frottent, car ces corps regoivent

ainsi de la chaleur et par conséquent 4S;,— 4Q, est une

quantité positive pour ces corps. Supposons maintenant
qu'un corps du systéme emprunte ou céde de la chaleur
par conductibilité ou rayonnement; ce corps ne pourra en
emprunter qu’a d’autres corps du systéme dont la tempéra-
ture est plus élevée, ni en céder qu’'a d’autres dont la tem-~
pérature est plus basse. Il nous reste donc a montrer que
I’entropie du systéme augmente quand il s’établit un trans-
port de chaleur d’'un corps chaud & un corps froid.

‘Soient T, la température de 'un des corps et 4Q, la quan-
tité de chaleur qu’il regoit; soient T, et dQQ, les valeurs des
mémes quantités pour P'autre corps. Supposons T, >T,;
alors dQ, est négatif et dQ, positif; d’ailleurs

dle— dQn

puisqué le passage de chaleur s’accomplit sans pt“oduction
de travail. La variation de la somme des entropies des deux
corps est

a8, + dSy = dT—Q' + "IT‘?’
1 2

ou, en tenant compte de la relation entre dQ, et dQ,,

dS, + dS, = dQ, (TL’ — 1’%)
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Or, d’aprés nos hypothéses, dQ, est positif; le facteur

1 1 . » . . .
T P’est aussi; par conséquent, il y a bien aceroisse-
2 1 ¢

ment de I'entropie du systéme.

123. Le théoréme de Clausius considéré comme second
principe de la Thermodynamique. — Le théoréme de Clau-
sius peut étre pris comme second principé de la Thermody-
namique. Montrons en effet qu’il entraine I'axiome de
Clausius énoncé sous la seconde forme.

§’il était possible de produire du travail avec une seule
source de chaleur, on pourrait concevoir qu’aprés une série
de transformations tous les corps d’un systéme reprennent
leur état primitif, sauf la source i laquelle on a emprunté
de la chaleur. L’entropie de cette source diminuerait donc
tandis que les entropies de tous les autres corps repren-
draient leurs valeurs initiales; par suite, I’entropie totale
du systéme diminuerait, ce qui ne peut avoir lieu d’aprés
la conséquence que nous venons de déduire du théoréme
de Clausius. On ne peut donc produire du travail avec une
seule source. ,

Ayant démontré que les deux formes\ de 'axiome de Clau-
sius sont-équivalentes et que I'énoncé de Carnot est une
conséquence de I'une ou l'autre de ces formes, il résulte
immédiatement de ce qui précéde que 1'énoncé primitif de
Clausius et I’énoncé de Carnot peuvent étre déduits du théo-
réme de Clausius. Montrons directement que la proposi-
tion de Carnot est une conséquence du théoréme de Clau-
sius.
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124. Considérons un cycle de Carnot. Soient Q, la quan-
tité de chaleur empruntée a la source chaude dont la tem-
pérature T, est celle d’une isotherme du cycle, et Q, la
quantité cédée a la source dont la température T, est celle
de I'autre isotherme. D’aprés le théoréme de Clausius nous
aurons

aQ _Q, Q.

JTTH, T
et par conséqguent

Q—Q, T,—T,

Q Ty

ou

T 1 T—T,

Q- A T, ’
le coefficient économique d’un cycle de Carnot ne dépend
donc que des températures des isothermes, ce qui est con-
forme au théoréme de Carnot.

Pour compléter la démonstration de ce théoréme il nous
faut montrer que le coefficient économique d’un cycle
fermé quelconque ne peut étre plus grand que celui d’un
cycle de Carnot.

-La quantité de chaleur dQ absorbée par le corps qui se
transforme dans une transformation élémentaire peut étre
considérée comme la différence

dQ = in— sz

de la quantité de chaleur dQ, empruntée a la source chaude
et de la quantité dQ, cédée a la source froide. Si nous sup-
posons dQ, positif, la température T, de la source chaude



QUELQUES CONSEQUENCES DU PRINCIPE DE CARNOT. 7 153

~ doit étre plus grande que la température T du corps qui
emprunte la chaleur; nous avons donc

I

aqQ, <T_—'II‘_,)>O'

Si nous supposons dQ, négatif, c’est-a-dire si nous admet-
tons que le corps qui se transforme céde de la chaleur a la
source chaude, la température T, de cette souroe doit étre
irférieure & la température T du corps; les deux facteurs
du prewmier membre de l'inégalité précédente sont donc
tous deux négatifs et par conséquent cette inégalité est
encore sa}isfaite. Nous en déduirons

~dQ, dQ,
f T =) T,

ou, puisque la température T, de la source est constante,

"dQs Qi

e

(1) T 7T,

Q, étant la quantité de chaleur totale empruntée a la source
chaude lorsque le corps décrit le cycle entier.

Comme précédemment on verrait que, quel que soit le
signe de dQ,, on a

0 (i- )<

Nous en déduirons

(2) SR<q

Par conséquent, si dans 'égalité fournie par le théoréme
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[

nous remplagons les intégrales par les seconds membhres
des inégalités (1) et (2), nous aurons

de Clausius,

De cette inégalité, il résulte

Q—Q T.—T,

ou

ce qui démontre . que le coefficient économique d’un cycle
fermé quelconque est plus petit que celui d’un cycle de
Carnot.

425. Fonctions:caractéristiques de M. Massieu. — Le
théoréme de.Clausius nous a conduit a introduction d’une
nouvelle fonction de I’état d’un systéme : son entropie S.

Si donc nous prenons comme variables indépendantes
définissant I’état du systéme la pression p et le volume spé-
cifique ¢, nous aurons 3 considérer, dans les applications,
trois fonctions de ces variables : la température T, 'énergie
interne U et 'entropie S.

Les deux principes fondamentaux de la Thermodynamique
fournissant deux relations entre U, S et les variables, il
semble que la connaissancc de 'une des fonctions T, U, S
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puisse permettre de déterminer les deux autres en fonc-
tion des variables. Mais, les deux relations fondamentales
étant des équations aux dérivées partielles, une telle déter-
mination est impossible.

M. Massieu a montré que, si I’'on fait choix pour variables
indépendantes de ¢ et de T ou de p et de T, il existe une
fonction, d’ailleurs inconnue, de laquelle les trois fonctions
des variables, p, U et S dans le premier cas, ¢, U et S dans
le second, peuvent se déduire facilement. M. Massieu a
donné 2 cettle fonction, dont la forme dépend du choix des
variables, le nom de fonction caractéristique.

426. Prenons ¢ et T comme variables indépendantes et
cherchons la fonction caractéristique correspondante.
Le principe de ’équivalence nous donne la relation

dQ =dU+ Apdv;
le principe de Carnot,

aQ
—T—_dS.

Nous en déduisons
TdS —dU = Apdyv
ou
d(T8) — dU=S8dTl + Apdv.

" 8i nous posons
H=TS—-T,

" cetle relation devient

dH = SdT + Ap dy.
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" Nous aurons donc

d
s=2p
dH
Ap=75
dH
U_TS—H.__TBTI,——H.

Ainsi la fonction H permet de déterminer les fonctions
ps> U, S des variables choisies : ¢’est donc la fonction carac-
téristique de M. Massieu.

127. Si Pon prend p et T pour variables indépendantes,
la fonction caractéristique est

H=—H—Apy.
Nous aurens en effet
dl'=dH — Apdv — Av dp,
ou, en remplacant dH par la valeur trouvée précédemment,
"dH'=S8dT — Avdp,
d’ou nous tirons pour les valeurs des fonctions S et ¢,

dH’ dH’
S"‘?{'i‘-’ Av_-—-a—F-

Pour I'énergie interne nous aurons

- U=TS —H=TS —H — Apv
ou ‘

/ !
LI T

UZTdT P
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Puisque des fonctions de M. Massieu on peut déduire les
autres fonctions des variables, toutes les équations de la
Thermodynamique pourront s’écrire de maniére A ne plus
renfermer que ces fonctions et leurs dérivées; il en résul-
tera done, dans certains cas, une grande simplification. Nous
verrons bient6t une application importante de ces fonc-
tions,



CHAPITRE IX.

ETUDE DES GAZ.

128. Des divers modes de détente des gaz. — Dans le
Chapitre V, consacré & la vérification du principe de ’équi-
valence & I'aide des gaz, nous avons déja indiqué quelques-
unes des propriétés de ces fluides. Nous avons vu que, si
Ion admet la loi de Mariotie et celle de Gay-Lussac, la
détente isothermique d’un gaz est représentée par la courbe
dont I’équation est

N pv = const.,

et que I’équation de la courbe représentative d’'une détente
adiabatique est

<
pcc = const.

Remarquons que, pour une détente adiabatique, f—a:r—Q

est nul, puisque dQ est nul pour chaque transformation élé-
mentaire. L’entropie du gaz reste donc constante pendant
une transformation adiabatique; aussi donne-t-on égale-
ment le nom de détente isentropique 4 une telle transfor-
mation.
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Nous avons aussi étudié un troisiéme mode de détente
des gaz : la détente qui se produit dans l’expérience de
Joule (66). Dans cette détente le gaz n’absorbe ni ne céde
de chaleur & I’extérieur; elle se rapproche donc de la dé-
tente isentropique. Toutefois ces deux détentes ne peuvent
étre confondues; car nous avons fait observer (68) que I'ex-
périence de Joule comprend deux phases : dans I'une le gaz
se refroidit en communiquant de la force vive a ses molé-
cules, dans l'autre cette augmentation de force vive est
détruite avee production de chaleur. D’ailleurs la détente
isentropique est réversible (37); au contraire, la détente
des gaz dans l'expérience de Joule n’est pas réversible,
puisque pendant ceite détente le gaz ne produit pas de
travail et que, pour ramener le gaz 4 son volume primitif,
il faudrait le comprimer et par conséquent fournir un tra-
vail. Cela, d’ailleurs, devait se prévoir, puisque dans la
deuxiéme phase de ’expérience les molécules frottent les
unes sur les autres et que la production de la chaleur par
frottement est un phénoméne irréversible. Ce mode parti-
culier de détente est appelé détente isodynamique. Aucun
travail extérieur n'étant preduit ou détruit pendant qu’elle
s’effectue, ’énergie interne du gaz ne varie pas.

Ainsi les trois détentes que nous venons de considérer

sont caractérisées respectivement par les trois égalités

T = const., S — const., U = const.,

c’est-3-dire que leurs équations s’obliennent en écrivant
que les fonctions T, S, U des variables indépendantes p et ¢
sont des constantes.
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129. Lois caractéristiques des gaz parfaits. — Les gaz
obéissent trés approximativement aux trois lois suivantes :
la loi de Mariotte, la loi de Joule, la loi de Gay~Lussac. On
considére comme gaz parfait un fluide hypothétique obéis-~
sant exactement a ces lois."

Mais nous pouvons prendre pour définition d’un gaz par-
fait : un gaz obéissant aux lois de Mariotte et de Joule.

Montrons que, si ces deux lois sont satisfaites, celle de Gay-

- Lussac U'est aussi.

La quantité de chaleur qu’il faut fournir & un corps dans
une transformation élémentaire est, d’aprés le principe de
I'équivalence, '

dQ =dU + Ap dy.

Nous avons donc, pour la variation d’entropie du corps,

._dy dU  Ap
(1) dS—-,—rq_—--T—-i-Td(.
D’aprés la loi de Joule, ’énergie interne d’un gaz n’est
fonction que de sa température, U= ¢(T); par conséquent,

au _ ¢'(T)

- = d

T T ar

est une différentielle exacte. D’autre part dS est aussi une
différentielle exacte. Il faut donc, d’aprés la relation (1),

que i\T—pdv soit également une différentielle exacte. Cette
condition exige que %’ soit une fonction de ¢ seulement;

posons done

(2) Py()=1T. :/k‘
A
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Or, puisque nous supposons que le gaz obéit i Ja loi de
Mariotte, nous avons

(3) - po=x(T). i Vi
NA )
Les deux relations (2) et (3) ne peuvent se concilier que
sil'on a

x(T)=RT, w>=§,

R étant une guantité constante ne dépendant que de la
nature du gaz. 8’il en est ainsi, nous avons

pv =RT.

Nous retrouvons donc la relation fondamentale 4 laquelle
nous sommes parvenu (21) en admettant les lois de Ma-~
riotte et de Gay-Lussac. Elle nous montre qu’a pression

" constante le volume d’un gaz quelconque est proportionnel
a sa température absolue; par suite, le coefficient de dila-
tation doit avoir la méme valeur pour tous les gaz : c'est
bien la Joi de Gay-Lussac.

Si donc il existait un gaz parfait, un thermométre con-
struit avec ce gaz indiquerait rigoureusement la tempéra-
ture absolue.

130. Réciproquement, un gaz qui obéit aux lois de Ma-
riotte et de Gay-Lussac obéit également i celle de Joule.
On a, en effet,

dS:ﬂ+Mdv:ﬂ ARd‘).

T T T 7%

Comme dS est une différentielle exacte, A et R des con-
P. 11
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. dv < s . .
stantes, — une différentielle exacte, il faut que

dU
T

soit une différentielle exacte, c’est-d-dire que U soit une
fonction de T, ce qui est la loi de Joule.

Nous avons
dQ =dU + Apdy,

d’ou, pour v = const.,

dQ = ¢ dT = 52 AT
et )
' _av ]
e
et, pour p — const., i

dv _ dT Apde _ ARde AR dT

e T T T — ¢ — T °
dQ — dT_g—‘%dT ART,
. du
C= “,—Q—AR
C—c=AR.

131. La{ loi de Joule n'est qu'approchée. — Les lois de
Mariotte et de Gay-Lussac élant, d’aprés I'expérience, deux
lois dont les gaz naturels s’approchent plus ou moins, il est
a présumer que la loi de Joule n’est aussi qu’une loi appro-
chée.

Les expériences de Regnault sur la compressibilité des
gaz a diverses températures permettent de montrer que
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cette loi n’est pas applicable rigoureusement aux gaz natu-
rels.

Si nous admettons la loi de Joule, nous devons avoir
(130), en désignant par $(v) une fonction de volume spé-

cifique,
pY(¢v)=T.

Par conséquent, la relation entre la pression et le volume
spécifique d’'un gaz est, lorsque la température reste con-

stante, :
pd(v) =coost.

Or, d’aprés les expériences de Regnault, tous les gaz, sauf
I’hydrogéne, se compriment plus que ne lindique la loi
de Mariotte aux températures ordinaires et tendent vers
cette loi quand la température augmente. Par conséquent,
puisque la loi de Mariotte est exprimée par pv — const.,
ces expériences montrent que §(¢) varie avec la pression
plus rapidement que ¢ aux températures ordinaires et que
Y(v) est sensiblement proportionnel a ¢ aux températures
élevées. La fonction ¢/(v) dépend donc de la tempéralure,
ce qui implique 'inexactitude de la loi de Joule.

D’ailleurs des expériences directes, entreprises par Joule
et sir W, Thomson, ont montré que les gaz réels ne suivent
pas exactement cette loi. Avant de décrire ces expériences
et d’en exposer les résullats, étudions I'écoulement des
fluides gazeux ou liquides dans un canal. \

132. Ecoulement des fluides. — Considérons un fluide
en mouvement dans un canal et supposons le régime per-
manent établi, c’est-2-dire supposons que les variables qui
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définissent I’état du fluide ne dépendent pas du temps.
Soit ABCD ( fig. 20) la position 4 l'instant ¢ d’une certaine
masse de fluide que nous supposerons égale A 'unité. Au

Fig. 20.

bout d’un intervalle de temps infiniment pétit dt, cette
masse occupe le volume A'B'C'D’.

Puisque nous avons supposé le régime permanent établi,
les masses comprises dans les volumes ABA'B/, CDC'D’
ont la méme valeur dm. 8i nous désignons par ¢, la vitesse
du fluide en AB et par ¢, sa valeur en CD, la distance des
plans AB et A’B’ est ¢,dt, celle des plans CD et C'D’
est ¢, dt. En appelant «, et «, les surfaces des sec-
tions AB et CD, nous avons donc, pour les volumes ABA'B’
et CDC'D/,

wePodt et w,¢,dt.

Par conséquent, si v, et ¢; sont les valeurs du volume spé-
cifique du fluide qui occupe chacun de ces volumes, nous

avons pour les masses

® dt : w, 9, dt
dm = LoPo 42 et dm = 2191 %¢ ;

Yo [
et, puisque ces masses sont égales,

WoPo __ WPy ,
Yo Y4
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ou, en désignant par w, ¢, ¢ la section du canal, la vitesse
du fluide et le volume spécifique en un point quelconque,

A )
ol = const.
(4

(’est I’équation de continuité.

133. Une seconde équation est donnée par le principe
de la conservation de I’énergie. Les forces extérieures se
réduisent aux pressions qui s’exercent sur les surfaces du
fluide ABCD et & la pesanteur. J'appelle dr le travail de ces
pressions et —— dV celui de la pesanteur. Il est clair que 4V
est une différentielle exacte. On a alors, en conservanl aux
lettres E, Q, U et W la méme signification que dans les
_ Chapitres précédents, .

(1) EdQ +dr—=EdU +dV +dW.

Evaluons chacune des quantités qui entrent dans cette
relation.

La différentielle dV est donc égale a 1a variation de
Iénergie potentielle due & la pesanteur. A l'instant ¢,
cette énergie est la somme de I'énergie du fluide occu-
pant le volume ABA'B’ et de celle du fluide occupant
le volume A’B’CD; a l'instant ¢+ dt elle se compose de
I’énergie du fluide occupant le volume A’B’CD et de celle
du fluide occupant le volume CDC'D’. Si donc nous appe-
lons z, la distance du centre de gravité de la masse ABA’B’
au-dessus d’un plan horizontal pris pour plan des zy ét
par 5, la distance du centre de gravité du volume CDC'D’
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au-dessus de ce méme plan, nous avons
dV = gdm (s, — z,).
La variation dW de la demi-force vive est

dW:dmﬁ —-dmﬁ
2 2

ou

aW =2 (g1 o),

Quant a la variation de l'énergic interne, elle a pour

expression
dU =dm(U,— U,),

en appelant U, I’énergie interne rapportée a 'anité de masse
du fluide occupant le volume ABA'B’ et U, la valeur de la
méme quantité pour le fluide occupant le volume CDC'D’.

134. Evaluons le travail dr des pressions extérieures. Les
seules pressions qui produisent du travail sont celles qui
s’exercent sur AB et sur C. Si p, et p, sontles valeurs res-
pectives de ces pressions par unité de surface, le travail
résultant du déplacement de AB est

Po®Po dl == pyv,dm,
et celui qui résulte du déplacement de CD,
— P9y dt =— p,v, dm.
Nous avons donc

dr = (povo— pyv,) dm.
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Dans cette évaluation le travail provenant du frottement
du fluide contre les parois du canal n’entre pas. Cependant
nous pouvons en tenir compte. Il suffit de considérer le
systéme formé par le fluide et le canal dans lequel il se

R

meut. Les frottements sont alors intérieurs au systéme
\ considéré et I'on ne doit pas en tenir compte dans I'expres-
\ sion du travail des forces extérieures. Mais alors dQ repre-
sente la quantité de chaleur cédée au systéme du fluide et
du canal, et non celle qui est cédée au fluide seulement.
Si dans la relation {1) fournie par le principe de¢ I'équiva-
lence nous remplagons dz, 'dU, dV et dW par les valeurs

que nous venons de trouver, nous obtenons, en divisant

par dm,
d
(3)  ESL _E(U,—Up)+g(s— =)
-+ %((P?_q’?)) + (P191— Po¥e).
’ . , . dQ
I ne reste donc plus qu'a déterminer I’expression de m

Cette différentielle peut s’écrire

dQ
daQ _ dt
dm — dm '

dt

d . d
Par conséquent, dT?z sera négligeable dans deux cas : si %7(%

est trés petit, c’est-a-dire si les parois du canal sont peu

. . dm | .
conductrices de la chaleur; ou-si i est trés grand, c’est-

a-dire si ’écoulement du fluide est trés rapide.
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135. Remarque applicable aux liquides. — Les liquides
sout supposés incompressibles; par suite, le volume spéci-
fique v est constant. Il en résulte que la formule

dQ = Apdv + dU,

qui exprime, dans le cas d’un fluide quelconque, la quantité
de chaleur qu'emprunte I'unité de masse de ce fluide, se

réduit a ‘
dQ =dU.

Mais cette quantité de chaleur est fournie en partie par
des corps extérieurs au systéme, en partie par le frottement
du fluide contre les parois; appelons d(Q, la premiére portion
et d(), la seconde. Nous avons, en remplacant la variation 4U
de I’énergie interne par sa valeur dm (U, — U,), A

dQ,+ dQ,= dm (U, — U,).

Or la quantité dQ qui entre dans la relation (1) est la
chaleur fournie au systéme par les corps extérieurs; c'est

donc la méme quantité que celle qui est désignée par dQ,

Lo . . d
dans la relation précédente. De cette relation tirons a—% et

portons Ja valeur aiusi trouvée dans la relation (2); nous
obtenons, apres simplifications,

d ;
"'E'J% = g(51— 30) + S (@1 — @3) + ¢ (P1— Po)-

C’esL Véquation de Bernoulli. La quantilé E C-;TQn'- est ce qu'on

appelle la pertede charge due au f/'ottement.
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436. Application aux gaz. — Dans le cas des gaz nous
pouvons négliger 'action de la pesanteur et le terme g(3,—3,)
disparait de la relation (2). Etudions I’écoulement isotherme
en supposant le gaz parfait et le frotterment nul.

Décomposons le fluide occupant le volume ABCD en
tranches ayant méme masse dm. Au bout de chaque inter-
valle de temps d¢ chacune de ces tranches prendra la place
Qe la suivante. La quantité de chaleur fournie 3 chacune de
ces tranches pendant cet intervalle a pour valeur

dQ =dm(Ap dv + dU).

L’écoulement étant isotherme, dU est nul, car, d’aprés la
loi de Joule, U n’est fonction que de la température et par
conséquent cette quantité conserve la méme valeur quand(
la température reste constante.. D’autre part, la relation
fondamentale des gaz parfaits étant

pv=RT,
nous avons
pdv=RT %‘—, .
Par conséquent,
da

dq :dmART—V—v

et en intégrant pour le volume ABCD nous obtenons, pour
la quantité de chaleur dQ fournie a I’'unité de masse du gaz,

dQ =fdmART%- |

Mais dm est constant ainsi que T; nous pouvons donc
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écrire
dQ dv
T = ARTf7 = ART (logv¢, —logv,).
dQ .
Portons cette valeur de T dans la relation (2), et remar-

quons que U,— U,—=o d’aprés la loi de Joule et que
P191— Povo=o d’aprés la loi de Mariotte; il vient

RT (loge, — loge,) = = (47— ¢3)-

Telle est la relation qui lie le volume spécifique a la vitesse
dans I'écoulement isotherme des gaz.

137. Considérons le cas ou le gaz ne regoit pas de chaleur
de I’extérieur, le cas d’'un écoulement adiabatique. La for-
mule (2) donne alors, en faisant passer dans un méme

membre les quantités affectées d’un méme indice,

i — ?3
EU, + 2 + pyvi=EU,+ Y -+ Po¥o
ou

(3) EU+ %

& + pv=const.

“Cette formule ne suppose pas que le froitement du gaz
conlre les parois du canal soit nul, ni que le gaz soit par-
fait. Faisons maintenant ces hypothéses.

Le gaz ne peut absorber de chaleur, puisqu’il n’en regoit
ni de l'extérieur ni par frottement; par conséquent, la
transformation du gaz est adiabatique et nous avons (70)

c
pve = const.
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De cette relation et de la relation fondamentale des gaz
parfaits, " '

pv=RT,
nous tirons .
Te
pT = const.,
PE
et par conséquent
C—c
T=Bp ¢,

B désignant une constante.
Dans la relation (3) remplagons U par sa valeur ¢T déduite
de la loi de Joule (130), et pv par RT; nous avons

2
EcT + %— + RT = const.,

ou, en tenant compte de la valeur trouvée pour T,

C-c 2
(Ec+R)Bp ¢ +%—:const.
Mais
AR=C—c¢;

par conséquent, en éliminant R, il vient
= C--¢

. i) (Pz
ECBp ¢ + -, = const.
C’est 1a formule de Zeuner.
138. Expériences de Joule et de sir W. Thomson. — Dans

ces expériences, on rend le frottement trés considérable en

faisant passer le gaz a travers un tampon de bourre de soie ¢
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comprimé entre deux rondelles métalliques a, a (fig. 21).
Le tube, formé en cet endroit d’un cylindre de buis, est
protégé contre tout effet thermique extérieur par un man-
chon 4/ rempli de bourre de soie et plongé dans de I'eau

Fig. ar.

1

4 température constante. Dans ces conditions la quantité de
chaleur fournie par I'extérieur au systéme est nulle, et la
formule (3) lui est applicable. D’ailleurs, & cause du frotte-
ment considérable qu’éprouve le gaz, I'écoulement peut étre
trés lent, bien que la pression de part et d’autre du tampon
puisse différer notablement; on peut donc négliger le carré
de la vitesse ¢, et cette formule se réduit &

EU + pv = const.
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(4) U + Apv = const.

Si le gaz est parfait, U, p et v ne dépendent que de la
température T; par conséquent, le premier membre de la_
relation (4) ne dépend que de T. Puisqu’il est constant, la
température d’un gaz parfait ne doit pas varier dans I'expé-
rience de Joule et Thomson.

Or l'expérience a montré que, quel que soit le gaz em-
ployé, la température indiquée par le thermométre placé
au-dessus du tampon est toujours inférieure 4 la tempéra-
ture que possédait le gaz avant son passage dans le tampon.
Nous devons donc en conclure que 'une, au moins, des
deux lois qui définissent un gaz parfait n’est pas rigoureu-
sement suivie par les gaz réels. '

Nous savons déja, par les expériences de Regnault, que la
loi de Mariotte est dans ce cas. Mais ces mémes expériences
nous apprennent que I’écart entre cette loi et la loi réelle

_de compressibilité n’a pas le méme signe pour I’hydrogéne
et les autres gaz. Par conséquent, si la variation de tempé-
rature constatée dans les expériences de Joule et Thomson
provenait uniquement de ce que le produit py n’est pas
uniquement fonction de la température, cette variation
devrait avoir un signe différent pour I'’hydrogéne et pour
les autres gaz. Comme cette variation est toujours négative,
méme avec I'hydrogéne, c’est qu’elle est due en partie au
terme U. L’énergie interne d’un gaz n’est donc pas unique-
ment fonction de la température; en d’autres termes, les gaz
naturels n’obéissent ;;as rigoureusement i la loi de Joule.
Telle esl la conclusion importante des expériences de Joule
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et Thomson, conclusion que ne pouvaient mettre en évi-
dence les premiéres expériences de Joule (66), beaucoup
moins précises que les précédentes.

£39. Expression de l'énergie interne d'un gaz. — Joule
et sir W. Thomson ont constaté que la diminution de tem-
pérature indiquée par le thermomeétre est inversement pre-
portionnelle & la différence des pressions de part et d’autre
du tampon, et inversement proportionnelle au carré de la
température absolue du gaz. On a donc, en désignant par dT
la variation de température et'par dp la variation de pression,

K dp
s )

(5) T =

K étant une constante positive dépendant de la nature du
gaz. Ces résultats permetient de trouver une expression
trés approchée de I'énergie interne du gaz.

Prenons p et T comme variables indépendantes et diffé-

rentions la relation (4); nous obtenons

d(U+ Apv)
dp

d(U~+ Apy)
dt

(&) dp + dT =o.

Si nous supposons le gaz parfait, on a U= cT d’aprés la
loi de Joule, pv == RT d’aprés les lois de Mariotie et de Gay-
Lussac, et enfin AR =-C — ¢ d’aprés le principe de I'équi-

valence; par conséquent,

U+ Apy =CT,
el par suite
d(U + Ape) —C
at
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Cette expression n’est pas rigoureusement applicabhle aux
gaz réels; portons-la néanmoins dans la relation (1); nous
obtiendrons

d(U ~ Apv)

d/) dp:—CdT,

et, en rempladant 4T par sa valeur (5) déduite des expé-
riences de Joule et Thomson,

d(U+Ape) _ KC

dp T®

Si nous intégrons, nous avons
KCp-
U+ Ape=— 5L+ r(1),

relation qui détermine U.

Si nous prenions ¢ et T comme variables indépendantes,
nous obtiendrions I'expression approchée de U+ Ape en
remplagant p par sa valeur tirée de la relation pe —RT; il
vient

(7) U-l—Apv:%—f—f(T).

140. Détermination de l'équivalent mécanique de la
chaleur. — Différentions la relation (4) en prenant pour
variables indépendantes p et v; nous avons

dU +Apdv +Avdp=o.
Mais, d’aprés le principe de I'équivalence,

dU + Apdv=dQ; -
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par conséquent,
(8) dQ + Avdp—o.

La quantité de chaleur fournie dans une transformation
élémentaire est

dT dT
dQ = C%d" -+ Ca—;dp,
. 4T
ou, en ajoutant et retranchant au second membre C‘Jﬁdl’:
drT

Si nous désignons par f le coefficient de dilatation du gaz
sous volume constant, nous avons, pour la variation de
pression dp résultant d’'un accroissement 4T de la tempéra~
ture sans changement de volume, ‘

dp = ppdrT,

et par conséquent, pour la dérivée partielle de la tempéra-
ture par rapport a la pression,

ar _ «
dp " Bp

Portons cette valeur dans I'expression de dQ; il vient

C—
Bp

et par suite, en remplacant dQQ par cette expression dans la
relation (8),

dQ = CdT — = —Zdp,

C—c¢
CdT — dp +~ Avdp —o.
Bp ¥ P
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Mais, d’aprés les expériences de Joule et Thomson,

dT = m dp,

m désignant, pour simplifier, le facteur ,I-I,i de la relation (5).

L’égalité précédente peut donc s’écrire

C—c

Cm— +Av—o0
Bp ’
d’oll nous tirons
A=b=c_Cm
Bpy 1%

expression différente de celle que nous avons obtenue au
paragraphe 65 en supposant les gaz parfaits.

141. Evaluation des températures absolues a l'aide des
gaz. — Si un gaz satisfait a la loi de Joule, sans éire obligé
de suivre la loi de Mariotte, nous aurions entre les quan-
tités p, v, T la relation (4128)

py(v)="T.

La pression du gaz serait. proportionnelle 2 la température
absolue lorsque le volume reste constant; un thermométre
a volume constant indiquerait donc la température absolue.
Mais, la loi de Joule n’étant qu'approchée, la détermination
de la température absolue n’est pas aussi simple. Montrons
qu’il est cependant possible d’arriver i cette détermination
au moyen des gaz.

La quantité de chaleur absorbée par un gaz dans une
transformation élémentaire est

dQ =dU + Apdo,
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ou, en prenant ¢ et T comme variables indépendantes,

au dUu
, N daQ . . s .
D’apreés le principe de Carnot T doit étre une différentielle

exacte; nous avons donc, en appliquant ce principe,

d (1 dU &+ Ap\ d (1dU
dT \T dv T) T dv\TdT/
De cette égalité nous tirons

Adp _Ap_ 1 dU

T dT  TF Tt dv
Mais nous avons, pour 'augmentation de pression dﬁ résul-
tant d’une élévation de température 4T & volume constant,

dp =B pdrT,

et par suite, pour la dérivée pai‘tielle de la pression par
rapport a la tempéréture,

dp _
'd—T—-ﬁp-

Portons cette valeur dans la relation précédente; nous
obtenons

A 1 dU
(10) ABP—F =17

d . .
11 nous faut donc calculer d_g pour pouvoir déterminer T
au moyen de cette relation.
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Pour cela remarquons que 'on a

dT dT
dQ :C?ﬁ'd"'*_cﬁl?dp’

. dT
ou, en ajoutant et retranchant au second membre ¢ dv,

dQ:(C—c)Z—gdv-i-ch.

Cette expression doit étre identique a I'expression (g),
puisque les variables sont les mémes; par conséquent,

du dr
—— A - -_— —
de T AP (C—e) dv

Si nous appelons « le coefficient de la dilatation & pression
constante, nous avons, pour la variation dv du volume ¢ ré-
sultant d’'une augmentation 4T de température sans chan-
gement de pression,

dv=oavdT,

et par conséquent, pour la dérivée partielle de la tempéra-
ture par rapport au volume,

dar _ 1
dv ~ av
Nous avons donc
C—c¢
217+AP— e

du .
Portons cette valeur de 7 dans la relation (10); nous

obtenons
ABpT = C—c

oy
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d’onn
1 E(C—c¢)
 aBpy

Telle est la valeur de la température absolue.

142. Nouvelles expressions de 1'énergie interne des gaz.
— On peut évaluer I'énergie interne d’un gaz en suivant
une voie tout i fait différente de celle que nous avons em-
ployée (439). 1l est donc intéressant, quelque précaires
que soient des conclusions fondées sur des calculs qui
portent sur des formules empiriques, de comparer I’expres-
sion obtenue dans ce paragraphe pour ’énergie interne a
celle que l'on obtient au moyen des considérations que
nous allons exposer. M. Amagat a fait sur les gaz un grand
nombre d’expériences dans lesquelles il mesurait le volume
occupé par une méme masse gazeuse A des températures et
des pressions variables. 1l a proposé, pour représenter ses
expériences, diverses formules de la forme

P=Tf(®)+¢(v).

M. van der Waals est parvenu & relier les résultats de ces

expériences par une formule

RT 7

v— o v?

p =
qui rentre dans le type proposé par M. Amagat.

M. Sarrau a montré que la formule de Clausius

_RT
L — T(v+B):
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convient également bien pour représenter les expériences de
M. Amagat, quoique cette formule différe de celles proposées
par M. Amagat et M. van der Waals, par l'introduction de
la température absolue dans le second terme du second
membre. Dans ces formules, «, B, 1 désignent des constantes
trés petites.

443. Prenons d’abord le type de formule proposé par
M. Amagat; nous pouvons l’écrire, en changeant les nota-
tions pour simplifier ce qui va suivre,

AP=Tf(v)+¢(V)-

Or nous avons vu (126) que, si 'on prend pour variables ¢
et T, on a, pour la dérivée partielle par rapport a v de la
fonction caractéristique H de M. Massieu,

dH
-a-‘-;—-—AP-

Nous avons donc, avec la formule de M. Arhagat,

M —110)+ 90,

et par suite

H=T/(¢) +o(¢) + $(T),

¢ étant une fonction arbilraire.
Nous déduisons de la

=00 = /() +¢(T),
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et par conséquent
U=TS —H=TJ(T)—Y(T) —¢(v).
Ajoutons i U le produit

Aper=Tvf'(v)+v¢'(v),
il vient

U+Ape =T (T)—(T)— @(¢)+ 09 (¢) +Tof'(v).

Si nous comparons le second membre de cette égalité au

second membre de I'égalité (7),
U+ Apo= KCR “+ f(T),
Tv

déddite des expériences de Joule et Thomson, nous ne con-
statons aucune analogie, la premiére relation contenant des
fonctions dépendant uniquement de ¢ et la seconde n’en
contenant pas. Il ne faut pas cependant attacher trop d’im-
portance 3 cette contradiction el mettre en doute l'exacti-
tude soit des résultats des expériences de Joule et Thomson,
soit l’exactitudé des résultats des expériences de M. Amagat,
car les formules proposées par ce dernier physicien pour
représenter ses expériences ne peuvent 8tre vérifiées que
dans des limites assez rapprochées; elles peuvent donc étre
en défaut.au dela de ces limites et par conséquent ne pas
exprimer la relation générale qui lie p, v et T.

144. Faisons un calcul analogue pour la formule vérifiée
par M. Sarrau,

__RT ___# |
P="a T(v+p)
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Dans les expériences de Joule et Thomson, le volume ¢
est relativement grand, la pression du gaz n’étant jamais
trés forte; nous pouvons donc négliger « et 3 par rapport
a ¢, et la formule précédente devient alors

RT
=T

(4
Nous avons donc, en introduisant la fonction caractéris-
tique de M. Massieu,
dH ART A
=Ap= _ Al

dc v Tet’

et par suite

H=ART logy -+ o 4+ 4(T).

Nous en déduisons

_dH _ Ap

et

2Ap

U=TS—H=— To

+ T/ (T) —$(T).

Ajoutons

A
Apo:ART—T%;

nous oblenons

U Apo=— SR L T4 (T) — §(T) + ART.

La comparaison de cette formule et de la formule (7)
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montre que ces formules sont identiques si
3Au=KCR,

ce qui est possible. La formule de M. Sarrau concorde donc
avec les conséquences des résultats obtenus par Joule et
sicr W. Thomson. Mais il ne faut voir 13, jusqu’d nouvel
ordre, qu’'un exercice intéressant de calcul.



CHAPITRE X.

LIQUIDES ET SOLIDES.

145. Entropie et énergie interne d'un liquide parfait. —
Dans un liquide parfait la compressibilité est supposée
nulle. Le volume spécifique n’est done fonction que de la
température, et nous pouvons poser

v=f(T).

Prenons p et T comme variables indépendantes. La fonc-
tion caractéristique de M. Massieu est alors (427)

H =T8S —U— Apy,
etlona

di’ dH’
d_p —=—Av et T S.

Par conséquent, pour un liquide parfait,

du’
-g;:—Af(T);

nous en tirons

H'=—Ap/(T) +4(1),
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{ étant une fonction arbitraire. Il en résulte

(1 s =20 =— Apf (1) +¢/(T),

et par conséquent

U=TS —H —Apv

BV o APTS T + TY(T) — 3 Ap AT — (T).

4146. Si nous supposons constant le coefficient de dilata-
tion « du liquide, nous aurons

v=y¢[1+a(T—Ty],

T, étant égal a 273° C. Par conséquent,
S(T)y=vo[1+ (T —T,]
et
S (TYy=@av,.
Il en résulte, pour I’expression de ’entropie,

S=—Apav,+{'(T).

Dans une transformation & pression constante la varia-
tion dS de '’entropie a pour valeur

dS ={"(T)dT.

Or, par définitien,

et, si nous appelons C la chaleur spécifique du liquide sous
pression constante,

Y

dQ =CdT.
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Nous avons donc

I/ _..C
¢ (T)—T'

Admettons que C ne dépende pas de la température; nous
avons alors, en intégrant les deux membres de Végalité pré-

cédente,
$(T)=ClogT.

Par conséquent, nous avons, pour V’entropie d’un liquide
incompressible pour leque! le coefficient de dilatation et la
chaleur spécifique ne dépendent pas de la température,

(3) S=—Apay,+ ClogT.

147. Cherchons, en faisant les mémes hypothéses, quelle
est 'expression de I'énergie interne.
L’expression (2) de U, trouvée (145), peut s’écrire

(4) U=—ApTav,—2Apy + T (T)—(T).
Lorsque la pression est nulle, elle se réduit &
(3) : U=T¢"(T) —¢(T).
Mais nous avons en général
"dU=dQ — Apdyv; .
si donc)o est égal & zéro, il vient
dU = dQ.

Or la chaleur fournie dQ a pour valeur, lorsque la pres-
sion reste nulle et, péu‘ conséquent, constante,

dQ =CdTy
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nous avons donc
dU = CdT.

En intégrant et égalant la valeur de U ainsi trouvée a celle
qui est donnée par I’égalité (5), nous obtenons

CT =T/ (T) — §(T).
Par conséquent, ’expression (4) de U devient
U=—ApTav,—2Apv + ACT.

148. Transformation adiabatique d'un liquide com-
pressible. — Supposons qu’un liquide compressible subisse
une transformation adiabatique, qu’il éprouve, par exemple,
une compression ou une détente brusque,

La transformation étant adiabatique, dQ est nul pour
chaque élément de la courbe représentative, et par consé-
quent I’entropie S reste constante; nous avons donc

dS ds ..
OF | dS_-d—Pdp-l—-ﬁdl‘_o.

Cherchons 1'expression des deux dérivées partielles qui
entrent dans cette relation. Si nous supposons la pression
constante, nous avons

_dQ _ CdT
B=F =77
et par suite '
a8 _C,
dar — T

Les variables étant p et T, les propriétés de la fonction
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caractéristique de H’ de M. Massieu nous donnent

aH _

dH/
T = S et

—d;— = — A Ve
Dérivons la premiére de ces expressions par rapport & p, la
seconde par rapport & T; nous obtenons

da*W das a de

apdt —dp’  dpdl — AT

par conséquent,

ds dv

ap = AT

Si nous remplagons dans la relation (1) les dérivées par-

tielles de l’entropie par les valeurs que nous venons de
trouver pour ces dérivées, nous avons
dv C

dep— =dl = o.

A T

149. Formule de Clapeyron. — Cette relation sera encore
vraie si les variations de la pression et de la température
sont finies, mais petites; nous aurons donc, en appelant dp
et 0T ces variations finies,

dv C
Aﬁép——TST_o,

cette formule est due & Clapeyron.

. . do ciee . s .
Elle nous montre que, si 7T esl positif, c’est-a-dire si le

liquide se dilate par la chaleur, une compression échauffe
ce liquide; au contraire, pour les liquides qui diminuent de
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volume quand la température augmente, a une compression
correspond un refroidissement.

Cette formule a été vérifiée expérimentalement pour un
certain nombre de liquides. Joule a opéré sur l'eau; il a
constaté que, conformément a cette formule, ce liquide
s’échauffe par compression lorsque sa température est plus
élevée que 4°, tandis qu’il se refroidit lorsque sa tempéra-
ture est inférieure & 4°. Les variat‘ions de température
étaient mesurées 3 Paide d’une pince thermo-électrique
dont 'une des soudures était plongée dans le liquide et
Pautre maintenue & température constante. Les nombres
ainsi trouvés sont excessivement voisins de ceux que donne
la formule par le calcul; la vérification est donc¢ bonne.
Joule a également expérimenté avec Phuile de baleine;
pour ce corps I'écart entre la variation de tempéraiure
observée et la variation calculée est un peu plus grand que
pour 'eau; néanmoins la vérification de la formule de Cla-
peyron est encore trés satisfaisante.

Remarquons que cette formule convient également aux
solides, car dans le raisonnement qui nous y a conduit
nous n’avons fait aucune hypothése restrictive. Quelques
expériences de vérification ont été tentées avec ces corps;
elles présentent de grandes difficultés, la formule suppo-
sant la pression p uniforme dans tout le corps, condition
presque impossible a réaliser dans le cas des solides.

150. Remarques sur les corps présentant un maximum
de densité. — Généralement le volume d’un corps aug-
mente d’'une maniére continue en méme temps que la tem-
pérature; ceux pour lesquels il en est autrement sont des
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exceptions peu nombreuses; aussi était-il naturel de laisser
de coOté, comme nous 1'avons fait, ces exceptions pour ne
considérer que le cas général. Dans ’étude des liquides, le
cas des corps présentant un maximum de densité prend
une importance exceptionnelle, I’eau, le plus répandu
des quufdes, jouissant de cette propriété. Examinons donc
quelles conséquences découlent de l'existence d’un maxi-
mum de densité.

En premier lieu, I’état d’un tel corps n’est plus compléte-
ment défini par des variables p et ¢, puisque 4 des valeurs
déterminées de I'urfe et I'autre de ces variables peuvent
correspondre deux valeurs de la lempérature. La méthode
graphique de Clapeyron ne peut donc étre employée pour
représenter les transformations que subit ce corps.

On peut néanmoins représenter encore graphiquement
I’état du corps au moyen d’un point de I'espace dont les
coordonnées sont les valeurs de p, v et T correspondant &
l’é}at considéré. Si
(1) Sp,v,T)=0
est la relation fondamentale du corps, le point représentatif
est situé sur la surface 2 représentée par cette équation.
Lorsque le corps se transforme en revenant a son état
initial, le point représentatif décrit une courbe fermée
sur cette surface. La projection de cette courbe sur le plan
des pv, le plan horizontal par exemple, est évidemment la
courbe que I’on obtiendrait en appliquant le mode de repré-
sentation de Clapeyron.

154. Quand le corps passe par son maximum de densité,
la dérivée du volume par rapport & la température est
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nulle :
dv

(—1T promen
En dérivant par rapport 4 T la relation fondamentaie (1),

nous avons
df  dfdv _
df T de IT T

Par conséquent, au point correspondanlt au maximum de
densité on a

ar
ar =%

Le plan tangent 2 la surface = en ce point est donc paralléle
a I'axe des T, c’est-a-dire vertical. Le lieu MN des points de
contact de ces plans tangents, pour des valeurs diverses
de p et de v, sépare donc la surface 2 en deux portions R

et R’ (fig. 22) qui se projettent I'une sur 'autre sur le plan

Fig. 22.

des po. 1l peut done arriver que les projections de deux
isothermes se coupenl, quoique ces isothermes ne se
coupent pas sur la surface X.

De plus, certaines isothermes et certaines adiabatiques
pourront étre tangentes entre elles. En effet toute ligne,
telle que APB, qui coupe la courbe MN, se projette suivant
une ligne langente a la projection de MN. Par conséquent,
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l'adiabatique et 'isotherme qui passent par le point P sont
tangentes au méme point de la projection de MN et, par
suite, sont tangentes entre elles dans le mode de représen-
tation de Clapeyron.

452. Nous ne pouvons plus démontrer qu’une adiaba-
tique et une isotherme ne se coupent qu’en un point. La
démonstration de celte proposition faile au paragraphe 107
est en défaut dans le cas qui nous occupe. )

Le travail correspondant a une transformation élémen-
taire étant p dv, le travail accompli par le corps, lorsque
son point figuratif décrit une courbe fermée AQPB sur la
surface 2, est égal 4 'aire de la projection de cette courbe
‘prise avec le signe + ou le signe —, suivant le sens du
mouvement du point figuratif sur la projection. Or, si la
courbe fermée est coupée par la ligne MN, elle donpe en
projection deux courbes fermées apca et cbgc ( fig. 23)

\pr\//\,

décrites 'une dans le sens direct, Pautre dans le sens rétro-

grade. Le travail accompli par le corps pendant la transfor-

mation est alors la différence des aires limitées par ces

courbes. Il peut étre nul et le raisonnement du para-

graphe 407 qui suppose ce travail positif n’est plus appli-
P. 13
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cable. Une adiabatique et une isotherme peuvent donc,
dans certains cas, se couper en plusieurs points.

453. Les propriétés démontrées aux paragraphes 107 et
suivants n’étant pas toujours vraies dans le cas ol le corps
considéré présente un maximum de densité, la démonstra-
tion du théoréme de Clausius donnée dans le Chapitre VLI
se trouve en défaut. Montrons que ce théoréme est encore
applicable,

Si nous supposons que le corps considéré accomplisse

. une transformation dont la courbe représentative soit entié-
rement contenue dans Vune ou autre des portions R ou R/
de la surface X, la projection de cette courbe sur le plan
des dv ne présente aucun point singulier. Les propriétés
des isothermes et des adiabatiques sont alors les mémes '
que dans le cas ou la représentation graphique de Clapeyron
esl possible, et, par conséquent, le théoréme de Clausius
est applicable & un cycle fermé, entiérement contenu dans
RouR'.

Lorsque le cycle fermé AQBP ( fig. 22) coupe la ligne MN,
on peut le considérer comme formé des cycles AQPA
et BPQB. Le premier est tout entier contenu dans la por-

tion R de la surface X; le second, dans la portion R’. Par

suile,l’imégrale‘/%g est nulle lorsqu’on la prend le long

de chacun de ces cycles. Elle doit donc étre encore nulle
lorsqu’on la prend le long du cycle AQBP formé par leur

réunion.

154. Cas des solides. — Cette extension du théoréme
de Clausius montre que ce théoréme peut étre appli-
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qué A tout corps remplissant les conditions suivantes :
1° 1l existe une relation
S(p,v,T)y=0
entre les trois variables qui définissent I'état du corps;
T représente ici la température absolue; mais p et v peuvent
représenter d’autres variables que la pression et le volume
spécifique que ces lettres désignent d’ordinaire. Notre seule
hypothése est que ces deux variables, jointes & T, déter-
minent entiérement 1'état du corps.

2° Le travail extérieur élémentaire produit par 'unité de
masse du corps a pour expression p dv.

Ces conditions sont remplies par un fil fixé par I'une de
ses extrémités et soumis a une traction.

En effet, si m est la masse du fil et si nous désignons par
my sa'longueur, ¢ représente la longueur d’une portion de
fil dont la masse est 'unité; ¢ peut donc étre appelé la
longueur spécifigue du fil. Désignons par — p la force de
traction exercée sur le fil. Il existe évidemment une rela-
tion entre la température du fil, sa longueur et le poids
tenseur, et par conséquent entre T, ¢ et p; la premiére
condition est donc remplie.

D’autre part, pour un accroissement mdv de la longueur
du fil, Ie travail du poids tenseur est — pm dv; par suite,.le
travail de la réaction du fil est pmdve. Le travail extérieur
produit par unité de masse est donc pdv, et la seconde
condition est également satisfaite.

455. Application de la formule de Clapeyron. — Le théo-
réme de Clausius étant applicable, les conséquences de ce
théoréme le sont aussi.
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Prenons la formule de Clapeyron

dv C
A ﬁ 6p —_ T oT =o.
La plupart des substances s’allongent quand on les chauffe ;

dv
at

mule précédente qu’'en général

est donc généralement positif. Il résulte alors de la for-

6—>0.

Lorsqu’on tend brusquement le fil, la variation de p est
négative, puisque nous avons représenté la tension par une
quantité négative; il faut donc que &T soit aussi négatif,
c’est-d-dire que le fil se refroidisse quand on I’étire. Cest
ce qu’il est facile de vérifier expérimentalement au moyen’l
d’un fil métallique.

Si, au contraire, un fil s’échauffe lorsqu’on le tend brus-
quement, il résulte de la formule de Clapeyron que

oo
a7 = °

La matiére du fil doit donc se contracter lorsqu’on la
chauffe et, par conséquent, la longueur du fil doit diminuer.

Gough, vers 1810, a observé que la température d’un -
tube de caoutchouc noir, fortement tendu, s’éléve quand
on l'étire davantage. Conformément & la conclusion précé-
dente, Joule a constaté qu'un fil formé de cette variété de
caoutchouc se raccourcit quand on le chauffe. 1l est d’ail-
leurs facile de montrer celte curieuse propriété : on attache
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en B, 4 un levier OC ( fig. 24), un tube de caoutchouc noir
dont l'autre extrémité est fixée en A; un poids P tend ce

Fig. 24.

tube. Lorsqu’on le chauffe, on voit le levier se déplacer dans
le sens qui indique une diminution de longueur.

156. Représentation du cycle de l'expérience d’Edlund.
— Lorsqu’on prend pour variables indépendantes le poids
tenseur — p et la longueur spécifique v, les transformations
d’'une barre solide, soumise & une tension, peuvent se
représenter graphiquement. Comme application, considé-
rons I'expérience d’Edlund (85).

Pendant la premiére phase de I’expérience, celie ou 1'on
tend le fil, le point représentatif de I’état de ce fil décrit la
courbe AB ( fig. 25), située dans la portion du plan corres-
pondant aux valeurs négatives de p et aux valeurs positives
de ¢. Quand on détache brusquement le poids tenseur, le
point figuratif décrit une courbe BC. Cette courbe coupe
I'axe des v en un point C plus éloigné que le point A de
I'origine O, car, la température finale étant plus éleyée que
la température initiale, la longueur spécifique du fil a aug-
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menté. Si on laisse le fil reprendre sa valeur initiale, le
point figuratif se déplace de C en A et le cycle est fermé.

Fig. 25.
A C D

T

>

Le fil reprenant son état primitif, la variation de son
énergie est nulle. Par conséquent, de la relation du para-

graphe 60
dW + dU =dz + EdQ,

qui exprime le principe de I’équivalence, nous déduisons

fd~:+E[dQ:o.

Les deux premieres phases de 'expérience représentées
par les courbes AB et BC étant trés courtes, le fil n’em-
prunte et ne céde pas de chaleur & 'extérieur; mais il y a
une différence importante i signaler entre ces deux phases.
Dans la phase AB, le poids tenseur agit, il 'y a travail exté-
rieur; 1a courbe AB est une adiabatique; dans la phase BC,
il ne se produit aucun travail extérieur; on se trouve donce
placé dans des conditions analogues a celles de ’expérience
de Joule, o les gaz se détendent sans produire de travail
extérieur et sans échange de chaleur avec fe calorimétre.
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En d’autres termes, BC est une courbe isodynamique. Quand
on détache brusquement le poids tenseur, le fil se rac-
courcit brusquement, ses diverses molécules acquiérent des
mouvements rapides qui sont promptement détruits et .
transformés de nouveau en chaleur par une sorte de frotte-
ment intérieur.

Le travail fourni pendant la phase AB par les forces exté-
rieures a pour expression —fp dv, et, puisque p est négatif,

ce travail a une valeur positive 7. Suivant CA, le fil céde a
I’extérieur une quantité de chaleur CdT, C étant la chaleur
spécifique sous pression constante de la matiére formant le
fil et T I'abaissement de température quand le point figu-
ratil passe de C en A; nous avons donc pour la quantité de
chaleur fournie au fil — CdT, et la relation précédente

devient
t—ECJT =o.

Cette égalité n’est autre que le quoti¢gnt par la masse m
du fil de I'égalité oblenue au paragraphe 85. En effet, mr
est le travail total accompli par les forces extérieures, Cest-
a-dire pe, £ élant l’allongefnem du fil; de plus, mC estla

capacité calorifique a du fil.



CHAPITRE XI.

VAPEURS SATUREES.

487. Vapeurs saturées. — Considérons 'unité de masse
d’un liquide enfermé dans un espace clos par un piston; si
nous soulevons ce piston, une partie du liquide se vaporise,
et, si 'on maintient la température constante, la pression
de la vapeur conserve la méme valeur, pourvu toutefois que
le liquide ne soit pas complétement transformé en vapeur,
en d’autres termes, pourvu que la vapeur reste saturée.
Quand la température varie la pression change, mais pour
chaque température elle prend une valeur constanie quel
que soit le volume ¢ occupé par le systéme formé du liquide
et de la vapeur. Cette pression, qu'on nomme (tension
mazima, est donc uniquement fonction de la température.
Si nous négligeons 'action de la pesanteur, elle aura la
méme valeur en tout point du liquide et de la vapeur, et la

relation fondamentale du systéme se réduit &

p=S(T).

« L’existence de cette relation permet de représenter com-
plétement I'état du systéme au moyen de deux des va-
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riables p, ¢, T. D’autre part, le travail extérieur accompli
par le systéme quand le volume augmente de dv est évi-
demment — p dv. Par conséquent, les principes fondamen-
taux de la Thermodynamique el les relations qui s’en dé-
duisent sont applicables au systéme formé par un liquide et
sa vapeur.

158. Expression de l'entrepie d'un systéme formé par
un liquide et sa vapeur. — Considérons toujours 'unité de
masse du systéme; si nous appelons m la masse de la va-
peur formée, 1 — m est celle du liquide. Désignons par A le
volume spécifique de ce liquide et par o celui de sa vapeur.
Nous avons, entre ces quantités et le volume ¢ occupé par
I'unité de masse du systéme, la velation

P=mo 4 (1 —m)d,
d’ol nous tirons

(1) v —A=m(oc—2).

Prenons ¢ et T comme variables indépendantes. L’expres-~
sion de la fonction caractéristique de M. Massieu (126) est

alors
H=TS—U,

et, d’aprés les propriétés de cetle fonction, on a

dH

%:

Ap.

Mais, p étant, dans le cas qui nous occupe, uniquement
fonction de la température, l'intégration des deux membres
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de cette égalité donne
H=Apv+ {(T).

D’ailleurs, la fonction ¢(T) introduite par cette intégra-
tion étant absolument arbitraire, il est permis d’ajouter au
second membre de l'expression précédente une fonction
quelconque de la température, par exemple — A pi, puisque
le volume spécitique du liquide A dépend de T et non de ¢;
nous pouvons donc écrire

H=Apv +¢(T)—Api
ou
H=Ap(v—2) +¢(T).

De cette expression de H il est facile de déduire celle de
I’entropie S, puisque cette derniére fonction est la dérivée
de H par rapport & T; nous avons

dH

S=—5 =Ap(v—2) —ApV+{(T),

ou, en tenant compte de la relation (1),
(2) S=Ap'm(c—4)—ApN-+{(T),

les lettres accentuées représentant les dérivées par rapport
4 la température des quantités correspondantes.

459. Chaleur latente de vaporisation d'un liquide. —
8i dQ = Ldm est la quantité de chaleur nécessaire pour
transformer en vapeur une masse dm de liquide, la vapeur
restant saturée et la température conservant la méme va-
leur, le facteur L est, par définition, la chaleur latente de
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vaporisation du liquide. L'expression (2)de V'entropie, bicn
qu'elle contienne une touction arbitraire, permet d’endé-
terminer la valeur.

Nous avons, en effet, pour la variation d’entropie qui se
produit pendant la transformation,

Ldm

_ 49
ds = —= —

=5 =
La température restant constante, dS est la variation de
I'entropie correspondant & une variation dv de la variable ¢.
Or, des quantités qui figureant dans I'expression (2) m est
la seule qui ne dépende pas uniquement de la température.
C’est donc la seule qui varie lorsque la température reste
constante; par suite, nous avons

dS = Ap'(c—2Ar)dm,
et, en égalant les deux valeurs de d8, il vient
(3) L=Ap'T(e—1).

Cette formule est souvent désignée sous le nom de formule
de Clapeyron,

160. Vérifications expérimentales de la formule de Cla-
peyron. — La vérification expérimentale de cette formule
constitue une vérification, indirecte mais néanmoins trés
probante, des principes fondamentaux de la Thermodyna-
mique qui ont servi a I'établir; & ce titre ces vérifications
sont trés importantes.

La plus simple consiste & mesurer séparément chacune
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des quantités L, A, T, o, et p; connaissant les valeurs de p
pour diverses températures, on déduit la fonction qui lie p
et T, et par dérivation on a p’; il ne reste plus qu’a vérifier
I’'égalité des valeurs numériques des deux membres de la
formule.

La plus délicate des mesures a effectuer est celle du vo-
lume spécifique ¢ de la vapeur saturée. En 1861, MM. Fair-
bain et Tate (') ont opéré sur l'’eau; tout récemment, et
par deux méthodes trés bonnes, M. Pérot (%) a déterminé
le volume spécifique de la vapeur d’eau et de la vapeur
d’éther saturées. Ce dernier savant se servait de la for-
mule (3) pour calculer 'équivalent mécanique de la.cha-
leur; les nombres qu’il a obtenus sont voisins de 434. En
déterminant les diverses quantités qui entrent dans la for-
mule sur le méme échantillon d’éther, il a trouvé 424,67.
La faible différence entre ce nombre et ceux donnés par les
derniéres expériences de M. Joule et de M. Rowland con-
firme ’exactitude de Clapeyron.

MM. Cailletet et Mathias (*) ayant déterminé la densité de
I’éthyléne, du protoxyde d’azote, de l’acide carbonique et
de l'acide sulfureux & I’état liquide et a I'état de vapeur
saturée, A et o étaient connus. M. Mathias (*) a complété
ces recherches en mesurant la chaleur latente de vapori-
sation des trois derniers corps, et il a trouvé le plus complet
accord entre les résultats de ces mesures et les nombres
fournis par la formule de Clapeyron.

(') Ann. de Chim. et de Phys., 3° série, t. LXII, p. 249.

(%) Ann. de Chim. et de Phys., 6° série. t. X111, 1888, p. 145.

(*) Journ. de Phys., 2° série, t. V, 1886, p. 549, et t. VI, 1887, p. 414.
(*) Ann. de Chim. et de Phys., 6 sério, t. XXI, 1890, p. 69.

4
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161. M. Bertrand a fait usage d’'un auire mode de vérifi-
cation dont voici le principe.

Si, dans la formule de Clapeyron, nous négligeons le
volume spécifique A du liquide par rapport au volume spé-
cifique ¢ de sa vapeur saturée, qui est toujours beaucoup
plus grand que A quand le liquide n’est pas dans le voisi-
nage du point critique, il vient

L=Ap'Te.
Nous en tirons

r_1 L
(4) = AT 5

Par conséquent, si nous pouvons connaitre L et pa en fonc-

_tion de T, I’égalité précédente nous donnera, par intégra-
tion, la valeur de Logp en fonction de T. Un simple calcul
permettra alors de trouver les valeurs de la pression corres-
pondant a diverses tempéralures. Leur comparaison avec
les résultats obtenus par la mesure directe des tensions’
maxima des vapeurs servira de vérification a la formule de
Glapeyron.

162. M. Bertrand a véritié que pour la vapeur d'eau'(‘) le

quotient
peo
T + 127

est sensiblement constant et égal 2 2,47. On peut donc

(') BERTRAND, Thermodynamique, p. 155.
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écrire polur cette vapeur
pe—=R(T + ),

R et . étant des constantes.

D’autre part, d’aprés les expériences de Regnault, la quan-
tité de chaleur qu’il faut fournir a 1¥ d’eau pris a la tem-
pérature de la glace fondante pour le transformer complé-
tement en vapeur 3 la température ¢ du thermométre
centigrade est

606,5 + 0,305¢.

Si de celte quantité nous retranchons celle qui a servi &

faire passer '’eau liquide de o0° & ¢°, nous obtenons
L =606,5 — 0,695¢,
ou, en introduisant la température ahsolue,
L =606,5—0,695(T — 273), -
ou, en désignant les constantes numériques par des leltres,
L=oa—BT.

Portons ces expressions de po et de L dans la relation (4);
il vient )
f_f . a—pT
P ART(T—+pu)

Le second membre de cette égalité, étant une fraction
rationnelle, peut se décomposer en une somme de fractions
simples :

P_y_ 98 |
p T THgp
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Par intégration, nous obtenons
Logp =y LogT — ¢ Log(T + p) + LogG,
et, en passant des logarithmes aux nombres,

GTY

Py

G étant une constante.
Les valeurs de p données par cette formule concordent
parfaitement avec les valeurs trouvées par Regnault.

4163. M. Bertrand a également constaté (') que pour tous

les corps sur lesquels on a fait des déterminations le rap-

g . « s
1; est une fonction linéaire de T':

port
Po " .
P =R(T — p).

La relation (4) devient alors

£_’_ T )

P ART(T—p) T—p

)
i
ou
I

ézm.

Nous en tirons

Logp—=20Log(T —p)—0LogT + LogG
et

(') BERTRAND, loc. cit., p. 163.
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Les nombres déduils de cette formule présentent avec
ceux qui résultent des mesures directes un accord Irés
satisfaisant.

464. Pour un méme corps on peut donner a J des valeurs
trés différentes sans que la formule précédente cesse de
s’accorder avec l'expérience. M. Bertrand a donné Vexpli-
cation de ce fait singulier.

Remarquons que la valeur de Pexpression

pour m infini, est %, Par conséquent, a partir d’'une valeur
de m suffisamment grande, Jes valeurs de celte expression
différeront excessivement peu quand on fera croitre m. Or
le second membre de la formule (5) peut s’écrire

pa\®

o ~T),

ou, d’aprés la valeur de 9,

. D’ailleurs, A étant petit, R I'étant aussi, la quantité J doit
étre grande. 1l résulte donc de ce qui précéde qu’il est pos-
sible de prendre pour 3 deux valeurs trés différentes, pourvu
qu’'elles soient grandes, sans que les valeurs correspon-
dantes de p cessent d’avoir un grand nombre de décimales
communes et, par suite, d’étre d’accord avec I'expérience.
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165. Pour l’acide carbonique, l’alcool et le mercure, le

d 5 . .
rapport pT est trés sensiblement constant entre certaines

limites de température. Dans ce cas,

[

p_3
p T

d étant une constante, et 'on a pour la pression
p=GT8,

M. Bertrand a vérifié que, dans les limites de température

pour lesquelles elle a été établie, cette formule concorde
avec ’expérience.

166. Détermination de la fonction arbitraire entrant
dans l'expression de l’entropie. — L’étude des vapeurs
saturées conduit & d’autres vérifications des principes fon-
damentaux de la Thermodynamique. Ces vérifications exi-
geant la connaissance de la fonction ¢ qui figure dans
I’expression (2) de I'entropie, déterminons d’abord oette
fonction. : ’

Supposons une masse de liquide égale 4 I'unité sous une
pression égale & celle de sa vapeur saturée, 12 méme tem-
pérature T. Faisons croitre la température de 4T et en
méme temps faisons varier le volume ¢ occupé par le liquide
de telle facon que la pression devienne celle de la vapeur
saturée a la température T + dT. Dans ces conditions
aucune portion du liquide ne se vaporise.

La quantité de chaleur fournie au liquide pendant cette

P. 14
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opération a pour valeur
dQ=Tds,

ds étant la variation de I'entropie du liquide. Or il est évi-
dent que nous obtiendrons s en faisant m — o dans 'expres-
sion (2) de I’entropie S d’un systéme formé d’'une masse m
de vapeur saturée et d’'une masse 1— m de liquide; nous

avons donc
s=—ApN+¢/(T),

et, par conséquent, puisque p et ¢/ ne sont fonctions que
de T, .
ds=—Ap'NdT + ¢"(TYdT — A pd¥'.

Mais, les liquides élant trés peu compressibles, la varia-
tion gu’éprouve un certain volume de ces corps quand on
fait varier simultanément la tlempérature et la pression peut
étre confondue avec celle qu’il éprouverait si la température
variait scule. Par conséquent, }’, qui est la dérivée du vo-
lume spécifique 2 par rapport a T, la pression étant variable,
peut étre considérée comme proportionnelle au coefficient
de dilatation du liquide sous pression constante. Ce coeffi-
cient variant excessivement peu avec la température, il en
est de méme de 4’; nous pouvons donc négliger le terme
de ds qui contient en facteur la différentielle d¥’ de cette
quantité. Il vient alors

ds—=—Ap'WdT +{'(T)dT.
Portons cette expression dans dQ; nous obtenons .

dQ=— Ap'NTdT + " (T)TdT.
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_Si nous posons’
dQ = kdT,

le coefficient £ sera la chaleur spécifique du liquide sous la
pression de sa vapeur saturée, et nous aurons

(6) k=—Ap'NT + TY"(T).

467. Cherchons une autre expression de k.
Nous avons, en général, en prenant p et T comme va-

riables,
ds ds
ds = d—,l-,dT-I— CT[,;dp’
et, par suite,
. o ds ds
kdT = dQ = I‘ds__TﬁdT—i-TZI—)dp.

De cette expression de dQ il résulte que Tdi;dT est Ja

quantité de chaleur nécessaire pour élever de dT la tempé-
rature de 'unité de masse du liguide, la pression ne variant

pas; T;{—;, est donc la chaleur spécifique C du liquide sous

pression constante; nous pouvons donc écrire
ds
kdT =CdT + T ap dp.

Mais nous avons fait remarquer (448) que les propriétés
de la fonction H' de M. Massieu conduisent a I’égalité
das dv
ap = Aar

par conséquent, nous aurons ici, I’entropie étant désignée
I q g
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par s et le volume spécifique par 2,

ds dy
= A

Pour les raisons indiquées dans le paragraphe précédent, la

. d\ . . .
dérivée Z7’ aul est rigoureusement proportionnelle au coef-

ficient de dilatation du liquide sous pression constante, peut
étre confondue avec 2'; nous avons alors

ds

ap =—AV¥,

et, par suite,
kdTl =CdT — AT dp.
Reprenons les variables ¢ et T. dp est une différentielle
totale; mais, comme la pression ne dépend que de la tem-

pérature dans les conditions ol nous nous sommes placés,
nous avons simplement

_ap
dp= T dT =p'dT.
Portant cette valeur dans kdT, puis divisant les deux
membres de 'égalité obtenue par 4T, il vient
- k=C—ATp'V.

168. Pour avoir.la relation qui détermine ¢, il ne reste
plus qu’a égaler cette valeur de & & la valeur (6) précédem-
ment trouvée; nous obtenons, aprés suppression 'du terme
ATp'N qui figure dans les deux valeurs de £,

C=Ty/(T),
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d’on

V(D)= 2.

Si nous admettons que C ne dépende pas de la tempéra-
ture, hypothése réalisée & trés peu prés par les liquides,
nous avons, par intégration des deux membres de I’égalité

précédente,
¢'= CLogT,

et, par une nouvelle intégration,
$=C(TLogT —T).

169. Expressions approchées des fonctions H, H', S et U.
— Remplacgons ¢ par cette valeur dans I’expression trouvée
au paragraphe 158 pour la fonction H; nous obtenons

H=Ap(v—4) +C(TLogT—T),
ou, en tenant compte de la relation (1),
(7) H=Apm(ec—21)+ C(T LogT —T).
Pour I’entropie, nous avons
S=Ap'm(c—2%)—Ap¥ + CLogT.

Mais, )/ étant toujours petit, le terme qui renferme cette
quantité en facteur peut étre souvent négligé par rapport
aux autres; en faisant cette approximation il vient

S=Ap'm(c—12)+ CLogT,
ou encore

(8) S.—_—,[I‘—,m-i—CLogT,
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puisque, d’aprés la formule de Clapeyron,

L ,
T——Ap (G’—)\).

Les fonctions H et S étant connues, I'énergie interne du
systeme se déduit de la relation
H=T18 —U,

qui sert de définition & la fonction caractéristique H(426); "
nous avons donc

-

U=Lm+CT LogT — Apm(c —21)— C(T LogT — T),

ou
U=Lm-+CT —Apm(c—2).

Dans certaines applications le choix des variables petT
s'impose; alors il est utile de connaitre la fonction caracté-
ristique H': :
H=H—Apv.

Or, d’aprés la relation (1) du paragraphe 158, nous avons

v=m(o—12%) + 235

par conséquent, en remplacant ¢ par cette valeur et H par

I’expression (7), nous obtenons
H=Apm(c —1)+C(TLogT—T) —Apm(c—2)— Aprd,
ou, en simplifiant, .

H =—Apok + C(T LogT—T).
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170. Détente adiabatique d'une vapeur saturée. — Lors-
qu’on augmente brusquement le volume d’'un espace conte-
nant un liquide et sa vapeur saturée, la pression diminue.
C’est 1 un fait d’expérience, car a prioriil n’est pas invrai- -
semblable que la pression puisse augmenter; en tout cas,
pour aucune vapeur il n’a été constaté d’accroissement de
pression.

La pression d’une vapeur étant une fonction croissante
de la température, la températare doit décrofire en méme
temps que la pression. Cet abaissement de température
tend A produire une condensation de la vapeur; au con-
traire, la diminution de pression tend a la production d’une
nouvelle qhamilé de vapeur. Lequel de ces deux effets in-
verses se produira? Y aura-t-il condensation ou vaporisa-
tion ? C’est ce qu’il est possible de prévoir a 'aide des rela-
tions précédemment trouvées.

L’augmentation de volume étant supposée s’effectuer
brusquement, la transformation peut &tre considérée comme
adiabatique. L’entropie du systéme demeure alors con-
stante et, d’aprés I'expression (8) de cette fonction, nous
avons ‘ i ’ i
L .

Fm+ C LogT == const.

De cette relation nous tirons par différentiation

L d /L ar
,—I,—dm+mﬁ<,-l-,)dT+C—,l—,-_o.

La variation dT de la température est négative d’aprés ce

que nous venons de dire. Le coefficient ,I—I‘, de dm est positif.
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Par conséquent, dm a le signe du coefficient de dT; en
d’autres termes, il y a vaporisation ou condensation suivant

que
C ., .2 /(L
T dT \T

est positif ou négatif.

Le premier terme de celte somme est essentiellement
positif. La chaleur latente de vaporisation L peut généra-
lement se représenter par une formule de la forme

L=oa—@T,

ol a est une constanle posilive et 3 une constante positive
ou négative. De cette formule nous tirons

et, par suite,

La somme considérée est donc la différence

. C
(9) | T %

de deux quantités positives; par suite elle peut, suivant {a .
pature du liquide, &tre positive ou négative.

171. Dans le cas ou V'unité de masse du corps considéré

est 3 I’état de vapeur saturée, il faut faire m —1 dans nos
formules. La différence précédente devient alors

C_ a
T T?
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8i I'on effectue le calcul pour la vapeur d’eau on trouve
une valeur négative; la vapeur d’eau a I’état de saturation
doit donc se condenser par détente. C’est ce que Hirn () a
constaté expérimentalement.

Pour la vapeur d’éther cette différence est, au contraire,
positive; par conséquent, lorsqu’on augmente le volume
occupé par de la vapeur d’éther saturée, cetle vapeur cesse
d’étre saturée; elle est surchauffée.

Cette conséquence ne serait pas facile a vérifier par I'ex-
périence. Mais il est facile de voir, en reprenant le raison-
nement du paragraphe précédent, que, si une vapeur se
surchauffe par détente, elle doit se condenser par compres-
sion. Hirn (?) a montré qu’il en était bien ainsi.

Lorsque la vapeur saturée est en contact avec le liquide
qui I'a produite, la valeur de m intervient dans le signe de
la différence (g). 1l serait donc possible, avec les corps qui,
comme la vapeur d’eau, se condensent par détente lorsque
m =1, d’oblenir une condensation par compression pour
une valeur de m inférieure A

CT

-

o

valeur qui annule la différence considérée.

Pour des raisons analogues la température doit influer
sur la maniére dont se produit la condensation. On a pu
calculer pour quelques vapeurs la température a laquelle il
Y a inversion dans les phénoménes résultant d’une com-

(*) Bull. de la Sociéte industr. de Mulhouse, n° 133.
(?) Cosmos du 10 avril 1863,
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pression ou d’'une détente. Mais jusqu’ici aucun travail
expérimental n’a été fait sur ce sujet. ,

Quoi qu’il en soit de I'exactitude de ces derniéres consé-
quences, les expériences de Hirn sur la vapeur d’eau et la
vapeur d’éther sontde nouvelles preuves de |'exactitude des

principes qui nous ont permis d’en prévoir les résultats.



CHAPITRE XIIL

. EXTENSION DU THEOREME DE CLAUSIUS.

172. Deux définitions de la réversibilité. — Lorsqu’un
systéme X est en présence de sources de chaleur, une
transformation amenant ce systéme d’un état A & un état B
est réversible quand les conditions suivantes sont remplies :

1° Le systéme peut revenir de B en A en passant par tous
les états intermédiaires ‘qu’il a pris pour aller de A en B;

2° Dans cette transformation inverse, la quantité de cha-
leur empruntée par le systéme a chacune des sources est
égale ¢t de signe contraire a celle qui est empruntée i la
méme source pendant la transformation directe.

Comme nous 'avons vu (37), les transformations adiaba-
tiques et les transformations isothermiques, pour lesquelles
la température est celle d’une des sources de chaleur, sont
les seules qui satisfont & ces conditions; ce sont donc les
seules transformations réversibles.

Mais, dans un grand nombre d’applications, on ne tient
pas compte des sources de chaleur avec lesquelles le systéme
échange de la chaleur, et ’on nomme transformation réver-
sible toute transformation satisfaisant a la premiére condi-
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tion; il convient donc de distinguer ces deux modes de
réversibilité.

Nous appellerons transformation complétement réversible
celle qui satisfait aux deux conditions énoncées; si la pre-
miére de ces conditions est seule remplie, nous dirons que
Ia transformation est réversible par rapport au systéme lui-
méme, A

/

173. Nouvel énoncé du théoréme de Clausius. — Dans
tous les cas qui ont é1é examinés dans les Chapitres précé-
dents, I’état du systéme est complétement défini quand on
connaft la pression p et le volume spécifique v (ou deux
variables analogues). Une transformation quelconque cor-
respondant & une variation quelconque de p et de ¢ est
toujours possible, & la condition d’emprunter de la chaleur
a une source chaude ou d’en céder a une source froide. Un
cycle quelconque peut donc étre parcouru dans un sens ou
I'autre, pourvu que les échanges de chaleur puissent se
faire avec des sources de température convenable. Dans ces
conditions, un cycle quelconque est réversible par rapport
au systéme lui-méme ; au contraire, les cycles de Carnot
sont les seuls cycles complétement réversibles (c’est-a-dire
réversibles au sens que nous avons donné & ce mot jus-
qu’ici).

Nous avons énoncé plus haut le théoréme de Clausius (120)

ST

étendue 3 un cycle fermé quelconque doit étre nulle. Mais,

d’aprés lequel l'intégrale -
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d’aprés ce que je viens de dire, nous n’avons envisagé
jusqu’ici que des cycles réversibles par rapport au systéme
lui-méme.

Aussi énonce-t-on souvent le théoréme de Clausius:

" Pour tout cycle fermé réversible, l’intégralefc{—l(,)- est nulle.

174. Extension du théoréme de Clausius. — Mais dans
un grand nombre de phénoménes, tels que la dissociation,
les phénomeénes électriques, deux variables indépendantes
ne suffisent pas pour fixer I’état du systéme. Pour certains
corps, les fluides en mouvement et les solides, par exemple,
la pressi‘on p n’a pas la méme valeur en tout point et sa
valeur en chaque point est différente suivant la direction
considérée. Dans d’autres cas, la température T du systéme
n’est pas uniforme et I'intégrale du théoréme de Clausius
n’a plus de signification précise. Enfin, on peut concevoir
des phénoménes non réversibles par rapport au systéme
lui-méme : ainsi, si I’on provoque la solidification du soufre
en surfusion en y projetant un cristal de ce corps, le phéno-
méne est évidemment irréversible, car il est impossible de
faire fondre le soufre & la température 4 laguelle on a pro-
voqué sa solidification et, par conséquent, de ramener le
soufre & son état initial en le faisant passer par ses états
intermédiaires.

Que devient donc le théoréme de Clausius dans ces divers
cas auxquels ne s’applique pas la démonstration du Cha-
pitre VII1 ? Clausius a démontré que : Pour tout cycle fermé

réversible, l'intégralefg%)— est nulle; pour tout cycle fermé
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irréversible, cette intégrale est négative. Bien entendu,
dans la seconde partie de cet énoncé, Virréversibilité pro-
vient non seulement des échanges de chaleur avec les
sources, mais aussi du systéme lui-méme.

175. Difticultés soulevées par l'extension du théoréme de
Clausius. — Mais la démonstration de Clausius, comme
celle des savants qui ont abordé cette question délicate,
souléve plusieurs objections que M. Bertrand, avec sa
grande autorité, a neltement formulées dans son Ouvrage
sur la Thermodynamique (*).

La plus grave est celle qui est relative & la température,
car, si la température du systéme n’est pas uniforme, 1'inté-
grale de Clausius n’a plus, ainsi que nous I’avons fait précé-
demment observer, de signification précise.

La seconde provient de ce que la quantité désignée par p,
généralement la pression, cesse d’avoir un sens défini quand
cette quantité n’a pas la méme valeur en tout point du sys-
téme et pour toute direction autour de ce point.

Cependant, il est possible de donner une démonstration
générale du théoréme de Clausius & I'abri de ces objections.
Pour faire disparaitre la premiére, nous devrons d’abord
prendre soin de bien définir ce qu’il faut entendre par

d s X )
-79-- Quant a la seconde, notre démonstration n ourra
T yp

donner prise, car nous ne ferons aucune hypothése restric-
tive sur la variable p, qui n’interviendra pas dans cette
démonstration.

(') Chap. XII, p. 265.
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176. Signification de l'intégrale de Clausius. — Suppo-
sons d’abord que le systéme considéré X soit formé de n sys-
témes X, Z,, ..., 2, pour chacun desquels la température
est uniforme. Soient Ty, Ty, ..., T, leurs températures res-
pectives, et dQ,, dQ,, ..., dQ, les quantités de chaleur qu’ils
absorbent pendant une transformation élémentaire. Le plus
naturel pour généraliser le théoréme de Clausius est de

prendre pour‘/‘fi,—lg- la somme

4, fdo,+ By

des intégrales relatives aux systémes 2,, 2,, ..., 2, dont la

réunion forme le systéme Z. )

Toutefois, cette somme peut s'interpréter de deux ma-
niéres différentes. En effet, la quantité de chaleur absorbée
par le systéme X, peut é&tre tout entiére fournie par des
sources extérieures au systéme total £ ou bien empruntée
en partlie & des sources de ce genre et en partie aux autres
systémes Z,, ..., X, qui composent 2. Dans ce dernier cas, il
faut donc préciser si dQ, représente la totalité de la chaleur
absorbée par le systéme X, ou bien la portion de cette cha-
leur qui est fournie par les corps extérieurs au systéme 2.
Mais nous verrons que, quelle que soit I'interprétation adop-
tée, le théoréme de Clausius est exact.

Passons maintenant au cas d’un systéme dans lequel la
température varie d’'une maniére continue d'un poini a un
autre. Si nous décomposons ce systéme en une infinité de
systémes infiniment petits, nous pouvons considérer la tem-
pérature comme uniforme dans chacun des systémes compo-
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sants et nous sommes ramenés au cas précédent. Pour cha-

5 14 . (d
cun de ces systémes élémentaires, nous prendrons f—TQ—

pour le cycle fermé qu’il accomplit et nous ferons la som-
malion de toutes ces intégrales pour le systéme tout entier.
Nous pouvons douc représenter I'intégrale de Clausius par

A

indiquant ainsi qu’il faut faire deux intégrations, V'une
étendue A tous les éléments du cycle de chaque systéme
élémentaire, 'autre étendue & tous les éléments du systéme>
total.

Deux interprétations, ainsi que nous ’avons dit plus haut,
sont encore possibles pour la valeur dQ; dans l'une et
Y'autre, le résultat est le méme. -

177. Lemme. — Un lemme nous est nécessaire pour la
démonstration que nous avons en vue.

Considérons un systéme X isolé au point de vue thermique
et composé de n + p systémes partiels différents. L’état de n
d’entre eux A, Ay, ..., A, est supposé ne dépendre que des
deux variables p et ¢; et, par conséquent, ces systémes sont
de la nature de ceux que nous avons considérés jusqu'ici.
Les théorémes démontrés leur sont donc applicables et
chacun d’eux posséde une entropie. Quant aux p autres
systémes By, B,, ..., B,, nous les supposerons d’'une nature
différente et, par suite, nous ne pouvons parler de leur
entropie.

Soient 8,, 8,, ...,S, les valeurs de 'entropie des systémes



EXTENSION DU THEOREME DE CLAUSIUS. 225 .

A 4 un certain moment ¢, Faisons subir au systéme & une
transformation telle qu’a l'instant ¢’ les systémes B re-
prennent le méme état qu’a 'instant ¢ et que les entropies
des systémes A soient 8§, S;, ..., S,.

Je dis que Von a

Si+8;+...+8,>8+8S,+...+8,.

L’inégalité serait évidente siles systémes B n‘éprouvaiem
aucune transformation, car on pourrait alors ne considérer
que le systéme 2’ formé par les systémes A, et il a été dé-
montré (122) que, pour un tel systéme, I'entropie va con-
stamiment en croissant. Montrons qu’elle n’est pas renversée
dans le cas général.

178. f{éprésentons Pétat du systéme A; par un point dont
les coordonnées sont T, et v, ; soient M et M’ (fig. 26) les

Fig. 26,

0
positions de ce point & l'instant £ et & 'instant ¢/. Menons
par ces points deux adiabatiques MN et M'N’ et coupons-les
par un isotherme NN'. Nous pouvons ramener le systéme A,
3 son état initial par une suite de transformations telles
que son point figuratif décrive le chemilh M'N/’NM. Ces

transformations étant adiabatiques ou isothermes sont ré-
P. 15
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versibles, et pour chaque transformation élémentaire nous

avons
dsl dQl.

::1T:

Comme les échanges de chaleur ne se font que de N’ en N,
la variation d’entropie résultant de I'ensemble des transfor-

mations est 9—‘, T, étant la température de 'isotherme et Q,
1

la quantité de chaleur qu’absorbe A, quand son point figu-
ratif se meut sur cette ligne, chaleur queI’on peut supposer
fournie par une source « a la température T,. Mais, I’'état de
A, étant défini par deux variables, la variation de son entro-
pie, lorsque ce systéme passe d’un état a un autre, ne dé-
pend pas de 1a maniére dont s’effectue le passage. L’entropie
étant 8, dans I'état final et S, dans I’état initial, la variation
d’entropie est S, — S} quand on raméne A, de I’état final &
I’état initial, quelles que soient les transformations effec-

tuées dans ce but. Nous avons donc

%:s,—s;,

et, par suite,

Q,=T, (8§ —8)).

179. Nous pouvons, par des transformations du méme
genre, ramener i leur état initial tous les systémes A. Comme
la température T, de I'isotherme est absolument arbitraire,
elle peut étre supposée la méme pour tous les systémes.
En un mot, on peut admettre que les quantités de chaleur
nécessaires pour ramener tous les systémes A & leur état
primitif sont empruntées a la méme source «; la quantité
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de chaleur fournie par cette source est
) Q:ZleTo(SH- Sy+Sy+...+8,—8, — 8, —...—Su).

Les systémes A étant ramenés a leur état initial, le systéme
Z1out entier I'est aussi, puisque, par hypothése, les systémes
B sont dans le méme état aux instants ¢ et ¢. Si donc nous
considérons les transformations accomplies pendant I'in-
tervalle de temps ¢'— ¢ et celles que nous avons effectuées
pour ramener les systémes A dleur étatinitial, leur ensemble
fera décrire a tous les corps dua systéme £ un cycle fermé.
Par suite, ’énergie interne de ces corps ne varie pas et le
principe de 'équivalence appliqué a ce eycle uous fournit
la relation

(2) EQ +7=o,

Q étant la chaleur empruntée A 'extérieur et 7 le travail
des forces extérieures au systéme = pendant 'ensemble des
transformations.

Notre cycle se compose de deux parties. La premiére par-
tie est parcourue par le systéme dans l'intervalle de temps
qui est compris entre les époques ¢ et ¢'; & la fin de cette
premiére partie, les systémes B sont revenus a leur état pri-
mitif, mais non les systémes A. Dans la seconde partie du
cycle, les systémes B ne subissent aucune transformation.

Pendant la premiére partie du cycle, le systéme X est
supposé isolé au point de vue thermique et n’emprunte ni
ne céde de chaleur a 'extérieur. La quantité Q, qui figure
dans la relation (2), se réduit donc a la chaleur empruntée
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a l'extérieur pendant la seconde partie du cycle et qui est
définie par la relation (r).

Or, cetle chaleur est empruntée a une seule sourée; par
conséquent, d’aprés I'un des énoncés du principe de Carnot
(101), il ne peut.y avoir production de travail extérieur. Le
travail = fourni au systéme ne peut donc avoir une valeur
neg.mve elle est positive ou nulle. D’aprés la relation (2),
la quantité Q ne peut donc étre positive. Nous avons alors

Sy +8;+...+8,—8]—8;=...— 8§, 2o
et, par suite,
S +8,+...+85,28 +8; +...+ 8,.

180. Théoréme de MM. Potier et Pellat. — Ce lemme
permet de démontrer immédiatement une modification du
théoréme de Clausius prépdéée pér MM. Potier et Pellat:
Lorsqu’un systéme de corps C subit des transformatzons
réversibles ou irréversibles qui le raménent & son état pri-

mitif, on a

Qi Q2 Qn <

T, ...+ Tn =0,

Q1, Qs . .., Quétant les quantités de chaleur cédées au sys-
téme par les sources oy, oy, ..., a, avec lesquelles il est mis
en rapport, ec Ty, Ty, ..., T, désignant les températures
de ces sources.

En eflet, nous pouvons regarder les sources de chaleur
conmrme étant de méme nature que les systémes A (ulemme
et nous avons, en appelant 8,, 8y, ..., 8,, 8|, 8,, ..., 8,
les vale.urs' de 'entropie de chacune d’elles a I'instant initial
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et a 'instant final,
S +8+...+8,—8,—8§,—...—8),Zo.

Or, quand le systéme C emprunte une quantité de chaleur
dQ, i la source «,, cette source recoit une quantité néga-
tive — dQ, ; sa variation d’entropie est donc

Pour la transformation entiére du systéme, la quantité de
chaleur absorbée par cette source est — Q, et, par consé
quent, sa variation d’entropie est

§i— 8§ =— A,
car, d’aprés les hypothéses qu’on fait d’ordinaire au sujet
des sources de chaleur, la température d’une de ces sources
peut étre regardée comme constante.

Nous aurons des expressions analogues pour les varia-
tions de I’entropie des diverses sources, et, si nous les por-
tons dans I'inégalité précédente, nous obtenons

c’est ce qu'il s’agissait de démontrer.
On peut d’ailleurs écrire cette inégalité

f%éo,

dQ représentant la quantité de chaleur cédée au systeme
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par 'une des sources pendant une transformation élémen-
taire et T désignant la température de cette source.

184. Takorkme. — Considérons un systéme dont la tem-
pérature n’est pas uniforme et varie avec le temps. A un
instant déterminé les températures des divers points sont
comprises entre deux valeurs T' et T' (T'> T"), d’ailleurs
variables avec le temps. Pendant Uintervalle de temps infi-
niment petit qui suit cet instant le 'systéme emprunte une
quantité de chaleur dQ' a certaines sources et en céde une
quantité dQ" a d’autres sources. Démontrons que, quand le
systéme décrit un cycle fermé, on a

@[,
T T =%

Pour cela supposons qu’oh ait n sources de chaleur
&y, Ay ..., o, dont les températures T,, T,,..., T, forment
une progression arithmétique croissante dont la raison est e.
La température maximum T’ & P'instant considéré est com-
prise entre deux des termes de cette progression ; en appe-
lant T; I'un d’eux, nous aurons

T, >T >Ti,.

De méme, la température minimum T” au méme instant
sera comprise entre deux termes T, et Ty, et nous aurons

T << T'< Trors.

La quantité de chaleur dQ’' empruntée par le systéme
pendant 'intervalle de temps infiniment petit qui suit I'in-
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stant considéré peut étre supposée fournie par la source a;
dont la température T; est plus grande que celle d’un point
quelconque du systéme. Nous pouvons également admettre
que la quantité de chaleur dQ" cédée par le systéme pen-
dant le méme intervalle est absorbée par la source a; dont
la température T, est plus petite que celle d’'un point quel-
conque du systéme. Par conséquent, si nous désignons par
dQ., la quantité de chaleur fournie au systéme par la source
%y NOUS AVONS

in: dQI) ko: - dQ”’
dQi=dQ,=...=dQ;y=dQu1=...=dQ,=0o,

et, par suite,

dQ, , dQ, dQ, aQ, _ dQ" dQ"
T—l— T, “+ e T, +.‘1—Tr—n-———T—T;

Or, T étant compris entre T; et T;_;, nous avons
T'>T—¢;
de méme
T"<Te—cs.
De ces inégalités nous tirons

T, <T'+c¢ et Te>T"'+ ¢

Par conséquent, si nous remplagons dans le second membre
de la derniére égalité T, par T+ ¢ et T par T"—¢, nous
diminuons la valeur du terme positif et nous augmentons
celle du terme négalif. Pour ces deux raisons le second

membre devient plus pelit et nous pouvons écrire

dQ. Q. dQ,  dQ _ dQ"

+ = .. R Tt
T, T, T, >T’+e "—¢
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Si maintenant nous intégrons pour le cycle tout entier,
nous obtenons

O Q4 Qe (O a0
T, T, T, 7 JT+c¢ T —

Mais, d’aprés le théoréme de MM. Potier et Pellat, le pre-
mier membre de cette inégalité est négatif ou nul; par con-
séquent, il faut nécessairement que 'on ait

d’ d//
Q ——f—,,Q‘__—e‘<0.

T + ¢

D’ailleurs, comme la raison ¢ de la progression formée par
les valeurs des températures des sources est absolument
arbitraire, nous pouvons la supposer aussi petite que nous
le désirons et par suite la négliger; nous aurons donca la

d I d 14
[,

182. Faisons observer que dans la démonstration de cette

limite

inégalité nous n’avons fait que deux hypothéses :

1° La température en un point donné du systeme est, a
chaque instaut, parfaitement déterminée;

2¢ Si un phénoméne s’effectue en empruntant de la cha-
leur & des sources, il est également possible lorsque 'em-
prunt de chaleur est fait & une source quelconque assujettie
seulement a la condition d’étre a une température plus
élevée qu'un point quelconque du systéme.

On ne saurait évidemment concevoir un systéme pour
lequel la premiére hypothése ne serait pas satisfaite. Quant
a la seconde, elle est moins évideme, et, quoiqu'il n’existe
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aucun exemple ou elle se trouve en défaut, il serait témé-
raire d’affirmer qu’elle est toujours remplie.

-Si Ia chaleur est transmise de la source au systéme }‘. par
conductibilité, il est difficile d’admettre que la température
de celte source puisse avoir une influence quelconque,
puisque le systéme 2 n’emprunte pas la chaleur directe-
ment a la source, mais hien aux fnolécules superficielles du
corps conducteur & travers lequel la chaleur est transmise.
Or, la température de ces molécules superficielles ne peut
différer sensiblement de celle des parties du systéme X avec
lesquelles elles sont en contact. Si au contraire la trans-
mission se fait par rayonnement, lexacutude de la seconde
hypothése est moins évidente, Certaines reactlons se pro-
duisent sous V'influence de la lumiére. 11 n’est pas absurde
de supposer qu’elles ne se produiraient plus si la chaleur
qu’elles absorbent, au lieu d’étre emprunlée a une source
trés chaude comme le soleil, I’était & une source dont la
température serait seulement un peu supérieure a celle des
corps réagissants. S'il en était ainsi, le théoréme du para-
graphe précédent ne pourrait s’y appliquer.

Le mécanisme des actions de ce genre nous est absolu-
ment inconnu.

M. Berthelot a fait voir récemment (1) que les réactions
photographiques sont probablement exothermiques. Mais
il pourrait y avoir des phénoménes analogues qui absorbe-
raient de la chaleur et pour lesquels, par conséquent, 'ob-
jection précédente conserverait toute sa valeur. Dans le

‘ (') Comptes rendus de I’ Académie des Sciences, t. CXII, g février
1891, p. 329.
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doute, il faut donc éviter d’étendre le théoréme qui précéde
aux phénoménes ou la lumiére ou la chaleur rayonnante
jouent un rdle nécessaire.

183. Théoréme de Clausius. — Si nous supposons la
température uniforme, a chaque instant, dans le systéme
considéré précédemment, T’ devient égal 4 T” et nous avons,
en désignant par T leur valeur commune,

dQI dQI/ / dQI___dQI/ <
T )T :f"—'—T_ =0

Mais dQ’'— dQ” est la chaleur dQ absorbée par le systéme
pendant une transformation élémentaire; nous pouvons

f#éo.

Quand la température du systéme n’est pas uniforme on
décompose ce systéme en une infinité de systémes infini-

donc écrire

ment petits. Dans chacun de ceux-ci la température peut
&ire considérée comme uniforme, Or, tous ces systémes
décrivent un cycle fermé quand le systéme total décrit un

tel cycle. Par conséquent, pour un queiconque des systémes

élémentaires, on a
d
B

et pour 'ensemble de ces systémes, c’est-aA-dire pour le

sysléme total,
d
[ Fze
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la seconde intégration étant étendue i tous leséléments
du systéme,

L’inégalité de Clausius est donc démonirée dang toute sa
généralité.

184. Mais dans cette intégrale dQ représente la quantité
de chaleur qu'un sysiéme élémentaire emprunte tant a
Iextérieur qu’aux autres systémes élémentaires qui con-
stituent le systéme total. Démontrons que l'inégalité est
encore vraie quand on ne considére que la chaleur em-
pruntée A I'extérieur.

Posons
dQ = dQe"‘ in,

dQ. représentant la chaleur absorbée par le systéme et pro-
venant des échanges extérieurs au systéme total, dQ; celle
qui résulte des échanges intérieurs; nous aurons

WESTE SE R

dQ.
T.

Par conséquent, nous prouverons quef est négatif

. [d .
si nous démontrons que f’T([')l est positif.

Pour démontrer ce derni’er point, considérons deux sys-
témes élémentaires dont les termpératures uniformes ont
pour valeurs T, et T,; nous supposerons T, > T,. Le pre-
mier systéme cédera au second une quantilé de chaleur dgq.
Par suite, la chaleur absorbée par le premier est — dg,
celle qui est absorbée par le second est dg. Ces systémes -
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fournissent donc a l'intégrale considérée la différence

dg dg 1
——,—PT—I—T d (T T:):

.qui est nécessairement positive, d’aprés 'hypothése faite
sur T, et T,. Comme il en est de méme pour tous les
.échanges de chaleur qui se produisent entre les divers sys-
témes élémentaires, nous devons avoir

JIF=ffa(m—5)>>
et, par suite,
LSS

185. Lorsque le systéme décrit un cycle réversible, sa
température doit dtre uniforme, ear les échanges de chaleur
se font. nécessairement alors entre des corps a la méme
température. Les températures T, et T, prennent donc une
méme valeur T et chaque élément

1
4 <T, r‘)

d . ) ' . e
de l’intégraleff——,% devient nul. Par suite, cetle inté-

grale est nulle et nous avons

[ -

D’ailleurs, la valeur commune de ces intégrales est zéro.
- En effet, le cycle étant réversible, nous pouvons le déerire
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en sens inverse, ce qui change le signe des quantités dQ;

S
e

Mais, puisque nous avons

IS

quand le eycle est décrit dans le sens direct, il faul néces-

[y

Ainsi, en résumé, Uintégrale de Clausius est nulle pour

nous avons donc

ou

sairement que

tout cycle: Jermé réversible ; elle est négative pour un cycle
Jermé non réversible : ce théoréme sera applicable (pourvu,
bien entendu, qu'on admette I'axiome de Ciausius) toutes
les fois que les hypothéses du paragraphe 182 seront satis-
Sfaites.

‘486. Entropie d’'un systéme. — Supposons qu’un sys-
téme parte d’un étal A, pour lequel nous attribuerons par
convention & I'entropie une valeur arbitraire S,, et arrive 2
un autre état B. Admettons, en outre, qu’on puisse passer
de Pétat initial & I’état final par une série de transforma-
tions réversibles que nous représenterons schématiquement
par la courbe AMB ( fig. 27), quoique généralement la re-
présentation graphique ne soit pas applicable. Nous appel-
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lerons entropie du systéme dans l’état B la quantité S,
définie par la relation

s,-so,—_f ‘iTQ,

I'intégrale étant étendue a tous les éléments du chemin

AMB. '
Pour que cette définition soit acceptable il faut qu’elle

conduise & la méme valeur de 8,, quelle que soit la série

Fig. 27.

A

des transformations réversibles effectuées, quand plusieurs
séries de transformations de ce genre permettent de passer
de I'état A a I’état B. Justifions qu’il en est ainsi.
Représentons par ANB, toujours schématiquement, 'un
des cycles réversibles qui aménent le systéme de A en B.
Ce cycle peut &tre décrit dans le sens inverse BNA et par
conséquent former avec le cycle AMB un cycle fermé,
D’aprés le théoréme de Clausius, nous avons pour ce cycle

fre=.

fermé réversible

ou, en décomposant les intégrales en deux parties,
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JL7=S1.7

L’intégrale qui figure dans la relation définissant 8, a, par
conséquent, la méme valeur pour tous les chemins réver-

ou encore

sibles que 'on peut suivre.

La variation d’entropie d’'un systéme pendant son pas-
sage d’'un état A un autre est donc parfaitement définie,
pourvu qu’il existe un chemin réversible permettant d’ame-
ner le systéme de 'état initial a ’état final.

487. Supposons maintenant qu’il n’existe pas de chemin
réversible pour passer de I’état initial & 1'état final. Alors
dans la plupart des cas, sinon dans tous, il est possible de
trouver la variation d’entropie au moyen d’un systéme auxi-
liaire. Eclaircissons ce point par un exemple.

Considérons deux sphéres égales s et s’ respectivement
chargées des quantités + m et — n d’électricité. Si nous
les mettons en communication par un conducteur métal-
lique, elles reviennent toutes deux a l’état neutre. Le pas-
sage du premier état A au second B a donné lieu a un phé-
nomeéne irréversible : I’échauffement du fil de communica-
tion par le courant qui I’a traversé; et, si les deux sphéres
et le fil conducteur étaient les seuls corps qui existassent
dans l'univers, il n’y aurait aucun moyen de restituer & ces
sphéves leurs charges primitives, c’est-3-dire de les rame-
ner de 'état final B & I'état initial A.

Mais considérons un systéme auxiliaire formé d'un con-
ducteur C chargé négativement et d’un conducteur C’
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chargé positivement, ces deux conducteurs étant a une dis-
tance trés grande des sphéres.

Les sphéres ne possédant aucune charge électrique dans
I'état B, nous pouvons les mettre en communication avec
le sol sans qu’il se p;oduise de courant et par conséquent
d’échauffement du fil conducteur ou aucun autre phéno-
meéne -irréversible.

En approchant la sphére s du conducteur C cette sphére
se charge positivement; si ce mouvement s’opére lente-
ment, 'intensité du courant sera trés faible et I’échauffe-
ment du fil, qui est proportionnel au carré de cette inten-
sité, sera négligeable, de sorte que le phénoméne pourra
encore étre regardé comme réversible; quand la distance
est telle que la charge est + m, rompons la communica-
tion avec la terre et éloignons la sphére du conducteur C
de facon que ce dernier n’exerce plus d’influence. Nous
pouvons, a l'aide du conducteur C, charger la sphére s
d’'une quantité — m' d’électricité, et le systéme formé par
les sphéres est alors ramené & son état initial A.

Or, les opérations que nous avons effectuées sont réver-
sibles. Par conséquent, la variation d’entropie résultant du

passage de I’état B & I'état A est égale afffiT,Q Mais, comme

tous les phénoménes se sont produits sans dégager ni ab-
sorber de chaleur, 4Q est nul et, par suite, la variation
d’entropie est aussi nulle. L’entropie a donc la méme valeur
pour 'état A et pour I'état B. En résumé, si un systéme ne
peut pas passer d’un état A a I'état B directement, c’est-a-
dire sans faire intervenir un systéme auxiliaire, il peut ar-
river qu’il puisse passer de I’état A a I'état B indirectement,
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c’est-a-dire grace & l'intervention d’un systéme auxiliaire
convenable, revernant finalement a son état initial. 11 peut
arriver que, si on veut le faire passer de A 3 B d’une fagon

réversible, cela ne soit pas possible directement, mais
que cela soit possible indirectement.

488. 1l ne parait pas y avoir d’exemple ol 'on ne. puisse
employer ce procédé; s’il en existait on ne pourrall avon'la
valeur exacte de la variation dentrople, mais on pourralt
en trouver une limite inférieure.

8’il existait un chemin réversible AMB ( fig. 27) amenant
le systéme de A en B, nous aurions pour la variation d’en-

- So - ‘/A‘HBdQ

Si le chemin est réver51ble, c’est que les echanges de

tropie

chaleur intérieurs ne se font qu’entre éléments & la méme

dQ; _
f f T —°
et, par conséquent,

ssis [ [
AMB
Soit ANB un chemin irréversiblé qui fait également pas-

ser le systéme de A eun B. Le cycle fermé irréversible
ANBMA nous donne, d’aprés le n° 184, o

. f dTQ‘ <

température, d’ott

.
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f/;“dQe + (8,—8;) <o,

dQ
S, —$8 >f .22
' ° ANB T

On a donc une limite inférieure de la variation d'entropie

ou

ol encore

en calculant la valeur de l’imégralef 6—1,% pour un des

cycles irréversibles.

189. Nous pouvouns également généraliserle théoréme déja
démontré (122) pour un systéme de corps dont I'état est
défini par deux variables : Uentropie d’un systéme isolé va
toujours en augmentant.

En effet, si le systéme est isolé, il ne recoit rien de Vexté-
rieur et dQ,=o. Par conséquent, I'inégalité

s.—so>fdeQ°

Sj—“So >o0.

donne

190. Condition de possibilité d’'une transformation. —
Si I'on suppose uniforme la température du systéme 'inté-

grale f f % se réduit a f iTQ, cette intégrale, étant éten- '

due & tous les éléments duicycle déctit par le systéme; par
suite, I'inégalité du paragraphe précédent devient

8y — 8o f ii,’(,—)
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Pour une transformation infiniment petite nous avons donc

R<ds  ou dQ<Tds.

C’est une condition que doit nécessairement remplir un
phénoméne pour qu’il soit possible. Dans le cas ou le phé-
noméne est réversible cette copdition de possibilité devient

dQ =TdS.

494. Théoréme de Gibbs. — Cette condition peut étre
exprimée au moyen de fonctjons ca'ractéjtistiques de M. Mas-
sieu.. Mais les nouvelles conditions obtenues s’appliquent i
un moins grand nombre de phénoménes, car I'introduction
des fonctions.de M, Massjeu exige que la température T et
la pression p soient uniformes.

Prenons la fonction

H=TS —-U.
Nous en déduisons
dH —=TdS + SdT — dU
el 'par suite, en remp}aqant TdS par dQ,
dll > dQ + SdT — dU.
Or, d’aprés le principe de I'équivalence,
dQ =dU + Apdy.

11 vient douc, en portant cette valeur de dQ dans Vinéga-
Lité précédente,

dH > $dT + Ap dv.
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‘Telle est la nouvelle condition de possibilité d’'un phéno-
meéne.

Si nous supposons constante la température T et le vo-
lume spécifique ¢, nous avons
; , - dT —dv=0
et, par suite,
IOLAL- ST dH > o
pour-la condition de possibilité d’un phénoméne. Si ce phé-
noméne est réversible, dH est nul et alors H conserve la
méme valeur. ‘ o
" 'MM. Gibbs, von Helmholtz, Duhem ont fait usage de cette
fonction H' en y ’suppoSaﬁi T et'v constants; M. von Helm-
holtz 'a appélée énergie libre et a proposé égalem’ém de
lui donner le nom’ de-poténtiel kinétigue; M. Duhem la
nomme potentiel thermodynaniiqué a 'volu‘me-cbnstant;

c'est la dénomination la mieux justifiée.

492. Prenons mainterllantk la fonction _
H=TS —U—Ape=H—Apo.
Nous en tirons B |
dH'=dH-—Apde—Avdp.
8i nous remplagons dH par 8 dT +Ap dv, il vient
dH'>$ dT — Ao dp.

Cette nouvelle conilition de possibilité d’un phénoméne
se réduit a . :
di’ > o

quand la température et la pression demeurent constantes.
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La fonction H' croit donc pour un phénoméne irréversible
ou T et p conservent la méme valeur; elle ne varie pas
quand le phénoméne est réversible. M., Duhem appelle
celte fonction : potentiel thermodynamique a pression con-

stante.

193. Ainsi des inégalités démontrées aux paragraphes 4189,
191 et 492 il résulte que :

1° Quand le systéme est isolé I’entropie S va constam-
ment en croissant; ’ o

2°-Quand le systéme non isolé est tel que T et v restent
constants, c’est la fonction H qui croit; ,

3° Quand T et p restent constants, le systéme n’étant pas
isolé, la fonction H' augmente.

193 a. Remarque sur les cycles représentables géomé-
triquement. — Si parmi les variables qui définissent I'état
d’un systéme se trouvent le volume spécifique v et la pres-
sion p, et si cette derniére quantité posséde la méme valeur ‘
en iout point du systéme, on peut représenter les transfor-
mations du systéme par une courbe dont chaqﬁe point a
pour coordonnées p et ¢. Evidemment cette courbe ne dé-
finit pas complétement la maniére dont s’opére la trans-
formation puisque les autres variables peuvent, pour tout
point de _l.a‘ courbe, avoir des valeurs arbitraires. Mais si,

ce qui a lieu dans un grand nombre de cas; le travail exté-
rieur produit par le systéme a pour expression fp dv, ce

travail est, pour un cycle fermé, représenté par l'aire de ce
cycle.
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Suppesons ces- conditions remplies et admettons que le
systéme -décrive .une isotherme fermée et qu'un tel cycle
soit réversible, nous avons

ou, puisque T est conslant,.

:fdQ:o,.

or, d’aprés le principe de I'équivalence, le travail cxtérieur
produit par un systéme décrivant un cycle fermé est EQ. Il
est donc nul dans le cas qui nous occupe. Par conséquent
Iaire limitée par 'isotherme est nulle.

193 5. Deuxiéme méthode — Nous allons oblemr les
mémes résultats par une deuxréme méthode qun, je l'es-
pere, conmbuera 4 nous faire comprendre la nature des
1alsonnements thermodynamlques.

Le schema de ces raisonnements est touJours le méme.
» Un postulat nous apprend qu’il est lmpossxble de passer
‘de lélat A 3 l'état B (par exemple de faire passer de la
chaleur d'un corps froid sur un corps chaud). D’autre part,
lexpénence nous apprend que 'on peut passer de I'état A
areéat C et de \ état D a Pétat B, nous en concluons qu’il
>esl lmpossmle de passer de I’état C a Iétat D. Notre conclu-
sion vaut donc ce que valent nos prémisses qui sont d’une
part un poswlat (celui de Clausius), d’autre parl deux faits
-expérimentaux vérifiés avec une exaclitude plus ou moins
grande.
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193 c. On pourrait arriver aux mémes résultats. par une
autre voie, méme sans faire appel aux raisonnements du
Chapitre VII. Je me borneral, a4 ce sujet, 3 une rapide
esquisse. Considérons un systéme X dont la sitation soit
définie par un certain nombre de variables

L1y xzy ceey xny a’n+|-

Son U lénergie interne de ce systéme. $’il est 1so|e {ou
8i les autres systémes qui ont pu agir sur lui reviennent a
leur é1at primitif), on aura I’équation de I’énergie

U= const.

Si 'on se donne la valeur de U, on pourra s’en servir
pour éliminer 'une des variables @ et conserver seulement
les n premiéres (Zy, Xy, < .5 Ln).

" Cela posé, pour tous les systémes que Von a 3 étudier,
on peut-montrer que, étant donnés deux changements infi-
nitésimaux ‘inverses, le premier faisant passer le systéme
de la situation S

Lyy. Lyy o qesy Xp
4 la situation -
2+ day, .l',—i—-dx,, a: - dary,y

le second faisant passer de la seconde situation a la pre-
miére; ces deux changements étant d’ailleurs compatibles
avec léquation de. llénergie, I'un de ces deux chaugements
est possible, soit directement, soitl indiredtemem (au sens
du 487), l'autre changement, au confraire, est impossible,
au-moins directement., .. . ‘ o .

. 1.e premier changement- pourra étre caracleusé pat
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I'inégalité
(1) Xidx,—i—'x,dxg—f...+X,,d1',.,>o‘

(ou X;, X, ..., X, sont des fonctions convenablement
choisies des x), et I'autre changement par l'inégalité in-
verse.

Nous pourronsvappeler ds le premier'memhre de cette
'i‘négalité, sans préjuger si cette expression différentielle
est bien une différentielle exacte.

193 d. Considérons les variables  comme les coor-
données d’un point dans 'espace & n dimensions. Si Pon
congideére les vecteurs infiniment petits qui vont du
point (&, 24, ..., o,) au point (z, + dzy, ..., L, + dz,),
I'ensemble de ceux de ces vecteurs qui satisfont a I’'éga-
lité dS = o formera un élément infiniment petit de surface
dont le cenlre sera au point (x,, z,, ..., x,). Chacun des
points de l'espace sera le centre d’un semblable élément
que jappellerai un élément E.

Chaque point de 'espace représentera ainsi un des états
du systéme et les états successifs seront représentés par
une certaine trajectoire. En vertu de linégalité (1), ces
trajectoires ne pourront traverser les éléments E que dans
un sens. ’ ‘

Un élément E ayant son centre en A pourra étre regardé
comme plan; j'appellerai P(A) le plan indéfini correspon-
dant.- '

Si dS est une différentielle exacte, ces éléments E pour-
ront s’assembler de fagon & constituer un faisceau de sur-
faces, qui seront les surfaces S = const. 1l en est de méme
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si 'on a ~ -
dS =FdT,
F étant une fonction quelconqhe et dT une différentielle
exacte.

Dans ces conditions, il passera par chaque p'oim A de
I’espace une surface ayant pour plan tangent P(A).

Mais il peut se faire également qu’il existe une ou plu-
-sieurs surfaces isolédes, telles qu’en chaque point A de ces
surfaces le plan tangent soit P (A), satisfaisant, par con-
séquent, 4 I'équation dS =o; c’est ce qui arriverait, par
exemple, si I'on avait

dS = dW 4 W dV,

¥ étant une fonction quelcongue et dV une expression
différentielle non exacte. Pour W — o, on aurait

dS = dW,

et la surface W — o satisferait & ’équation dS =o.

193 e. Cela posé, supposons que I'on sache d’une maniére
quelconque qu’il est impossible d’aller du point A au point
infiniment voisin B, et cela soit directement, soit indirec-
tement, Cest ce qui arrivera par exemple en vertu de
P'axiome de Clausius. Je dis alors que par le point A pas-
sera une surface satisfaisant A I'équation dS —o. Et, en
effet, parmi les points de 'espace, il y en aura ol ’on peut
aller en partant du point A et d’autres ou l'on ne pourra
pas aller. Ces points détermineront deux régions de 'es-
pace, qui seront séparées par une certaine surface. Comme
il'y a dauns une des régions, comme dans I'autre, des points
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infiniment voisins de A (par exemple B), celte surface
devra passer par le point A, U eést clair, d’ailleurs, que le
plan tangent a cette surface ne peut étre que P(A).

193 /. Pour aller plus loin, il faut envisager deux sys-
témes X, et I,, et le systéme 2 formné par leur ensemble.
Soient z,, s, ..., x, les variables qui définissent l'état
de X,, et yy, ¥1, ..., yp celles qui définissent I'état de 2,,

L’état de Z, sera représenté par un_ certain point A,
de l'espace R, 3 n dimensions (zy, &y, ..., Ta); celui
de Z; par un certain point A, de I'espace R, & p dimen-
sions (y1, Yo ...>¥p) €t celui de 2 par le point cor-
respondant A, A, de l;espaéé R,+p & n+ p dimen-
SI0NS (Xgy Bay oo oy T Vs Yas oo v Yp)e . -

Nous supposerons que ‘les deux systémes sont indépen-
dants, c'est-3-dire que, si l'un d’eux varie sans que l'autre
varie, les lois des varialions du premier ne dépendront pas
de I'étal du second. Cette condition est pratiquement réa-
lisée dans un trés grand nombre de cas.

“On-auraalors oo

dS = F,dS, + F, dS,,

das, dS,, dS, sont les premiers. membres de 'inégalité (1),
en ce qui concerne respectivement 2, X, Z,; quant a F,
et F,, ce sont deux fonctions quelconques positives, - -
Cela. posé, le systéme 2, sera un systéme donné quel-
conque et le point A, correspondra & un état donné guel-
conque de ce systéme. Je choisirai le systéme auxiliaire X,
et le point A,, de telle fagon qu'il y ait un poini B, trés
voisin de A, et oft I'on ne puisse aller de A, quand le sys-
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Leme 2, est isolé (il suffira par exemple, en vertu de 'axiome
de Clausius, de consmuer le systéme 2, avec deux corps de
"température différente). . :

Alors on ne pourra aller du point A A, au pomt A,B,,
et, en vertu du paragraphe précédent, il y aura dans l'es-
pace Ry, une surface @ passant par le point A, A, et satis-
faisant & I’éguation dS = e, . . .

On en conclut qu’il existe dans l’espace R, une surface Q,
passant par le point A, et satisfaisant 3 ’équalion dS,= o,
Il suffit, en effet, pour trouver I'équation de la surface @,
de faire dans celle de la surface ®

¥1== const,, Ya==const,, ceey yp=const,

Mais le point A, est un point quelcongue; donc, par tous

les points de l'espace R, passe une surface satisfaisant
3 'd8;=o. Cela veut dire que dS, est une dlﬂ'érenuelie

exacte, ou tout au moins que l'on a ’

de., = F, dT,,

dT, étant une différentielle exacte, et la fonction F, étant
positive dans la reglon env:sagée. Alors on peut remplacer
mégahté
d8,>o0
par linégalité .
dT,>o,
c’est-d-dire faire jouer AT, le rdle de S,; en d’autres termes,
on peut, sans restreindre le généralité, supposer que das,
est une différentielle exacte.
Dans ce raisonnement, I'hypothése de la possibilité de
certains changeméms joue un role essenticl conformément
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2 la remarque du paragraphe 193 4. Le raisonnement serait
en défaut, en effet, si on ne supposait pas que de deux
changements inverses portant sur le systéme total Z, I'un
est toujours possible directement ou indirectement.

- 493 g. Nous venons de voir que l'on peut toujours re-
garder dS comme une différentielle exacte, et la fonction 8
est alors ce qu'on appelle 'entropie. Mais cela ne suffit pas
encore pour définir I’entropie. En effet, on pourrait rem-
placer S par une fonction quelconque ¢(S) pourvu qu’elle
fat croissante; car I'inégalité

de=¢'(8)ad3 >0
équivautl évidemment a
| dS > o.
Pour corr;pléter. la définition de ’entropie, il faut envi-

sager un systéme total 2 formé de trois systémes partiels
indépendants (au sens de 193 1) X, 2,, 2;; on a alors

dS - Fl d81 -+ Fg’ng -+ F3 ds,,

S, 8y, S,, S, étant les entropies des quatre systémes, F,, F,
et F; des fonctions quelconques positives.
Comme dS, dS,, dS,, dS, doivent étre des différentielles
© exactes, on aura o
S= ‘?(Sh S, Ss),
de _ do A9

F,:Z’s‘;, Fz-——'-" Zi-s,';a F;:dss

_Supposons maintenant que le systiéme X, demeure inva-
riable, de sorte que d8; = o. '
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L’inégalité (1) s’écrit alors
F, dS;+ F,dS,> o.
Comme, en vertu de Pindépendance des systémes, les
propriétés du systéme 2 — 2, ne doivent pas dépendre de

Pétat du systéme Z,, le rapport Ll ne dépendra pas de S;.

F,
Posons alors
F—l =%, E‘z- = eV, '& = e¥3;
F, F, F,

X,, X, X; seront des fonctions de S,, S,, S; qui devront
satisfaire & I’équation '

(2) * X|+x:+xa:0,

et, puisque —F—‘, par exemple, est indépendant de S;, aux
2

conditions

(3) dX, _dX, _ dX,

s, T ds,  ds; - °

En différentiant (2) par vapport & 8, et & 8, et tenant
compte de (3), il vient

=X, o
ds, dS;, —
et de méme
a*X, d*X,

48,48, — a8, ds,

ce qui'nous permet d’écrire
CXo=a(8:) —0s(Ss),

(4) ) . Xz:‘{‘s(ss)v“' 91(51_)', ‘
Xa:‘{h(sx)'—f 93(5:)- )
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Substituant dans (2), on voit que I'on doit avoir
$i=0, =06y =0,
8 dans les équ;'atidns (4) nous fégﬁnblagdns les X par leurs
valeurs et les § pér les {, elles peuvent s’écrire
logh q»,__logF, gp,;_—lo'g.f',;‘q;,,
de sorte qu ‘on a finalement

dS = (% dS, + e¥s dS, + e¥: dS,),’

® étant une fonction quelconque positive.
Comme ¢,, $,, ¢, ne dépendent respéctivement que
de 8, S,, S,, nous pourrons poser

sqsfe-‘v;ds.,'-’ S = [ehdS;, 8,=[ehds,

S$'—= 8 dSs.

On aura alors .
S’ =8+ 8+ 8.~

Comme les inégalités

dS>o0, dS,>o, 'ds,>o, d8,> o

sont respectivement éqmvalemes aux megahtes
dsS'>o, ds, > Q,r" d8y > q, - dS,>o,

on peut faire jouer le role d’entropie a 8/, 8, 8,, 8;.

On peut donc particulariser la déﬁniu’ok del ‘entropie de
telle facon que l"’enfr‘opfe du;isystéme’? total soit la somme
des entropies des systémes pdrtiels tofites les fois que ces
systémes sont indépendants, - '

/.
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Ainsi se trouve complétée la définition de I'entropie et
Von voit que ce complément se rattache & la possibilité

d’associer un systéme quelconque i d’autres systémes indé-
pendants. .

193 /.. Nous appellerons source un systéme dont I'état ne
dépend que d’une seule variable et dont la masse est assez
grande pour qu 1l n éprouve jamais que de pemes vana-—
tions. "

Supposons que le systéme total 3 co‘mpsrenne, associés &
un systéme quelconque 2, d'autresﬂsystémes parliels 5.3,
qui puissent é&tre regardés comme des sources. Soient alors
U,, U, les énergies internes des systémes Z,, 2;, et S,, S,
leurs entropies; nous poserons

dS,=— t—iT'U:’-: dS‘;:—-—%,

-— dU, et — dU, représentent évidemment les quaatités de
chaleur empruntées aux deux sources. gue nous appelle-
rons dQ, et dQ,, de sorte que

~ On aura alors
as = dS,+ @l + 5’2—'
2 3

S
Y [ . t s

Supposons que le systéme 2, ne varie pas; alors lmega—
lné dS > o deviendra .

dQ: dQs
T, T, >o,

L]
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ce qui veut dire que la condition pour que le sysiéme I,
puisse céder de la chaleur a X;, c’est que

T,> Ts.

-Cela nous apprend que T, et T; ne sont autre chose que
la température des deux sources X, et X,.

193 i. Supposons maintenant que le systéme I, revienne

a son état primitif aprés avoir parcouru un cycle complet;

comme S devra avoir augmenté et que S; sera revenu a sa
valeur premiére, on devra avoir
Q, Qs

7 o >0,
T, 3

et s’il y a plus de deux sources

VQ? Qa On

—_— b = ..+ = > 0.
r, T, '

C'est le théoréme du paragraphe 180; on continuerait le
raisonnement comme aux paragraphes 184 et suivants.

1l ne sera peut-étre pas inutile d’avoir ainsi présenté sous
deux formes différentes les considérations exposées dans ce
Chapitre; on comprendra mieux ainsi la véritable nature
des raisonnements thermodynamiques, et la portée des
hypothéses sur lesquelles ils reposent. "

193 /. Quelle est la dépense minima de travail a faire
pour amener un corps ou un systéme d’un état A dans un
autre état B; par exemple, pour transformer Uair gazeux
en air liquide, ou pour séparer l’azote et l'oxygéne de
Uair? o

]
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Soient ¢S l'accroissement de I’entropie et U l'aceroisse-
ment de I'énergie interne du corps ou du systéme considéré
quand i] passe de I'état A & I'état B.

Supposons que I'on dispose d’une source chaude a la
température T, et d’'une source froide a la température T,.
Soient Q, la quantité de chaleur empruntée a la source
chaude et Q, celle qui est cédée a la source froide. I} s’agit
de calculer le minimum de Q,.

Nous aurons d’abord

QI— 2:T+6U)

7 représentant le travail produit (tout est supposé exprimé
en joules); 7 doit étre posilif, sans quoi, il faudrait une
dépense supplémentaire de travail, outre la dépense de
chaleur Q,; on a done

Q— Q,>dU.

D’autre part, 'équation de 'entropie nous donne

Q. Q,
_'F_T—<6S

On tire de la
I ] oU
—_—— T as,
(21<Iw2 T > > +

ce qui donne le minimum de Q.

Supposons que, au lieu d’'une source chaude, on dispose
d’'une certaine provision de travail sous la forme méca-
nique; on pourra considérer celte provision comme équi-
valent & une source chaude de température infinie. Il suffit

donc de faire T, == et de regarder Q, comme représentant

P, 17
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la dépense de travail; il vient ainsi

.

Q,> 90U + T, dS.

Si I'on veut appliquer cette formule aux deux exemples
que nous citions tout & I’heure, il faut calculer pour ces
exemples oU et 88, 8’il s’agit de faire passer l'air de la’
température ordinaire &4 une température voisine de cefle
de l'air liquide, on trouvera le calcul au Chapitre IX; si
Fon veut examiner le cas de la liguéfaction de Vair, on
emploiera des formules analogues & celles du Chapitre XI.
8’il s’agit de séparer les éléments d’'un mélange gazeux,
on trouvera le calcul plus loin, an Chapitre XV, et parti-
culiérement aux numéros 259, 265 et suivants.



- CHAPITRE XIIL

CHANGEMENTS D’ETAT.

194, Changements d’état d'un corps. — La fusion et la
vaporisation d’un corps, ainsi que les phénomenes inverses,
peuvent s’effectuer d’une maniére réversible ou d’'une ma-
niére irréversible.

La transformation: d’un corps solide en un corps liquide,
a la température de fusion de ce corps dans les conditions
de I’expérience, est un phénoméne réversible. 1l en résulte
nécessairement que la solidification du liquide, A cette
méme température, est aussi un phénoméne réversible.
Mais si, le liquide étant amené a I’état de surfusion, on pro-
voque sa solidification immédiate par un moyen quelconque,
la' transformation cesse d’étre réversible; il est en effet
impossible d’effectuer la transformation inverse en faisant
passer le corps par tous les élats intermédiaires qu’il a pris
dans sa solidification .puisqu’on ne peut fondre un solide a
une température inférieure i celle de sa fusion normale.
On pourrait concevoir qu’un corps, restant solide au-dessus
de son point de fusion, passe brusquement de cel état solide
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instable & P'état liquide; ce serait encore un phénoméne
irréversible,

Le passage de [’état liquide a I’état v;\peur est réversible
si la pression de la vapeur qui surmonte le liquide posséde
la valeur maximum qu’elle peut prendre & la température
de la transformation. 1l est irréversible si le liguide étant
amené a une température supérieure a celle qui correspond
4 la pression qui le surmonte on en provoque la vaporisa-
tion. C’est ce qui a lieu quand, au moyen d’'une bulle de
gaz, on produit la vaporisation d’un liquide surchauffé.

Quand on enléve de la chaleur & une vapeur saturée,
généralement ceile-ci se condense sans que la pression ni
la température varient; la transformation est alors réver-
sible. Mais quand la vapeur est parfaitement dépouillée de
poussiéres solides il arrive quelquefois que la température
s’abaisse sans que la pression varie et sans que la vapeur
saturée se condense; la pression de la vapeur est alors plus
grande que la pression maximum correspondant & sa tem-
pérature. Cette vapeur se trouve donc dans un état instable,
et eile se condense brusquement par diverses causes. Dans
ces conditions le phénoméne de la liquéfaction est irréver-
sible.

Le passage immédiat de J'état solide a I’état de vapeur est
réversible; il en est de méme du passage inverse. Ma'is,
comme dans la vaporisation des liquides et la liquéfaction
des vapeurs, on pourrait concevoir des conditions telles que
ce changement d’élat soit irréversible.

195. Application des principes de la Thermodynamique.
— Considérons un quelconque de ces changements d’état
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el, uniquement pour fixer les idées, car nos raisonnements
s’appliquent & tous, admettons qu'il s’agisse de la transfor-
mation d’un liquide en vapeur.

L’état de la vapeur et celui du liquide, considérés isolé-
ment, sont définis par trois éléments p, v et T entre lesquels
existe une relation. D’ailleurs, le liquide et la vapeur étant
au contact, leur température et leur pression ont ila méme
valeur; la pression et la température du systéme sont donc
uniformes. Les volumes spécifiques de la vapeur et du
liquide ont, au contraire, des valeurs différentes; appelons
vy le volume spécifique de la vapeur et ¢, celui du liquide.
Si nous supposons que la masse totlale du systéme formé
par le corps est égale a unité et que m soit la masse de la
vapeur, celle du liquide est 1 —m, et nous avons la rela-

tion
(1) v L v=mo 4 (1— m)p,.

Deux variables indépendantes suffisant pour définir com-
plétement I’état du liquide et celui de la vapeur considérés
" séparément, ces corps sont de la nature de ceux auxquels
s’appliquent les théorémes du Chapitre VIll; I’énergie in-
terne et I’entropie du liquide sont donc parfaitement dé-
finies, du moins & une constante prés. Appelons U, et S, ces
quantités Jorsqu’il s’agit de la vapeur, et désignons-les
par U, et S, lorsque nous considérons le liquide. Si dQ, est
la quantité de chaleur qu’absorbe l'unité de masse de la
vapeur dans une transformation élémentaire et dQ, celle
qu’absorbe I'unité de masse du liquide dans une transfor-
mation élémentaire quelconque, nous aurons, d’aprés le
principe de l’équivalence et celui de Carnot : pour la



262 . THERMODYNAMIQUE.
vapeur,

dU,=dQ,— Apdv,,  dS,= d—%’,

et pour le liquide,

dUy=dQ,— Apde,  ds,=“2.

196. Energie interne du systéme formé par un corps’f
sous deux états. — 1l parait naturel d’admettre que I'é-
nergie interne U du systéme formé par la vapeur et le
liquide est égale a la somme des énergies internes des
mésses de vapeur et de liquide. Nous avoné, en faisar;t cette
hypothése, ,
‘ U=mU;+ (1—m)U,.

Mais, quoique naturelle, celte hypothése a besoin d’étre
confirmée. Cherchons donc directement I’expression de
I'énergie interne du systéme. ' o
- L’état de ce systéme dépend de quatre quantités p, ¢, T
et m. Mais, parsuite des relations fondamentales qui lient ¢,
et¢, & petdT,etdelarelation ‘(x) qui donne ¢ en fonction
de v, et de «,, Lrois d’entre elles suffisent pour déterminer
complétement I’état du systéme. Choisissons p, T et m.

8i, dans une transformation élémentaire, ces trois gquan-
tités varient en méme lemps, la quaniilé de chaleur ab-
sorbée par le systéme se composera : 1° de la quantité m dQ,
absorbée par la vapeur quand p et T varient, m restant con-
stant; a° de la quantité (1 — m) dQ, absorbée par le liquide
dans les mémes conditions; 3° de la quantité nécessaire
pout vaporiser une masse dm de liquide, quantité ayant
pour valeur L dm, L désighant la chaleur latente de vapori-



CHANGEMENTS D’ETAT. 263

sation. Nous avons donc
(2) dQ =mdQ,+ (1—m) dQ,+ L-dm,

ou, en remplacant dQ, et dQ, par les valeurs tirées des rela-
tions qui donneni les différentielles des énergies internes
de la vapeur et du liquide,

dQ=m(dU,+ Apde) + (1 — m)(dUs+ Apav,) + Ldm.

Il en résulte pour 'expression de la différentielle dU de
P’énergie interne du systéme,

dU = dQ — Ap do = m dU,+ (1 — m) dU,+ Ldm
4+ Ap[mdo,+ (1 — m)dv,—dv].

Mais'd'aprés la relation (1),
Cdv=mdv,4+ (1 —m)dvy+ dm(vi— 9,)}

par conséquent,
(3) dU=mdU;+ (1—m)dU,+ Ldm — Apdm(v,— ¢,).

197. Dans les cas ol m reste constant, cette égalilé se
réduit &

dU =m dU;+ (1 — m) dU,.
Nous en tirons par intégration,

U=mU;4+ (11— m)U;+ ¢(m),

¢(m) désignant une fonction quelconque de m, introduite
par l'intégration, et dont nous allons chercher la valeur.
Pour cela, supposons qu'on fasse varier simultanément
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les trois variables de maniére que V’énergie interne U, de la
vapeur‘et I’énergie interne U, du liquide demeurent con-
stantes. Alors, d’aprés la derniére expression de U, la varia-
tion de cette fonction est

dU = ¢'(m)dm.
D’aprés 'expression (3) cette variation est
dU =[L — A p(v{— vs)] dm.
Par conséquent
@' (m)=L—Ap(e,—vy).

Or il est naturel d’admettre que L ne dépend pas de m,
c’est-a-dire de la quantité de vapeur qui se trouve au-dessus
du liquide. 8’il en est ainsi la fonclion ¢/(m) est indépen-
dante de m, et, par suite, la fonction ¢(m) est de la forme

p(m)=am+f3,
ou, en écrivant le second membre d’'une autre maniére,
e(m)=(a+P)m~+ B(1—m).

Portons cette valeur de ¢(m) dans I’expression de U;
nous obtenons

U=m(U;+ a+B) + (1—m)(Uy,+ B),

ou plus simplement, puisque U, et U, ne sont connus qu’a
une constante prés,

4) . U=mU;+ (1 — m)U,.

L’hypothése faite en commencant était donc exacte.
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198. Entropie du systéme. — On démontre d’une maniére
analogue que I’entropie S du systéme est la somme de I'en-
tropie m$8, de la vapeur et de I’entropie (1 — m)8, du li-
quide qui constituent le systéme.

Dans I'expression (2) de dQ, remplagons dQ, et 4Q, par
les valeurs TdS, et T dS, déduites des relations qui défi-
nissent les entropies 8, et S;: nous obtenons

dQ=mTdS,+~(1—m)T dS,+ Ldm,
et par suite :

(5) dS:gg-:—_mdS,—i—(l——m)dS,—}-I—‘ﬂ-
T T
Pour une transformation s’effectuant sans variation de m,

il vient
dS =mdS;+ (1 — m)dS,,

d’oll nous tirons par intégration
S=m8 + (1— m)8:+ ¢(m).

D’aprés cette expression la variation d’entropie, résultant
d’une transformation pour laguelle 8, et S, demeurent con-

stants, est )
dS = ¢'(m)dm;

d’apreés la relation (5) elle a aussi pour valeur

ds = 1‘-‘—,;-’!};

nous avons donc :

0'(m)=-l,i'-:
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La chaleur latente de vaporisation étant supposée indé-
pendante de m, la fonction ¢ (m) est de la forme

e(m)=am+ 3= (a+ B)m+B(1—m).

Si nous portons cette valeur dans 'expression de S, nous

obtenons, S, et 8, n’étant connus qu’'a une constante pres,
(6) S=mS8;+ (1—m)8,.

- 199. Expression des fonctions caractéristiques de M. Mas-
sieu. — Considérons la premiére

H=TS - U,

Si nous remplagons U et S par leurs valeurs (4) et (6),
nous avons .

ﬁ =m(1T8,—U,) + (1 — m)(TS,— U,).

Or pour la vapeur et le liquide les fonctions caractéris-
tiqueé sont

H,=TS,— U, H,=TS,— Uy;
par conséquent nous pouvons écrire
H=mH,+ (1 — m-)Hz.
Nous verrions aﬁssi facilement que la fonction
H'=TS — U— Apo |

se déduit de la méme facon des fonctions H; et H, de la
vapeur et du liquide, on a :

H=mH,+ (r— m)H;.
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--200. Gondition de possibilité d'un changement d’état. —
Au numéro 194, nous avons montré que, si I’on considére
{a fonetion H', la condition de possihilité d’'une transfor-
mation est exprimée par l'inégalité

dH'> S dT — Av dp;

s’il y a égalité la transformation peut s’effectuer d’'une ma-
niére réversible.
Nous avons ici

dH'= m dH| + (1 — m) dH, +- dm (H| — H)).
Si nous remplagons dH/, et d.H; par leurs valeurs,
dH, =8, dT—'—A'v.dp, dH, =8,dT — Av,dp,
nous obtenons

CdH' =[mS,;+ (1—m)8,1dT — A[mo,+ (1 — m)v, | dp
- -+ dm‘(VH’l —Hy), -
(;u, ’en tenant comple des relations (1) et (65,
dH'=8dT — Avdp + dm(H| — H)).
La condition de possibilité devient donc
SdT — Ap dv +dm(H,— H},)>S dT —Apdy,

ou ‘
' dm(H, — H.) > o.

Quand il y a vaporisation du liquide, dm est positif; par
conséquent pour que cette transformation puisse s’effectuer
il faut que H) soit plus grand que Hj. Si, au contraire, cette



268 THERMODYNAMIQUE.

derniére quantité était plus grande que la premiére ¢’est une
condensation de la vapéur qui se produirait, puisque la con-
dition de possibilité ne serait alors satisfaite que pour dm’
négatif. . _

Pour que la transformation soit réversible H} et H, doivent
étre égaux.

201. Théoréme du triple point. — Les fonctions carac-
téristiques HY et H,, étant fonction de p et T, la condition de
réversibilité

(7) H,=H,

donne une relation entre ces variables. Comme la transfor-
mation d’un liguide en vapeur n’est réversible que si la
vapeur pos>séde la tension maximum correspondant & la
température T, la valeur de p qui entre dans la relation est
précisément cette tension maximum. Par suite la relation
H; = H, n’est autre que celle qui donne la tension maxi-
mum d’une vapeur en fonction de la température.

Les formules établies précédemment étant applicables &
tous les changements d’état, la condition de réversibilité
des phénoménes de fusion est

(8) : H,=H;,

H, désignant la fonction caractéristique H' pour le corps
solide; elle représente la fonction qui lie la température de
fusion et la pression,

Pour les mémes raisons la condition de réversibilité de la
transformation qui améne un corps de l’état solide a I’état
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de vapeur est
(9) Hi=H};

elle fournit la relation qui lie la température ala tension de
vapeur du solide.

I1 existe en général un systéme de valeurs de p et T satis-
faisant aux relations (7) et (9); pour ce systéme on a donc

H,=H,=Hj;

par conséquent la relation (8) est en méme temps satisfaite.
Si nous représentons ces relations par des courbes en pre-
nant p et T pour coordonnées, ces trois courbes se coupent
en un méme point. Ainsi les courbes des tensions de vapeurs
d’un méme corps a Uétat solide et a Uétat liguide se coupent
en un pointde la ligne de fusion. C’estle théoréme du triple
point.

202. Inégalité des tensions de la vapeur émise & la méme
température & 1'état solide et & I'état liqguide. — Les rela~
tions (7) et (9) permettent de démontrer facilement qu'un
méme corps a I'état solide et a I’état de liquide surfondu a
la méme température, a des tensions de vapeur différentes.

En effet si ’égalité avait lieu, les deux relations (7) et (9)
se confondraient et I’on aurait

H, =H,=H,.

La relation (8) se trouverait donc satisfaite pour les
mémes valeurs des variables et, par suite, les trois courbes
représentant ces relations se confondraient. Oril est prouvé
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cxpérimentalement que la courbe des tensions de vapeur
d’un liquide est différente de la courbe de fusion de ce
corps. '

203. Influence de la pression sur la température 4 la-
quelle s’effectue un changement d'état réversible. —
Supposons, par exemple, que la transformation considérée
soit la vaporisation d’'un liquide sous la pression de sa va-
peur saturée. La transformation étant réversible, on a

Hlﬂ =H;,
et par suite
d, = df,,
ou, en remplacant ces différentielles par leurs valeurs,
 8,dT — Ao, dp=S8,dT — Av,dp.

De cette relation nous tirons

dal  , v;— v,
& A8,

Cherchons 8, — §,. De la valeur
S=m8,+(1—m)S,
de I’entropie du systeme noué déduisons
dS =mdS,+ (1— m) dS, + dm (8, — 8,).

Or, nous avons trouvé (4198)

Ldm
T

dS=mdS,+ (1 —m)dSs+
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Nous avons donc par identification

Sl_" 52:

==

s\l

Il en résulte pour la valeur de %,

g} = A(91—-3) %

204. Le volume spécifique ¢, de la vapeur étant plus grand
que le volume spécifique ¢, du liguide, le second membre
de cette égalité est positif. La température d’ébullition d’un
liquide doitl donc croitre avec la pression.

La méme formule est applicable au phénoméne de la fu~
sion; la signification des lettres est seule changée, L est
alors la chaleur latente de fusion, ¢, le volume spécifique
du liquide, ¢, celui du solide. La densité d’un corps a I’état
liquide étant généralement plus petite que I'état solide, v,
est plus grand que ¢, et la température de fusion doit
s’élever quand on augmente la pression. Pour 'eau et les
quelques corps qui diminuent de volume en fondant, v, est
plus petit que v, et ces corps doivent fondre & une tempé-
rature d’autant plus basse que la pression est plus élevée.

L’expérience a confirmé ces diverses conséquences. La
tension maximum de la vapeur émise par un liquide ou un
solide augmente avec la température. M. Bunsen a constaté
que la température de fusion du blanc de baleine et de la
paraffine, qui augmentent de volume en fondant, croft en
méme temps que la pression. L’abaissement de la tempéra-
ture de fusion de la glace quand on éléve la pression a été



272 THERMODYNAMIQUE.

mise en évidence par M. James Thomson et par M. Mousson.
M. James Thomson est méme parvenu & déterminer la va-
leur de cette température pour diverses pressions; les
nombres qu’il a trouvés présentent un accord trés satisfai-
sant avec ceux déduits de la formule : ainsi ’expérience a
donné — 0°,059 et — 0°,129 pour les températures de fusion
sous les pressions de 82t= et de 162t=,8; la formule conduit

aux valeurs —o0°,061 et —0°,126 pour les mémes pressions.

205. Remarque sur la relation qui lie la température et
la pression dans un changement d’'état réversible. —
Puisque la température et la pression sont, dans un chan-
gement d’élat réversible, liées par 'une des relations (7),
(8) ou (9), il semble qu’il serait facile de vérifier leur exac-
titude en les comparant avec les relations données par I’ex-
périence, en comparant la relation (7), par exemple, avec
celles qui, d’aprés les expériences de Regnault, donnent la
tension maximum d’une vapeur en fonction de la tempéra-
ture. En réalité, cette comparaison est impossible.

En effet 'entropie et I'énergie interne d’une vapeur, qui
figurent dans I’expression de la fonction H), ne sont con-
nues qu'a une constante arbitraire prés. Si donc S, et U,
représentent ces quantités, S, + o, et U, + 3, les représen-
teront également bien, «, et 3, étant deux constantes arbi-
traires. La fonction H| ayant pour expression

H =713, —U,— Apy,
elle devient
H+a,T—B,

lorsqu’on prend les derniéres expressions de I'entropie et
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de l'é-nergie interne du liquide. Pour des raisons semblables
la fonction Hj contient deux constantes arbitraires et nous
pouvons l'écrire

H, + o, T — B,.

La relation (7) devient alors

H,+o,T — 3, =H;, + 2, T — B,

ou
H+oaT —3 =Hj,
en posant

ay— = et B1—B:=2B.

Cette nouvelle relation contenant deux constantes arbi-
traires ne peut donc donner la loi de la variation des ten-
sions de vapeurs avec la température. L'expérience seule
permet de trouver cette loi.

206. Formule de Clausius. — Toutefois, M. Yan der Walls
et, un peu plus tard, Clausius ont pu, en modifiant les hypo-
théses de Bernoulli sur la constitulion moléculaire des gaz,
trouver dans ce cas la signification de ces constantes. De ces
recherches, ces savants ont déduit la relation qui lie les
variables p, v et T dans le eas des gaz. La relation donnée
par Clausius est

RT &
v—a T(v+B)E

p:

Nous avons déja dit que, d’aprés les calculs de M. Sarrau,
elle rend parfaitement compte des résultats expérimentaux

fournis par I'étude de la compressibilité et de la dilatation
P. 18
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des gaz, et nous avons montré qu’elle s’accorde avec les
conséquences des expériences de Joule et sir W. Thomson.

Mais certaines expériences semblent prouver que les
changements d’état sont des transformations contlinues,
qu’il y a, en particulier, continuité dans les phénomeénes
qui font passer un corps de I’état liquide a 1’état de vapeur.
Clausius suppose qu’il en est bien ainsi et admet que cette
continuité se retrouve dans les relalions qui expriment les
‘propriétés physiques du corps sous ses divers états. De la,
il résulte que la formule précédente, applicable aux gaz et
aux vapeurs, doit I'étre aussi aux liquides dans le voisinage
du point d’ébulilition. Cette extension de la formule conduit
a4 quelques conséquences intéressantes que nous allons
examiner. Elles permelttent en effet de donner une explica-
tion plausible des phénoménes observés dans les célébres
expériences d’Andrews.

207. Supposons T constant et construisons la courbe
représentant Iisotherme en prenant ¢ pour abscisse et p
pour ordonnée.

Pour les valeurs positives de la pression, ¢ est, d’aprés Ja
formule, nécessairement plus grand que «; il suffit donc de
faire varier ¢ depuis « jusqu'a I'infini. Cette derniére valeur
donne p—o.

Les valeurs maxima et minima de p sonl données par
I’équation 4

RT 2 .
(v—a)r T(e+B)yP

[o]

obtenue en égalant &.zéro la dérivée de p par rapport a .
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Celte équation peut s’écrire
(1) RT(0+§)3—2TP'-(V—<1)2:0;

elle est du troisiéme degré en v. Pour v = a et.pour v =
son premier membre est posilif; par conséquent, entre ces
limites cette équation posséde un nombre pair de racines,
2 ou o. Deux cas peuvent donc se présenter.

 208. Lorsque la température T est trés grande le pre-
mier terme de I’équation précédente I'est aussi; le second

Fig. 28.

(V]

2 . N . .
—-Tﬁ(v — a)? est au contraire trés petit. Par conséquent, pour

toutes les valeurs de ¢ comprises entre a et « le premier
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membre de I'équation conserve le signe de son premier
terme et le nombre de racines comprises entre ces limites
est zéro. Alors la pression ne présente ni maximum ni
minimum, et la courbe isotherme est de la forme repré-
sentée en HK dans la figure 28.

8i, au contraire, la valeur de T est petite, le coefficient :l‘ﬁ
du second terme de ’équation est grand. Ce terme donne
donc son signe au premier membre de I'équation pour des
valeurs de ¢ suffisamment éloignées de «. Le premier
membre est alors négatif et, par suite, de signe contraire
aux valeurs qu’il prend aux limites. C’est donc dans ce cas
que nous aurons deux racines entre ces limites. A V'une

correspond un maximum D et & 'autre un minimum C;
ACDB est alors la courbe isotherme.

209. Le cas intermédiaire est celui pourlequel I'équation
présente une racine double. La température correspondante
s’obtiendra en éliminant ¢ entre cetle équation et celle que
I'on obtient en égalant & zéro la dérivée du premier membre.

Cette derniére est
3Rﬂv+ﬁ?—4%“—aﬁ:m
nous en déduisons

(v+B)¥_ by
v—oa  3RI?

(2)

L’équation (1) nous donne

(v +B)P _ 2p
(v —a) — RTY
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et, en divisant les deux membres de cette égalité par chacun
des membres de la précédente, nous obtenons
v+B __ 3

(3) v—oa 2
La division de la relation (2) par la relation (3) fournit
I’égalité '

8p

v+ B = Q—R-F,

et alors la relation (3) donne

Retranchons membre 4 membre cette derniére égalité de
la précédente; il vient '

8p
d+ﬁ=m)

d’olt nous tirons pour la valeur de T

*‘/8 P
=V % RGrp

Celte température est appelée la température critique;
Pisotherme qui lui correspond est représentée en EFG. Elle
présente un point d’inflexion 3 tangente horizontale au
point F pour lequel ¢ est égal a la racine double de I'équa-
tion (1). Ce point F.est le point critique.

210. 8i nous examinons ces courbes, nous constatons que
celles qui correspondent aux températures plus élevées que
la température critique ne peuvent &tre coupées en plus
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d’un point par une paralléle a I'axe des ¢; pour une lempé-
rature et une pression déterminées, le volume spécifique
ne posséde donc qu’'une seule valeur. II en résulte que le
corps ne peut exister que sous un seul état a cette tempé-
rature, car, s’il poavait prendre I’état gazeux et l’étatliquide,
il posséderait pour la méme pression (la tension maximum
de vapeur) deux volumes spécifiques différents. D’ailleurs,
par raison de continuité, cel état est le méme pour toutes
les températures au-dessus de la température critique;
c’est donc l'état gazeux, puisque, pour des températures
suffisamment élevées, tout corps est & I’état de gaz.

Les courbes, telles que ACDB, qui correspondent aux
températures inférieures a la température critique, peuvent
&tre coupées en trois points M,, « et M, par une paralléle
4 Ov; le volume spécifique du corps peut donc avoir trois
valeurs différentes.

Deux d’entre elles correspondent & I'état liquide et a V'état
de vapeur; le volume spécifique du corps sous ce dernier
état étant plus grand que lorsqu’il est liquide, le corps doit
é&tre liquide en M; et en vapeur en M,. La portion M, A de la
courbe pour laquelle le volume spécifique est plus petit
qu’en M, doit correspondre a l'état liquide; pour la por-
tion M; B le corps doit étre en vapeur, puisque ie volume
spécifique est alors plus grand qu’en M,.

La formule de Clausius concorde donc assez bien avec les
résultats des expériences d’Andrews, qui d’ailledrs sont
antérieures aux recherches théoriques de Clausius; elle
indique l'exislence d’une température au-dessus de laquelle
il est impossible de Iiduéﬁer une vapeur. queile que soit la
compression,
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211. Mais la forme des courbes, pour les températures
inférieures & la température critique, différe de celle que
I'on obtient par I'expérience. En effet, au moment de la
vaporisation du liguide, la pression conserve la méme valeur
pendant toute la durée de la vaporisation; la courbe relative
a I'état liquide se raccorde donc par une droite paralléle

2 Ov avec la courbe relative a I'état gazeux. Par cotiséquent,

si M; M, correspond & la tension maximum de la vapeur pour
la température de I'isotherme considérée, la loi expérimen-
tale qui lie la pression au volume est représentée par

AM,M,B.

1l importe de bien comprendre ce qui se passe dans ces
diverses transformations. Dans la vaporisation ordinaire, le
corps passe de ’état liquide & I'élal gazeux, c’est-a-dire du
point M, au point M, en suivant la droite M,M;; en un point
quelconque de cette droite le corps est en partie a I’état
liquide, en partie & I’état de vapeur. Si, au contraire, il.
était possible de faire passer le corps du point M, au'point My,
en suivant la courbe de Clausius, le corps, a tout instant de
cette transformation, serait tout entier dans le méme état et
passerait ainsi de U'état liquide & I’état de vapeur par une
série continue d’états intermédiaires.

Toutefois la portion M, C de la courbe donnée par la for-
mule de Clausius correspond & un état du corps parfaite-
ment réalisable, quoiqu’il ne se produise pas généralement.
D’aprés la courbe, le corps est alors liquide et sa pression
est inférieure  la tension maxima de la vapeur. Ce sont 1
les conditions réalisées par un liquide surchauffé. Nous
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pouv6n5 donc admettre que, pour la portion M,;C de la
courbe de Clausius, le corps est dans cet état.

D’autre part, des expériences de MM. Wulner et Gotrian
ont démontré qu’une vapeur peut conserver son état de
vapeur sous une pression supérieure A celle qui, dans
les conditions ordinaires, provoque sa liquéfaction. La
portion M; D de ta courbe correspondrait done A cet état du
corps.

La partie CaD ne correspond & aucun état connu. Mais, si
I'on veut conserver la continuité, il est nécessaire que les

portions AM,C et DM;B de I'isotherme soient reliées entre
elles.

212. Ces considérations se trouvent d’ailleurs confirmées
par linstabilité des états des corps correspondéms aux
divers points de M,CDM,.

Tracgons une droite paralléle 3 Ov coupant la courbe en
trois points M}, «' et M| ( fig. 29). A ces trois points cor-

Fig. 29.

k,f\ D“%B

respondent trois états du corps, pour une méme pressidn et
une méme température. Quel est le plus stable de ces trois
états? ,

Nous avons vu (192) que la condition de possibilité d’'un
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phénomeéne, quand la température et la pression ne changent

pas, est
dH'> o.

L’état le plus stable doit donc &tre celui pour lequel H' a la
plus grande valeur, car on ne peut passer de cet état & un
autre sans qu’il y ait diminution de H’, transformation
impossible d’aprés l'inégalité précédente si les conditions
de température et de pression ne changent pas. L’état le
plus instable est nécessairement celui pour lequel H' a la
plus petite valeur, puisqu’il est alors possible de passer de
cet état i tous les autres. '

213. Cherchons donc les valeurs H}, Hy, H, de la fonc-
tion H’ aux points M}, ', M,.

Pour une transformation élémentaire quelconque, on a
dH'=8dT —Avdp,
et, par suite, pour une transformation isotherme :
dH' =— Avdp.

La variation de H' quand on passe du point M, au point &/,
en suivant la courbe M; Ca/, est donc

‘ﬂ;-—ngz—Afodp,

ou
Hy—H;=—AaireM;Ca';

il en résulte y
H,< H..

Quand on passe du point M au M| en suivant  courbe
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M, CDM;, la variation de H' est
H — H;::—-Afvdp:A(—aire M., Co + aire e’ DM))

Mais le cycle M, CD «M; constitue un cycle fermé isotherme,
puisque le long de la droite M,M, qui représente la trans-
formation du liquide en vapeur sous la pression maximum
de cette vapeur, la température ne change pas; laire
limitée par ce cycle est donc nulle (4194) et I'on a

— aire M;Ca + aire a DM; = o.

Or, par suite de la position de la droite M; M/, l'aire M,Co’
est plus petite que l'aire M;Ca, tandis que 'aire «'DM] est
plus grande que 'aire «a DM, ; par conséquent

—aire M, Ca’+ aire o/ DM| > o,
et de cette inégalité résulte la suivante
H, > H,.

243 bis. Les valeurs de la fonction H' aux trois points M),
o'y, M satisfont donc aux inégalités

w< H, < Hj.

Par suite, 1’état leﬂ plus stable est celui qui corl;espond au
pofnt M, c’est-a-dire I'état gazeux. C’est cet état que le
corps prendra généralement; il ne pourra prendre les deux
autres états qu'exceptionnellement et les abandonnera pour
prendre 1'état de vapeur sous I'influence de la plus petite
cause.
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Si nous avions tracé la droite M, «’ M), au-dessus de M, « M.,
nous aurions trouvé

<< H’,<H’b.

C’est donc I’état correspondant au point M, c’est~a-dire
I'état liquide, qui est alors le plus stable.

Ces diverses conclusions sont d’accord avec les hypothéses
que nous avons faites en admettant que M, C correspond &
un liquide surchauffé et DM; 4 une vapeur sursaturée ; ces
deux états sont en effet instables; en outre, un liquide sur-
chauffé prend brusquement l'état gazeux et une vapeur
sursaturée se condense immeédiatement sous l'influence de
la plus petite cause,

Enfin, les états correspondants aux points de la courbe CD
étant encore plus instables que les précédents, on s’explique

qu’on n’ait pu les réaliser.



CHAPITRE XIV.

MACHINES A VAPEUR.

214. Rendement industriel d’'une machine thermique. —
Le rendement industriel d’'une machine thermique est fort
différent du rendement du cycle que décrit le corps qui se
transforme. Pour l'industriel, les deux facteurs importants
d’une machine sont: la quanlité de charbon brillée pendant
I'unité de temps et la puissance ou quantité de travail que
cette machine est capable de produire pendant ce méme
temps. Le rapport de ces deux quantités, exprimées en
calories, est le rendement industriel.

Ce rendement est toujours trés faible. Pendant longtemps,
les meilleures machines a vapeur consommaient au moins
1*¢ de charbon par heure et par cheval-vapeur. On a fait des
progrés depuis, mais 'ordre de grandeur est resté le méme.
15 de charbon dégageant en moyenne 7500! par sa com-
bustion et le cheval-vapeur représentant un travail de 75x=
par seconde, nous avons-pour le rendement industriel de
ces machines

75 < 60 x 60 5 __ 36
T.7 00——4‘25)
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soit encore {;. Une bonne machine a vapeuar fournit donc,
au plus, le douziéme du travail correspondant & la quantité
de chaleur produite par la combustion du charbon.

215. Ce résultat ne doit pas surprendre. Toute la chaleur
produite par le charbon n’est pas absorbée par la chaudiére;
une partie est perdue par rayonnement, une autre s’échappe
avec les gaz chauds résultant de la combustion. La quantité
de chaleur absorbée par la chaudiére n’est pas elle-méme
transformée entiérement en travail; une partie est, d’aprés
le principe de Carnot, transportée au condenseur. Enfin, ce
travail est lui-méme en partie absorbé par les mécanismes
qui transforment le mouvement alternatif du piston en
mouvement circulaire continu. Le rendement industriel est -
donc le produit de trois facteurs plus petits que l'unité;
c’est ce qui explique sa faiblesse.

Sinous appelons Q, la quantité de chaleur produite par le
charbon ; Q,, celle qui est absorbée par la chaudiére; 7, le
travail indiqué, c’est-a-dire le travail produit par le corps
qui se transforme et dont la mesure se fait au moyen de
Vindicateur de Watt (§ 63), et 7/, le travail mesuré sur I'arbre
de couche & I'aide du frein dynamométrique, nous avons
pour la valeur du rendement industriel

AT _ Q) AT T
Qo—Qo Q, T

La Thermodynamique ne s’occupe que d’un seul de ces fac-
teurs; le rapport As qu’on appelle rendement thermique de

Qs

la machine. Il a évidlemment la méme valeur, quelle que
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soit la masse du corps qui se transforme pendant la suite

des temps; nous pouvons donc supposer cette masse égale
a l'unité ().

216. Rendement thermigque. — La valeur de cette quan-

tité, comme celle du rapport =, dépend de la nature du

Qi
cycle décrit par la vapeur. Nous avons vu (124) que, pour
un cycle de Carnot, on a

T T —T
E 1
QI TI
Comme pour tout autre cycle, le rendement est au plus
égal a cette quantité, le rendement thermique d’une ma-
chine a pour valeur maximum

Ar _T,—T, .
Q.7 T

Mais les raisonnements que nous avons faits pour démon-
trer que le rendement d'un cycle quelconque ne peut dépas-
ser celui d’un cycle de Carnot supposent que I'état du corps
qui se transforme est, & chaque instant, complétement défini
par les deux variables p et T. Or, cette condition ne peut
étre rigoureusement réalisée dans les machines thermiques.
1l convient done de donner une nouvelle démonstration s’ap-
puyant sur le théoréme de Clausius généralisé.

(') Le rendement thermique ne différe donc du rendement Ql d'un cycle que

par le coefficient A. Pour éviter toute confusion, quelques auteurs appellent

. . . T
coefficient économique le rapport = .

(o
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D’aprés ce théoréme nous avons, en appelantdQ, la quan-
tité de chaleur absorbée par le corps qui se transforme et
dQ, celle qu’il céde,

f dQ f dQ, f aQ, _

Si T, est la valeur maximum, et T, la valeur minimum
de T, on a

aQ, _ (dQ; _ Q
T T=T

[ [0

L’inégalité de Clausius devient donc

et

Q Q
T, T, <°
ou o
2 T!
O
Mais de l’égaiité
Ar=Q,—Q,

. fournie par le principe de ’équivalence, nous tirons

AT —_— Q. .
Q: Ql \
Par conséquent
A< Tz o Tl — Ti
Q <! T, — T,

La limite supérieure du rendement thermique est donc

AR
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bien, quel que soit le cycle fermé décrit,

At T,—T,
(1 Q- T,

217. Valeur maximum du rendement thermique d’une
machine & vapeur. — Cette valeur limite tend vers 'unité
quand T; augmente et quand T, diminue. On peut donc
théoriquement obtenir une machine thermique d’'un ren-
dement élevé en prenant pour T, et T, des valeurs conve-
nables. Mais pratiquement il est impossible qu’il en soit
ainsi, les températures T, et T, ne pouvant varier que dans
des limites restreintes. "

Dans les machines & vapeur d’eau la température maxi-
mum T, est celle de la chaudiére. Elle est limitée par la
résistance des parois de la chaudiére, sur lesquelles s’exerce
la pression de la vapeur. Cette pression croft rapidement
avec la température ; elle est de 52t™ & 152° C. et de 102tm
& 180°. Aussi ne peut-on sans crainte d’explosion dépasser
la température de 200°; la valeur de T, est alors

273 4 200 = 473.

La température T, est également limitée. Si la machine
ne posséde pas de condenseur la pression de la vapehr, a
la sortie du cylindre, doit étre au moins égale a celle de
Iatmosphére; sa température est donc au moins 100° C.

On a done
' T,2 343e.

Lorsque la machine posséde un condenseur, T, est la
température de ce condenseur. Mais cette température est
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nécessairement plus grande que celle de I’air ambiant; elle
est généralement de 4o° C.; par suite on a alors

Ty= 1273 + 4o =313.

Mais nous admettons ainsi que la vapeur sort du cylindre
sous la pression maximum « de la vapeur pour la tempé-
rature du condenseur. Or, généralement, il n’en est pas
ainsi. Le condenseur contient toujours, malgré 'usage des
pompes A air, une certaine quantité d’air dont la pres-
sion 3 s’ajoute A celle de la vapeur. Par conséquent, la
vapeur sortant du cylindre doit étre 4 une pression plus
grande que o+ 3 et sa température est plus grande que
celle du condenseur.

Si nous prenons pour T, et T, les valeurs 473 et 313 qui
sont les limites extrémes en pratique, nous obtenons pour
le rendement maximum

5‘—7—34%19’-1—3 — 0,36 environ.

218. Tentatives faites pour augmenter le rendement
d'une machine thermique. — A la rigueur il serait pos-
sible d’amener la température T, & une valeur trés peu
supérieure a celle de I’eau d’alimentation du condenseur,
soit 20° environ. 1l suffirait de prendre une quantité d’eau
suffisamment grande et d’extraire I’air aussi complétement
que possible. On augmenterait ainsi le rendement de la
‘machine, mais cet avantage serait amplement compensé
par le travail qu’on devrait demander, pour I’obtenir, aux
‘pompes A eau et aux pompes i air. D’autres moyens doivent
donc étre employés si I'on veut abaisser T,.

4

P. . 19
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M. du Tremblay a proposé d’abaisser considérablement
la température T, en employant la plus grande partie de la
chaleur produite par la condensation & vaporiser de I’éther;
cet éther étlait recueilli dans un second condenseur. Ce pro-
cédé n’a pas passé dans la pratique.

219. La température T, ne pouvant étre abaissée, on a
essayé d’élever la température T,. Ce résultat ne pouvant
élre obtenu avec la vapeur d’eau saturée, on s’est adressé
a l'air. Pour ce corps, comme d’ailleurs pour tous les gaz,
la pression n’est pas uniquement fonction de la tempéra-
ture et il est possible d’'avoir une température élevée sans
que la pression devienne dangereuse. J’emploi de Pair
comme agent de transformalion offre donc des avantages
et, en effet, le rendement thermique des machines a air
chaud est plus grand que celui des machines a vapeur. ”

Mais cet avantage est largement racheté par les inconvé-
nients que présenle ce genre de moteur : 'air chaud brile
les huiles destinées a alténuer les frottements des organes
de la machine; en outre, il oxyde les piéces métalliques.
Pour ces raisons les frottements sont considérables et abh-

sorbent une notable quantité de travail; pav suite, le rap-
7 . . e . .
port T du travail utilisable au travail indiqué est plus petit

que dans les machines i vapeur. La petitesse de la pres-
sion, qui esl cependant la seule raison qui fasse préférer
Pair chaud & la vapeur d’eau, offre elle-méme un inconvé-
nient, car le travail fourni par I'unité de masse, qui est

exprimé par fp dv, est alors trés petit. 1 faut done, pour

produire pendant un temps déterminé une quantité de tra-
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s

vail égale & celle d’'une machine 3 vapeur d’eau, ordinaire,
une masse de gaz trés considérable, ce qui entraine &
donner des dimensions exagérées a la machine. La surface
de chauffe se trouve nécessairement augmentée et la cha-

leur perdue par rayonnement et par les produits de la

combustion est beaucoup plus grande; le rapport QU est
par conséquent diminué.
Ainsi, cn résumé, la substilution de I'air 'd la vapeur

d’eau augmente le rendement thermique des machines,

mais il diminue les deux autres rapports T?’ et —8—’ qui

[}
figurent dans I'expression du rendement industriel. Cette
derniére quantité ne varie donc pas sensiblement. D’ail-
leurs, le volume considérahle qu’occupe nécessairement
une machine thermique de puissance moyenne augmente
-le prix d’achat et les frais d’entretien de 1'unité de puis-
sance. Aussi les machines a air chaud, quoique concues
d’aprés des principes rigoureux, n’ont-elles pu remplacer
les machines & vapeur d’eau.

220. Emploi de la vapeur d'eau surchauffée. — L’aug-
mentation de pression qu'éprouve une vapeur lorsqu’on
éléve sa température est beaucoup moins considérable
quand cette vapeur n’est pas salurée que quand elle est
saturée. On a donc songé & élever la température limite T,
en surchauffant la vapeur produite, a I'état de saturation,
-4 une température inférieure. On pouvait espérer obtenir
ainsi une augmentation du rendement thermique sans exa-
gérer la pression et en évitant les inconvénients des ma-
chines & air chaud. En réalité, le rendement thermique
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maximum n’éprouve, comme nous allons le voir, qu'un
accroissement peu important par le fait de la surchauffe.
Néanmoins, dans bien des cas, I'expérience a prouvé l'uti-
lité de la surchauffe, mais I’explication doit étre cherchée
ailleurs. Nous verrons plus loin quel est I'effet nuisible de
la vapeur condensée sur les parois du cylindre. Si la vapeur
est suffisamment surchauffée, non seulement elle arrive
dans le cylindre parfaitement séche, matis il ne se produit
pas de condensation sur les parois. Dés que ce résultat est
atteint, il n’y a pas lieu de pousser la surchauffe plus loin.

Dans les turbines, une certaine surchauffe peut égale-
ment étre utile, parce que les gouttelettes liquides entrai-
nées produisent des frottements.

Dans tous les cas, je me propose de démontrer que l'effet
utile de la surchauffe n’est pas da a la raison qui avait fait
d’ahord adopter.

221. Nouvelle limite supérieure du rendement d'une
machine 4 vapeur. — Pour cela nous allons chercher une
limite supérieure plus précise du rendement et nous ferons
successivement le calcul pour une machine a vapeur saturée
et pour une machine & vapeur surchauffée.

Nous avons déja trouvé I’expression

T,—T,
Vl‘l

pour la valeur maximum du rendement d’une machine du
premier genre. Mais si I'on reprend le raisonnement qui
nous a conduit & cette expression, on voit que celte valeur
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maxlmum ne peut étre atteinte que si

fdo, dQ. ot fsz Q.

Or ces deux égalilés ne sont pas satisfaites en général

parce que l'on a T < T, et T > T, el que le cycle réel de la
vapeur s’écarte beaucoup du cycle de Carnot.

222. Mais il est possible de trouver une limite plus appro-
chée de la maniére suivante : appliquons le théoréme de
Clausius au systéme formé par le cylindre de la machine,
la chaudiére, le condepseur et par Ieau et Ia vapeur qui
¥y sont contenues. Pour pouvoir regarder le cycle décrit
comme fermé, il convient de supposer que l'eau. d’alimen-
tation est émpruntée au condenseur et que ce dernier appa-
reil est ce qﬁ’on appelle un condenseur de surface refroidi
exlérieurement par un courant d’eau. Ces deux hypothéses
ne sont pas réalisées en général. La premiére nous con-
duira & admettre un rendement trop élevé (ce qui n’a pas
d’inconvénient, puisque nous cherchons seulement une
limite supérieure de ce rendement), puiéque Ja tempéra-
ture de '’eau d’alimentation est généralement inférieurea‘al
celle du condenseur. La scconde est 4 peu prés mdlﬂ'e—
rente. Cela posé, les échanges de chaleur auxquels ce sys-

iéme est soumis sont les suivants :

1° Une quantité de chaleur Q, est cédée par le foyer a
I'eau d’alimentation et a I’eau de¢ la chaudiére;

2° Une quantité de chaleur Q. est cédée par le conden-
seur & I'’ean qui refroidit cet appareil;
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3° Une certaine quanlité de chaleur est perdue par rayon-
nement; nous la négligerons pour le moment, ce qui'nous
conduira encore 4 admettre un rendement trop élevé.
Nous avons, d’aprés le théoréme de Clausius,

LSS

ou, puisque T > T,,

dQ, dQ, Q..
f"T< T, — T,

done

Pour calculer I'intégrale du premier membre, observons
Que la température 3 laquelle 'eau absorbe de la chaleur
ne peut &tre considérée comme constante. Cette eau est,
en effet, a son arrivée dans la chaudiére, 3 une température
bien inférieure a celle de la vaporisation, et, pour atteindre
cette derniére, elle emprunte de la chaleur & des tempé-
ratures diverses. Généralement méme la température de
cette eau est plus basse que celle du condenseur, car, dans
un grand nombre de machines, I'alimentation se fait au
moyen de Vinjecteur Giffard qui ne fonctionne convenable-
ment quavec de l'eau blus froide que celle qui sort du
condenseur. Toutefois, afin que le cycle de I'eau qui se
transforme soit fermé et que le théoréme de Clausius soit
applicable, nous négligerons la quantité de chaleur qu'il
faut fournir & ’eau d’alimentation pour 'amener i la tem-
pérature du condenseur.
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223. Supposons donc 'eau & la température T,, et calcu~
lons la quantité de chaleur _qu’il faut fournir & l'unité de
masse pour la transformer en vapeur saturée i la tempéra-~

- - d
ture T; ainsi que la valeur de l'intégrale f Q. pour cette

T
transformation,

Quand la température de I’eau ¢’¢léve de dT, elle absorbe
une quantité de chaleur CdT, C étant la chaleur spécifique
sous la pression gui existe dans la chaudiére. Cette chaleur
spécifique différe peu de 'unité; si nous supposons qu’elle

lui est égale, nous avons, pour la transformation qui améne
eaude T, 4 T,,
fdQ,:de::T,——

f dqQ, f ar __ . T
rl‘ U Tz

Quand l'eaun se vaporise, elle absorbe une quantité de

et

chaleur égale a la chaleur latente de vaporisation L sous
la pression de la chaudiére. Comme la température reste
égale a T, pendant cette transformation,

aQ, L
rr —*A—\vr.
Nous avoons donc, pour I'ensemble des deux transforma-
tions précédentes,

fdQ.zQ,zT.~1',+L

et

Q, T, L
e‘ . »' T = o g,l, +T‘
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-~ 224. Mais, si nous posons

, 0rT, L T,—T,+L
(2) ]0071—,;*!‘—;17‘————7[;7"——‘)

la derniére intégrale devient

r4-4

et ’égalité de Clausius nous donne

Ql Qi
T

De cette relation et de celle que nous fournit le principe

de I'équivalence

Ar= Ql-‘ Q:,

nous déduisons

' Az _T,-T
3' e 'rv. 2'
) 0, <,

Cette expression du rendement thermique ne différe donc
de I’expression (1) déja trouvée que par la substitution de T,
a T,. Elle donnera une valeur plus approchée de la valeur

réelle si T est plus petit que T,; c’est ce qui a lieu.

En effet, pour T',:T,, le second membre de la relation

qui définit T’,.devienl.

T,—T, L

Or nous avons pour l¢ premier membre

T, . L T, — T,)
logﬁ + T, = log(x —+ T, +

L

w2
r]\‘
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ou, en développant le logaritlhme en série,

L T—T, 1(T,—Ty\*, 1/T,—Ty\*
B

La différence T,— T, élant plus pelite que T,, les termes
de cette série vont en décroissant, et ’on a B

T L T,— T, L

: 1
e, YT, T, T
et, a Jortiori,
' T, L_T,—T, L
SRl VEn eSS

Le premier membre de la relation est donc plus grand que
le second pour T, =T, ; par suite, il ne peut y avoir égalité
que pour T} < T,.

225. Expression du rendement maximum lorsque la
vapeur est surchauffée. — Supposons maintenant la vapeur
surchauffée, et soient T, la température du condenseur,
T, celle de la «chaudiére, et T, cclAlc de la vapeur sur-
chauffée. '

Nous aurons, comme précédemment, en négligeant la

chaleur perdue par rayonnement,

. Pour avoir la chaleur absorbée par I’eau pour passer de
la température T, a la température T, il nous suffit d’ajouter
a I'expression trouvée pour Q;, au paragraphe 223, la cha-
leur qu’il faut fournir & la vapeur pour I'amener de T, a T,.
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8i nous désignons par C la chaleur spécifique de la vapeur
sous la pression qui régne dans la chaudiére, et si nous sup-
posons qu’elle demeure constanle, nous avons pour cette
quantité de chaleur supplémentaire C(T,— T,). Il en résulte
pour Dl'expression de la chaleur totale Q, absor bée par
I'unité de masse d’eau ‘

Q=T,—Ty+ L+ C(To—T,).
Le terme complémentaire & ajouler a4 Pexpression trouvée

pour -&est
CdT T
f——T—.=CLog—,ﬁ;

| l\

par conséquent,

in_ 1 _E T,
—T— —LOgT:—i- T‘ +CLOgT-

8i donc nous posons

Ty Ti—Ty+ L+ C(T,—T),) .
s

: L .

nous aurons encore pour l'expression du rendement

T""T]
o<t

© 226. Effet de la surchauffe sur la valeur du rendement.
“~ H nous est alors facile de nous rendre compte de I'avan-
tage que présente une machine lorsqu'on surchauffe la
vapeur.

Pour fixer les idées, admettons que la température de la
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chaudiére soit 150°C., celle du condenseur 4o° et que la
vapeur surchauffée alleigne 250°. Les valeurs de T,, Ty et To
sont, dans ces cond'mons,

l‘,__ 150+273—*423
4o + 273 = 313,
To: 250 + 273 —= 523.

Si nous portons ces valeurs dans la relation (4), nous ob-
tenons T{ = 41r°, '

Dans le cas ou la méme machine fonctionnerait sans sur-
chauffe de la vapeur, la vapeur de T, déterminée par la
relation (2) serait 4o6e.

L’emploi de la surchauffe augmente donc trés peu la
température T ; par conséquent, les valeurs du rendement
avec ou sans surchauffe doivent étre peu différentes. On
trouve en effet 0,238 dans le premier: cas et 0,204 dans'le
second. )

Cette faible augmentation du rendement s’eiplique par ce
Tait que la plus grande partie de la chaleur Q, est fournie

2

au moment de la vaporisation, c'est-d-dire & la tempéra-
ture T, de la chaudiére, qu’il y ait ou qu’il n’y ait pas sur-

Ql

chauffe de la vapeur. La valeur de I'intégrale

QI

est donc,

dans les deux cas, fort peu différente de = et, par suite, les

valeurs de T sont toutes deux voisines de T,.

227. Machines & vapeur 4 détente. — Les divers moyens
proposés pour augmenter le rendement maximum des ma-
chines thermiques présentant des inconvénients qui les
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rendent & peu prés inapplicables, les. constructeurs se sont
efforcés de perfectionner le fonctionnement et les organes
des machines & vapeur de maniére & obtenir un rendement
aussi rapproché que possible duo maximum qu’il peut
prendre pour des témpératurés réalisables de la chaudiére
et du condenseur. '

Le plus imporiant de ces perfeclionnements est '’emploi
général de la détente, Dans les machjnes & détente 'admis-
sion de la vapeur dans le cylindre n’a lieu que pendaht une
partie de la durée.de la course du piston;-Ja communication
du cylindre avec la-chaudiére esl supprimée pendant une
autre partie de cetle durée et la vapeur n’agit alors qu'en
vertu de son expansibilité : c¢’est la période de détente. 1l
résulte de celte disposition une notable économie de vapeur,
tout en produisant une méme quantité de travail; le rende-
Inent thermique se trouve donc augmenté,

Mais pour que le piston, arrivé au bout de sa course,
puisse revenir sur lui-méme sans rencontrer de résistance

-

Fig. 3o.
pO) JJ\ c G
F BD H

nolable, il faut que la pi‘ession sur 1a face AB (ﬁg; 30), dui
précédemment subissait ’action de la vapeur, soit plus faible
que celle qui s’exerce sur l'autre face CD. Pour réaliser
celte condition, on met I’espace ABEF en communication
avec le condénseur avant que le piston soit arrivé au bout
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de sa course: c’est ce qu'on appelle I'dchappement anticipé.
Dans le méme but on fait communiquer ’espace CDGH avec-
la chaudiére un peu avantla fin de ]a course du piston : c'est
Padmission anticipée.

Cette admission anticipée de la vapeur doit également se
produire dans I'’espace EFAB quand, le piston revenant sur
lui-méme, il n’est plus qu’a une petite distance de EF. Si la
pression de la vapeur dans cet espace est peu différente de
celle de la chaudiére au moment ou s’ouvre la lumiére d’ad-
mission, la quantité de vapeur prise & la chaudiére est faible.
Or il est facile de réaliser cette condition; il suffit de sup-
primer la communication, qui existe entre ABEF et le con-
denseur depuis le commencement du mouvement de retour,
un temps suffisant avant 'admission anticipée de la vapeur.
Pendant tout ce temps, la vapeur est comprimée entre le
piston et le fond EF du cylindre : c’est la période de com=
pression.

En résumé, la durée d’'une double course du piston se
décompose en six périodes qui se suivent dans ’ordre sui-
vant si 'on considére ce qui se passe & gauche du piston et
si U'on suppose que le mouvement de celui-ci s’effectue
d’abord de gauche a droite :

1° Admission )
2° Détente s pendant 'aller;

3> KEchappement anticipé

4o Echappement
5° Compression » pendant le retour.

6° Admission anticipée
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228. Distribution de la vapeur par tiroir et par soupapes.
— Il est évident que la durée de chacune de ces périodes
influe sur la valeur du rendement de la machine. Ainsi
Péchappement anticipé et I'admission anticipée ne doivent
pas avoir une trop grande durée, car, si ces périodes sont
favorables au bon fonctionnement de la machine dans une
certaine mesure, elles offrent un inconvénient grave : le
travail de la vapeur pendant ces périodes est résistant. Il en
est de méme de la période de compression pendant laquelle
la vapeur exerce sur la face d’avant du piston une contre-
pression qui diminue le travail.

Mais, lorsque la distribution de la vapeur s’opére au moyen
d’un tiroir, ce qui a lieu le plus souvent, les durées de cha-
cune de ces six périodes ne peuvent varier arbitrairement
et, par suite, ne peuvent pas toujours avoir les valeurs
exigées pdur atteindre le meilleur rendement. ‘

En effet, dans le mouvement du tiroir, aller et retour, on
trouve quatre périodes : admission de la vapeur, détente,
échappement, compression. Les quatre intervalles de temps
qui séparent les instanis ot commencent ces périodes de
celui ol le piston se met en mouvement dépendent de trois
quantités : Pangle de calage de la manivelle du tiroir, la
grandeur du recouvrement extérieur et la grandeur du
recouvrement intérieur. Il existe donc une relation entre
ces quatre intervalles de temps et par conséquent entre les
durées des six périodes de la course du piston qui dépendent
nécessairement du mouvement du tiroir.

Si le mouvement de ’arbre de couche de la machine, sur
lequel est calée ’excentrique du tiroir, est mis en mouvement
au moyen d’une manivelle et d’une bielle attachée 4 la tige
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du piston, la relation qui lie les quatre intervalles de temps
dont il vient d’étre question mountre que la durée de la dé-
tente est égale i celle de la compression dans le cas limite
ol la bielle et 'excentrique sont supposées infinies. Comme
il y a avantage a pousser la détente trés loin et, au contraire,
4 n’avoir qu’une faible compression, la relation précédente
semble de nature i empécher I'obtention du meilleur rende-~
ment. Cependant, la détente se produisant au moment ou le
piston est vers le milieu de sa course d’aller et la compres-
sion vers la fin de la course de retour, la vitesse du piston
est plus grande pendant la détente que pendant la compres-
sion, et, par conséquent, quoique la durée de ces périodes
soit la méme, la détente est beaucoup plus sensible que la
compression. Néanmoins on est toujours obligé, pour ne
pas aveir une compression trop considérable, de prendre
pour durée commune de la compression et de la détente une
valeur plus petite que celle qui conviendrait 4 une bonne
détente; il en résulte une durée trop longue a ’échappement
anticipé.

La durée de l'admission anticipée est également plus
longue qu’il ne conviendrait. Cela tient & ce que les lumiéres
d’admission de la vapeur ne se lrouvent que peu a peu dé-
couvertes par le tiroir; Ia pression de la vapeur, obligée de
traverser un orifice étroit (laminage de la vapeur), est alors
plus faible dans le cylindre que dans la chaudiére pendant
les premiers instants de 'admission. Si donc on veut qu’au
moment ot le piston revient sur lui-méme la pression soit
peu différente de celle de ]a chaudiére, il faut faire commen-
cer I'admission un temps relativement long avant que le
piston soit arrivé au bout de sa course. Il est nécessaire
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d’ailleurs que la lumiére soit largement ouverte au moment
ot la vitesse du piston devient sensible : sans quoi les frot-
tements seraient trop considérables.

229. Dans les machines Corliss I'admission et ’échappe-
ment se font au moyen de soupapes s’ouvrant brusquement
a un instant variable & volonté; il est donc possible de

" pousser la détente aussi loin qu’on le veut, tout en réduisant
la durée de la compression au strict nécessaire. En outre, il
ne se produit pas de laminage de la vapeur au commence-
ment de I’'admission, et 'on peut alors ne donner qu’une trés
courte durée a l'admission anticipée. Ces considérations
expliquent pourquoi les machines Corliss sont souvent pré-
férées aux machines 2 tiroir. Elles présentent cependant un
défaut, inhérent a leur supériorité : la complication des
organes de distribution.

~ 230. Diagramme et rendement d'une machine réversible
a cylindre imperméable & lachaleur. — Lathéoriede la ma-
chine a vapeur nous fera voir & quel point les machines
réelles s’écartent des machines théoriques; nous allons
d’abord exposer la théorie de Clausius, qui a été longtemps
classique et qui serait exacle si les parois du cylindre
n’étaient pas susceptibles d’échanger de la chaleur avec la
vapeur; si, par conséquent, ces parois sont trés peu con-
ductrices, nous verrons ensuite combien les conséquences
de cette théorie sont différentes de la réalité. Admettons que
lestransformations quesubitl’eausontréversibleset, prenant
comme coordonnées la pression de la vapeur et le volume
qu’elle occupe dans le cylindre, construisons la courbe des
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transformations pour une machine 4 détente dont le cylindre
est imperméable 4 la chaleur. :

Pendant toute la durée de la période d’admission la pres+
sion de la vapeur dans le cylindre est égale a celle de la
chaudiére, puisque, par suite de I’hypothése delaréversibi-
lité des transformations, vous négligeons les pertes de
charge résultant du frotlement de la vapeur contre les
parois des canaux quil’aménent de la chaudiére au cylindre.

Fig. 31.
A r B-

E C )

Cette premiére période est donc représentée parla droite AB
(fig. 31) paraliéle a I'axe des v,

La détente qui suit la période d’admission est nécessaire«
ment adiabalique, puisque le cylindre est supposé imper-
méable a la chaleur. A la fin de cette détente la vapeur doit
se trouver & ia température du condenseur, i cause de I'hy-
pothése de la réversibilité. 8a pression est donc celle de la
vapeur d’eau saturée a la température du condenseur et elle
econserve la méme valeur pendant toute la durée de I'échap-
pement. Par conséquent, la période de détente et celle
d’échappement anticipé sont respectivemenl représentées
par la courbe BC el la droite CD.

Le piston revenant sur lui-méme, le volume diminue et

la période d’échappement est représentée par la droite DE.
P. 20
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La compression qui se produit ensuite est adiabatique et
la pression de {a vapeur a la fin de cette période est celle de
la chaudiére; elle est donc représentée par la courbe EF.

Enfin la portion de droite FA correspond i la sixiéme
période, 'admission anticipée de la vapeur.

231. Remarquons que, les parois du cylindre étant sup-
posées imperméables, toute la chaleur abandonnée par la
vapeur est absorbée par le condenseur; en d’autres termes,
il n’y a pas de perte de chaleur pai' rayonnement. Si nous
négligeons encore la faible quantité de chaleur qu’il faut
fournir a Veau d’alimentation de la chaudiére pour élever sa
température jusqu’a celle du condenseur, nous nous trouve-
rons dans les conditions énoncées au paragraphe 222. D’autre
part, le cycle décrit par la vapeur est réversible. Par consé-
quent, le rendement thermique de la machine a la valeur

! i

maximum L—,E—T’, T, étant donné par la relation (2) du
paragraphe 224,

L’existence d’un espace nuisible entre le fond du cylindre
et le piston, quand celui-ci est au bout de sa course, n’influe
pas sur la valeur de ce rendement. En effet, le diagramme
conserve exactement la méme forme; il n’y a que sa position
par rapport & I’axe des pressions qui se trouve changée : le
point A est sur cet axe quand il n'y a pas d’espace nuisible,
le volume de la vapeur étant alors nul; il est & droite de cet
axe-quand il y a un espace nuisible. La forme du diagramme
ne changeant pas, le travail de la machine par coup de
piston demeure le méme. D’un autre cdté, la quantité de
vapeur nécessaire a un coup de piston ne varie pas. En effet,
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I’espace nuisible, s'il existe, est rempli de vapeur & la méme
pression que la chaudiére dés le commencement de I'admis-
sion; aucun emprunt de vapeur n’est donc fait a la chau-
diére pour le remplir. La quantité de vapeur ne variant pas,
il en est de méme de la chaleur qu’il faut fournir pour la
produire; par conséquent, le rendement de la machine reste
le méme, qu’il y ait ou non un espaee nuisible.

232. La forme générale du diagramme n’est pas non plus
changée si la vapeur, en pénétrant dans le cylindre, entraine
avec elle des goultelettes liquides. Cependant la valeur dun
rendement est un peu diminuée, En eﬁ‘ét, la quantité de
vapeur employée par coup de piston ne varie pas et la
chaleur nécessaire pour la produire reste ]a méme. Mais
I’eau entrainée a absorbé de la chaleur pour passer de la
température T, & la température T, & laquelle elle se trouve
quand elle pénétre dans le cylindre. La quantité de chaleur
correspondant & un coup de piston est donc plus grande que
lorsque la vapeur est séche; par conséquent, le rendement
de la machine est moindre que dans ce dernier cas, bien que
la courbe de détente soit un peu relevée.

On peut le montrer jutrement. 8i m est la masse de la
vapeur dans I'unité de masse du mélange de vapeur et de
gouttelettes, la quantité de chaleur qu’il faut fournir pour
amener dans ce dernier état I'unité de masse d’eau prise

aT,est : :
Ql: TI_T’+ Lm.

Pour cette transformation, l’imégralef 49, a pour valeur

fdQ: —Lo g + Lle
1

7
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- Par conséquent, la valeur de T qu'il faut prendre dans
-’expression du rendement est donnée par la relation

Log:r‘ Lm _ _T,— T»I+ Ln
T, T, T

. Or il est facile de voir que la valeur de T est plus grande
pour m =1, c¢’est-a-dire quand la vapeur estséche, que pour
m <1, c'est-a-dire quand la vapeur est mélangée d’cau
lignide. Toutefois, m étant toujours voisin de l'unité, la
-différence entre ces valeurs de T} est faible et le rendement
‘est peu diminué.

- 233, Effet de la condensation de la vapeur d’eau pendant
la détente. — Nous avons vu que, si la température de la
chaudiére ‘est 150° C. et celle du condenseur §o°,

a T’—406°‘ etT IT

donc la valeur du rendement d’'une machine réversible

T,
—o0,204. Ce dernier nombre est

vapeur séche.
Mais les températures T, et T, satisfont aux relations

T

et, comme on a

I O

il en résulte

H|O

et par suite
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La valeur du rendement peut donc étre calculée quand on.
connait la quamlte de chaleur empruntée Q, et la quanuté
cédée Q,.

Regnault a it ce calcul en se servant des nombres qu'il
avait obtenus dans ses expériences sur les chéleurs latentes
de vaporisation. La chaleur latente de vaponsauon del eau
étant 500 pour la température de 150° et 560 pou: celle de
40°, on a ;

Q,=150— 40 + 500 =610,
Q.= 560;

il en résulte

Qi—Q; 6r0—3560
Q® 6o ”°’°‘49'

Cette valeur du rendement est beaucoup plus faible que

4 r|

T, T,
rlv

plus faible que celle du rendement réel des mdchmes, la

celle déduite du rappotrt T — —L_—2; elle est méme heaucoup

quelle, d’aprés Hirn, est environ o, 12.

234. L’explication de cette différence est facile. Nous
savons, ce qu’ignorait Regnaultl, que la vapeur d'eau se
condense en se détendant. Par conséquent, au moment oii
Ie condenseur est mis en communicalion avec le cylindre,
celui-ci contient un mélange- de vapeur et d’eau liquide, &’
la méme température que le condenseur lorsque la machine
est réversible. Si donc  est la masse de I’eau liquide et r — =
celle de la vapeur pour masse totale égale al'unité, la quan-
tité de chaleur cédée au condenseur n’est que 560(1 — x)
par unité de masse. La quantité Q, se trouvant ainsi dimi-
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nuée, le rendement Q'Q Q. est augmenté et, pour une
i
machine réversible, il reprend, comme cela doit étre, la
T,—T
valeur donnée par le rapport T’ .

De cette explication il résulte que la condensanon de la
vapeur pendant la détente exerce un effet utile sur la valeur
du rendement. On a voulu en conclure, & tort comme nous
le verrons plus loin, que la chemise de vapeur, employée
pour protéger le cylindre contre le rayonnement extérieur
et empécher la condensation de la vapeur, était inutile et
méme nuisible,

235. Influence de la durée de la détente et de celle de la
compression sur la valeur du rendement. — Lorsque la
durée de la détente et celle de la compression ne sont pas
rigoureusement égales i celles qui correspondent au dia-
gramme représenté par la figure 31, le rendement de la
machine est diminué. Cela résulte immédiatementde ce que,
les transformations cessant d’étre réversibles, le maximum
du rendement ne peut étre atteint.

Maisla considération du diagramme de la machine permet
d’arriver 3 la méme conclusion.

. Si la durée de la détente est trop courte, le diagrammede .
la machine est AB b¢c DEFA ( fig. 32). L’aire de ce diagramme
est plus petite que celle du diagramme d’une machine ré-
versible de la surface du triangle 6cC. Le travail produit
par coup de piston est donc diminué sans que la quantité
de vapeur ait varié; il y a, par suite, diminution du rende-
ment.
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Quand la compression est trop courte, le diagramme est
celui de la figure 33; pour une compression trop longue, il

Fig. 32,
B

Y

N

N

E ¢ C D
est représenté par la figure 34. Dans le premier casla perte

Fig. 33,
A ¥ _f B

E € D

de travail par coup de piston est égale a laire du

N

Fig. 34.

Jt

E’ T C D

triangle ef F; dans le second cas elle est égale & 'aire du
triangle ' f'F, cette aire devant étre comptée négalivement
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puisque son contour est décrit dans le sens inverse. Quant
a la quantité de vapeur employée, elle demeure la méme
que pour unc machine réversible quand il n’y a pas d’espace
nuisible; mais, s’il y a un espace nuisible, Ia quantité de va-
peur employée par coup de piston peut étre augmentée
dans le cas ou la compression est trop courte. 11 y a done
toujours diminution du rendement de la machine.

236. On ne peut pratiquement pousser la détente jusqu'an
bout; il faudrait pour cela donner au cylindre une longueur
trop considérable. En outre, la force qu’exerce 1a vapeur sur

le piston 3 la fin de la détente serait alors trés faible et se

Fig. 35.
H_- S B

E ] e . D

trouverait complétement absorbée par les frottements des
mécanismes. D’ailleurs la perte de travail résultant de la
réduction de la détente n’est pas considérable, l'aire du
triangle bc C (fig. 32) étant toujours petite.

La compression n’est pas non plus poussée jusqu’au bout,
car elle offre I'inconvénient d’opposer au piston une résis-
tance considérable précisément au moment ot la force qui
le fait mouvoir se trouve réduite par la détente produite A
Tarriére. Le diagramme théorique d’une machine est donc
représenté par la figure 35.

R
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237. Influence des parois du cylindre. — Mais la théorie
élémentaire que nous venons d’exposer est loin de rendre
compte de tous les phénomeénes qui se produisent dans les
machines. J’oserais presque direque, bien qu'utile & connaitre
puisqu’elle nous aidera & comprendre une théorie plus com-
pléte, elle n’a aucun rapport avec la réalité. Ainsi, I'obser-
vation a montré qu’il y a condensation de la vapeur pendant
I’admission et qu’au contraire il y a vaporisalion pendant la
détente. Cela est vrai au moins pour les machines a un seul
cylindre; dans les machines compound au contraire, ou
Fimportance des échanges de chaleur se trouve diminuée,
on se rapproche des conditions théoriques.

Ces phénomeénes sont dus aux variations de température -

des parois du cylindre, variations qui se produiraient méme
" dans le cas ou les parois, recouvertes d’une chemise absolu-
ment imperméable & la chaleur, n’abandonneraient pas de
chaleur par rayonnement.

Pendant la période d’échappement la pression de la vapeur
dans le cylindre est l]a méme que dans le condenseur; par
conséquent, alafin de cette période, la température de cetle
vapeur et celle des parois du cylindre est trés peu supérieure
a celle du condenseur. Pendant la compression, la vapeur
s’échauffe plus vite que les parois; comme de plus la com-
pression n’est jamais poussée jusqu’au bout, Ja température
des parois est plus petite que celle de 1la chaudiére au mo-
ment de Padmission. Il en résulte donc une condensation
de la vapeur et, 3 la fin de ’admission, les parois du cylindre
sont recouvertes d’'une couche liquide. ,

Pendant la détente la vapeur se refroidit plus vite queles

parois et l’cau qui recouvre celles-ci se vaporise en partie
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malgré la condensation due a la détente. Quand, a la fin de
la détente, on ouvre I'échappement, la pression diminue
brusquement dans le cylindre et I’eau qui se trouvait encore
sur les parois passe 2 I’état de vapeur, puis va se condenser
dans le condenseur. Il y a donc bien vaporisation de 'eau
pendant toute la durée de la délente et le commencement
de la période d’échappement.

- L'importance de cetle vaporisation est trés grande; elle
augmente la quantité de chaleur renduc au condenseur et,
par suite, abaisse le rendement. En effet, s’il n’y avait pas
vaporisation au moment de I'échappement, celte quantité
serail par unité de masse : 56o0(1 — x), pour une température
de 40° du condenseur, z représentant la fraction de la masse
qui est al’état liquide, Mais sur cette quantité = une partie 2"
forme une couche liquide sur les parois et se vaporisc; en
passant dans le condenseur elle lui restitue une quantitéde
chaleur 560 2" et la quantilé Q, qui entre dans Fexpression

@ —Q: 44 rendement est augmentée,

Q

Celte quantité Q, est alors
Q;=560(1— x) + 560 £"==560 (1 — '),

' désignant la portion de ’eau liquide qui se trouve inti-
mement mélangée & la vapeur au moment ou l'on ouvre

1’échappement.

" 238. Influence des frottements intérieurs de la va-
peur. — Les frottements de la vapeur qui se produisent
surtout dans la lnumiére d’admission et dans celle d’échappe-
ment diminuent encore le rendement des machines par le
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fait que ces frottements constituent des phénomenes irré-
versibles. )

Ces frottements sont d’autant plus considérables que la
perte de charge est plus grande; ils augmentent donc,
comme celle-ci, avec la vilesse d’écoulement de la vapeur et
avec la petitesse de P'ouverture d’admission ou d’échappe-
ment.

On pourrait croire qu'au commencementde 'admissionla
vitesse de la vapeur est faible, puisque le piston est presque
A bout de course et que sa vitesse est peu considérable.
Alors, malgré la 'petitesse de l'ouverture d’admission, les
frottements seraient négligeables. Mais en réalilé la vitesse
de la vapeur est trés grande a ce moment, car, comme nous
venons de le faire remarquer, il se produit une condensation
de la vapeur et, par suite, un vide partiel et une sorte d’appel
au commencement de 'admission. Les frottements dans la
lumiére d’admission ne peuvent donc étre négligés, pas plus
d’ailleurs que ceux qui se produisent pendant I’échappe-
ment. '

239. Diagrainme réel des machines & vapeur. — Pour
ces diverses raisons, condensation pendant l'admission,
vaporisation pendant la détente, frottements intérieurs de la
vapeur, le diagramme réel des machines est fort différent du
diagramme théorique représenté par la figure 35. Les dia-
grammes fournis par 'indicateur de Watt se rapprochent de
la courbe représentée par la figure 36, ot 'on a figuré en
tarifs ponctués le diagramme théorique.

On voit que, pendant une fraction notable de la durée de
I’échappement, la pression dans le cylindre reste bien supé-
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rieure & celle de la vapeur dansle condenseur. Si I'échappe-
ment ne commengait qu’au moment ou le piston est au bout
de sa course d'aller, cette différence de pression nuirait

\

pendant une partie de la course de retour; on congoildoncu
la nécessité de I'échappement anticipé. ’

On voit également que la pression dans le cylindre
n’atteint la valeur de la'pression dans la chaudiére que vers
le milieu dé la période d’admission; par conséquent, I'ad-
mission anticipée, qui a surlout pour objet d’amortir les
chocs au point mort, ne peut nuire au hon fonctionnement
de T machine, puisqu’elle a pour effet d’avancer le moment
ou la vapeur agit & pleine pression. .

C’est par I’étude atlenlive de ces diagrammes que I'on
obtient les valeurs qu’il convient de donner aux diverses
périodes de fonctionnement pour obtenir le meilleur rende- '
ment; leur calcul est donc trés difficile.

240. Avantages de la chemise de vapeur et de la vapeur
surchauffée. — Repyenons, comme au paragraphe 222, le
systéme formé par la chaudiére, le cylindre et le condenseur
et par I’eau contenue dans ces diverses capacités.

Le systéme total décrit & chaque coup de piston un cycle .
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fermé qui est irréversible tant en tenant compte des sources
de chaleur que par rapport au systéme lui-méme (pour em-~
ployer la terminologie du paragraphe 472). Mais, si l'on
décompose ce systéme total en un trés grand nombre de
systémes élémentaires (assez pelits pour que dans chacun
d’eux la températlure puisse étre regardée comme uniforme,
ainsi que nous avons fait dans la démonstration du théoréme
de Clausius), chacun de ces systémes élémentaires dé-
crira un cycle réversible, non pas en tenant compte des
sources de chaleur, mais par rapport au systéeme lui-
méme. »

En effet, les seuls phénoménes irréversibles dont une ma-
chine & vapeur puisse étre le siége sont des échanges de cha-
leur entre systtmes élémentaires de température différente,
ou bien des frottements produisant de la chaleur et détruisant
du travail. L’influence de ces phénoménes sur un de nos sys-
témes élémentaires se réduit 3 une cession ou A un emprunt
de chaleur, et ce systéme se comporterait de la méme ma-
niére s’il cédait ou empruntait cette chaleur i une source de
tempéralure infiniment peu différente de la sienne, c’'est-a-
dire d’'une maniére réversible. Chacun de ces systémes élé-
mentaires décrit donc un cycle réversible par rapport au
systéme lui-méme. Il n’en serait plus de méme s’il ¢lait le
siége de phénoméncs tels que des changements d’état irré-
versibles (solidification d'un liquide surfondu, etc.) ou de
bhénbménes chimiques.par exemple. Cela n’a pas lieu dans
le cas qui nous occupe.

Parsuite, on auraf‘—i,lg- = o pour chaque sysiéme élémen-

taire décrivant le cycle fermé correspondant & un coup de
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piston de la machine, et
f f aQ _
T =
pour le systéme total.

La quantité de chaleur 4Q empruntée par chaque systéme
élémentaire comprend, outre celle qui est cédée parle foyer
et celle qui est cédée A I’eau qui refroidit le condenseur, la
chaleur provenant des frottements, la chaleur résultant des
échanges entre les autres systémes et celle qui est perdue
par rayonnement. Nous avons donc, en désignant respecti-
vement par dQ,, dQ,, dQ;, dQ, et dQ; ces diverses quantitéé,

dQ = dQ,— dQ;+ dQs+ dQ;— dQ;,

et il en résulte

WEBIE ST SIE
oI ff =

La quatri¢me intégrale peutl s’écrire autrement. En effet,
si un systéme élémentaire, dont la température est T
emprunte une quantité de chaleur dQ, & un autre dont la
température est T/, il en résulte nécessairement un em-

prunt — dQ, fait par ce dernier au premier; ces deux sys-

témes fournissent donc 2 Iintégrale les deux éléments —+— Q‘

dQ,

et _T ; par suite,

L [ (- 1)
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Nous avons d’ailleurs

[7%-%:

Posons en oulre, comme nous 'avons fait pour les ma-

ffin — Qi'
Alors, il vient

£ - STrffe(i-T)
NS

Les deux premiéres intégrales sont positives, car, d’'une

chines réversibles,

part, dQ; est une quantité positive puisque celte chaleur
résulte du frottement, et, d’autre part, T est plus pelit que T
si dQ, est positif; il convienl donc de les diminuer autant
que possible.

241. La seconde de ces inlégrales est surtout intéressante,

Ses termes proviennent principalement des échanges de
chaleur entre la vapeuret les parois du cylindre; il faut done
s’attacher a rendre faibles ces échanges.

La chemise de vapeur remplit ce but. Elle avait été sup~
primée par quelques constructeurs alors que l'on croyait
que dans les machines il y avait condensation pendant la
détente; mais, depuis, son emploi est devenu général, a
juste titre, comme la pratique I’a montré et comme nous
allons le voir.
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§’il n’y a pas de chemise de vapeur, les températures T’
et T des parois du cylindre et de la vapeur qu’elles ren-

. oo . 1 I
ferment sont relativement peu différentes; le facteur T T
est donc trés pelit. Avec Ja chemise de vapeur la tempéra-
ture T’ des parois reste & peu prés constante; la variation

de celle de la vapeur est au contraire assez considérable; par

1 I
T—Tadonc

une valeur plus grande quand le cylindre est entouré d’une

suite TV et T sont loin d’étre égaux. Le facteur

chemise de vapeur que lorsque cette chemise n’existe pas.

Maisl’augmentation de ce facteurestlargementcompensée
par la diminution de 'autre facteur dQ,. Quand il n’y a pas
de chemise de vapeur il se produit une condensation au
moment de I’admission, et cette condensation donne lieu a
un dégagement de chaleur considérable qui entre dans dQ,;
la vaporisation de I'eau qui couvre les parois au moment de
Péchappementvientencore augmenter énormémentlavaleur
de la guantité de chaleur mise en jeu par les échanges entre
systémes élémentaires. Cette condensation el cetlte vapori-
sation ne se produisant pas quand on emploie la chemise de
vapeur, les échanges de chaleur n'ont pluslieu que par con-
ductibilité et par convection; les quantités ainsi échangées

" dQ.

sont donc trés faibles. Il en résulte que I'intégrale / T

est beaucoup diminuée par 'emploi d’une- chemise de
vapeur.

" 242. Les chiffres qui suivent, quoique empruniés 3 des
documents déja anciens, peuvent donner une idée de Y'uti-
lité de cet organe.
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Nous avons vu que, pour une machine dont la chaudiére
est a 150° et le condenseur & 4o°, la quantité de chaleur né-
cessaire pour amener 1¥€ d’eau de 1’état liquide & 4o° & I'état
de vapeur saturée & 150° est

Q,=6r0.
La chaleur rendue au condenseur est
Qy=1560 (1 — 2'),

x' étant la fraction de la masse qui est a I’état de goutte-
lettes liquides disséminées dans la vapeur au commencement
de I’échappement; cette fraction est d’environ o,1 quand il
n’y a pas de chemise de vapeur. Nous avons donc

Q.= 560 (1 — 0,1) = 504
et, par suite,

Q.——Q,__Gxo——So[;__i)_@_ 8
Q, 610 610 "%
Quand on emploie une chemise de vapeur, }la vapeur du

cylindre reste séche; par suite, 2’ est nul et

Q, = 560.

Mais, pour empécher la condensation de la vapeur, la che-
mise a da céder de la chaleur, ce qui a provoqué la conden-
sation d’une portion de la vapeur qu’elle contient ; on évalue
a 0,2 environ de la quautité totale employée par coup de
piston la quantité de vapeur ainsi condensée. La quantité de
chaleur Q, est donc

Qi=610+ 0,2 x 610 =733,

2r
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on en conclut

Q, 733 T 733

Le rendement se trouve donc élevé par I'’emploi de la che-

mise de vapeur,

243. Les mémes considérations expliquent I'effet avanta-
geux de la surchauffe. La surchauffe agit comme la chemise
de vapeur en empéchant la condensation de la vapeur sur
les parois du cylindre. Mais la surchauffe n’est pas aussi
universellement employée que la chemise de vapeur.
D’ailleurs elle est toujours légére et elle a surtoul poar but
de vaporiser, avant leur entrée dans le cylindre, les goulte-
lettes liquides que la vapeur entraine en sortant de la chau-
diére; elle sert donc plutdt a sécherla vapeur qu'a élever sa

température.

244. Machines compound. — Mon bul n’étant pas de faire
une théorie des machines & vapeur, mais d’illustrer par des
exemples variés les principes de la Thermodynamique, je
n’insisterai pas sur les machines des types les plus récents,
tels que les machines compound.

Dans les premiéres, la vapeur, aprés avoir agi dans un pre-
mier cylindre et s’y étre en partie détendue, passe dans un
second cylindre de plus grande capacité ou elle se détend de
nouveau en agissant sur un piston. Généralement la vapeur
se rend ensuite dans le condenseur, mais quelquefois elle se
détend encore dans un troisiéme cylindre avant de se con-
denser; la machine est alors dite a triple expansion.
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L’avantage de ce systéme est double; la détente peut étre
poussée plus loin sans que I'effort moteur subisse de trop
grandes variations pendant un coup de piston et.sans qu’on
soit obligé d’employer des volants trop lourds.

Mais, en outre, el cela est beaucoup plus important, la
température des parois de chacun des cylindres oscille non
plus entre T, et T,, mais entre des limites plus étroites; celle
du cylindre 4 haute pression par exemple a pour limites la
température de la vapeur au moment ot elle arrive de la
chaudiére, el sa température au moment ou elle passe d’un
cylindre a l'autre; celle du cylindre A basse pression a pour
limites la température de la vapeur au moment oul elle passe
d’un cylindre a l'autre, et celle qu’elle posséde au moment
ol elle passe dans le condenseur; les condensations 3 'ad-
mission el les revaporisations pendant la détente et I’échap-
pement, ainsi que les pertes de rendement qui en résultent,
se trouvent beaucoup diminuées,

La méme chose arrive a fortior: avec les turbines ou le
régime est permanent, ot par conséquent la température de
la vapeur en un méme point de I'espace est constante, de
sorte que chaque point de la paroi finit par se metire en
équilibre de température avec la vapeur au contact de
laquelle il se trouve.

245. Injecteur Giftard. — Pendant longtemps lalimenta-
tion des chaudiéres s’est faite au moyen de pompes, dites
pompes alimentaires, mues par la machine ellé-méme; ces
pompes puisent dans une bache I'eau d’évacualion du con-
denseur et }a font pénélrer sous pression dans la chau-
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diére. Aujourd’hui ’alimentation de la chaudiére se fait le
plus souvent par Vinjecteur Giffard. .

Sans entrer dans la description compléte de cet appareil
rappelonsles parties essentielles gui le composent : un tuyau
ameéne un jet de vapeur dans une boite ou débouche un
tuyau d’aspiration plongeant dans la biche d’emmagasine-
ment de I'’eau d’alimentation; un troisiéme tuyau, appelé
tuyau de refoulement, améne Veau dans la chaudiére.

Son fonctionnement s’explique difficilement. Puisque
PYeau de la bache est aspir:ée, la pression dans la boite de
raccordement des trois luyaux est nécessairement plus
pelite que la pression atmosphérique. Comment alors I’eau
peut-elle pénétrer dans la chaudiére ol la pression est
beaucoup plus grande?

Je crois que la théorie compléte de cet appareil est encore
A faire et je n’ai pas la prétention d’en donner une. L’ana-
lyse qui va suivre est extrémement grossiére et a seulement
pour but de montrer que la Thermodynamique permel d’ex~

pliquer le paradoxe.

" 246. Supposons le régime permanent établi dans P'ap-
pareil.
L’équation

[1A]
(l) T’— — const.

que nous avons trouvée au paragraphe 432 en étudiant
I'écoulement des fluides est, a chaque instant, applicable
aux diverses sections d’un méme tube; w désigne la surface
d’une de ces sections, ¢ la vitesse du fluide en un de leurs
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points, ¢ le volume spécifique qui correspond 2 ce méme
point.

L’application du principe de la conservation de I’énergie
nous a donné entre ces quantités et I'énergie interne U de
I'unité de masse une nouvelle relation; celle-ci se réduit a

2

(2) EU + q—;— ~+ p¢ = const.

dans le cas d’un fluide non pesant et lorsqu’on suppose qu’il
n’y a pas de chaleur empruntée ou fournie a I’extérieur (137).
Cette derniére relation sera donc applicable a toutes les sec-
tions d’'un méme tube de I'injecteur si nous négligeons l'ac-
tion de la pesanteur sur le fluide qui y circule, vapeur, eau,
mélange d’eau et de vapeur, et si nous admettons qu’il n’y
a pas de perte de chaleur par rayonnement.

Examinons ce que deviennent ces relations (1) et (2) lors-
que les sections considérées n’appartiennent plus au méme

tube.

247. Soient A,By, A;B; et A,B, (fig. 37) les sections des
, trois tubes qui comprennent entre elles une masse égale &
I'unité a l'instant ¢ Un temps d¢ aprés, cette méme masse
sera limitée par les sections A} Bj, A|B), A} B,. En dési-
gnant par dm,, dm,, dm, les masses des fluides qui occupent
les volumes élémentaires A,B,A B}, A;B;A|B, A,B,A B,
nous avons dmy— dmy-+ dm,. _ ‘
Mais le volume A, B, A}, B a pour valeur w,9, d¢; par suite,
la masse du fluide qu’il renferme est

dmy— w_tzit
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Les masses dm, et dm; peuvent s’écrire d’une maniére
analogue el, si nous portons ces expressions dans I’égalité
précédente, nous obtenons

(3) wz‘?zzﬁ)ocpo+w:¢1

) Yo e

pour la relation qui remplace (1).

Fig. 37.

Appliquons maintenant le principe de la conservation de
I’énergie; il nous fournit la relation générale

EdQ +dr =EdU + dW.

Mais dQ = o puisque nous supposons ¢u’il n’y a pas de
perte de chaleur par rayonnement; cette relation se réduit

donc a
dr =R dU + dW.

La variation de I’énergie interne est égale a ’énergie de la
masse dm, diminuée de la somme des énergies des masses
dm, et dm,, carI’énergie interne de la masse comprise entre
les sections A} Bj et A, B, et la section A,B, est la méme aux
instants ¢ et t+ dt, le 'régime permanent étant supposé
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élabli; pér conséquent, en appelant U,, U,, U, les valeurs de
I’énergie interne rapportée a I'unité de masse aux trois sec-
tions considérées, nous avons

dU =U,dmy— Uy dmy— U, dm,.

La méme remarque s’appliquant i la variation de ’énergie
.cinétique, celte variation a pour valeur

2 2
dW:dm,%3 —-dm,,% —dm, CP’

Pour évaluer le travail dr fourni au fluide pendant le
temps dt, appelons p,, py, p: les valeurs des pressions aux
trois sections considérées; nous avons alors

AT —=— Py 3 @y At + powo Py AL + pyw, 4 dt,
ou
dt = — pyvy dmy—+ pove dmy—+ pyvy dm,.

Portons ces valeurs de dU, dW et dr dans la relation
fournie par le principe de la conservation de I’énergie; il
vient ’

(EUz + % -+ P2 ":) dmy
cPo o1
<EU + = -+ P vo) dm,+ (EU, + Z + pyvy jdmy.
Telle est la relation qui remplace la relation (2) dans le

cas ou plusieurs tubes se branchent I’un sur I’autre. Si nous
la divisons par E dm, et si nous posons

dm, = pdm,,
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elle devient
q)i 2
(4) U,—i—A?’ —|—Ap,v2:(l--y)(Uo+ A%ﬂ +Apovo>
. o
+p<U,+A7‘—|—Ap,v,>.

248. Appliquons cette formule & linjecteur Giffard en
admettant que le tube C, soit le tuyau de prise de vapeur,
C, le tuyau d’aspiration et C, le tuyau de refoulement.

L’unité de masse considérée dans la démonstration de la
formule étant arbitraire, les positions des sections qui la
limitent sont quelconques; nous pouvons donc supposer
que A,B, est situé dans la bache, A; B, dans la partie de la
chaudiére occupée par la vapeur, et A,B, dans la partie de
la chaudiére occupée par I’eau. Dans ces conditions les
carrés des 'vitesses 9o €t ¢, peuvent étre négligés; en outre,
P et p;ont pour valeur commune la pression p, de la chau-
diére, et p, est égale a celle de 'atmosphére.

Quant & ’énergie interne, nous en avons trouvé la valeur
pour le cas d’'un systéme formé par un liquide et sa vapeur
saturée (169); cette valeur est

U=Lm-+CT—Apm (s —1).

Dans le tuyau d’aspiration le fluide en mouvement est de
Veau; par conséquent, m, qui représente la fraction de la
masse qui est & I’état de vapeur, est nul et C est égal & 1;
nous avons donc

Uy=T,,
T, étant la température de I'eau d’alimentation.
Dans le tuyau de prise de vapeur on a m —1; C étant
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toujours égal a I'unité, I’énergie interne U, est

U=L+T,— Ap,(c—2).

Enfin, dans le tuyau de refoulement on a un mélange d’eau
et de vapeur; m a donc une valeur, d’ailleurs inconnue,
comprise entre o et 1. La température est celle de la chau-

diere T;; par conséquent,
Up=Lm+T,—Apm (s —1).

11 ne reste qu’a exprimer ¢y, v, et ¢, au moyen de o et A.
Dans le tuyau d’aspiration le volume spécifique ¢, est celui
du liquide 4; dans celui de prise de vapeur ce volume ests;
dans le tuyau de refoulement,

ve=mo + (1 — m) A

Nous avons donc, en remplagant par ces valeurs les quan-
tités qui figurent dans la formule (4),
’ ]
Lm+T,—Ap,m(a'—,7\)+A(—P§ +Apmoe+Ap (1—m)}
=(1—p)X(To+Apo) +p[L+T,—Ap, (e —A)+Ap,a],
ou

. .
L(m—p)+ A% =(1— ) (Te— T+ Aped — Aph).

2
Or A% est un lerme essentiellement positif; par consé-

quent, si nous le supprimons, le premier membre de 'égalité
précédente devient plus petit que le second, c’est-a-dire

L(m—p)<(—p)(To—Ti+ Aped — Ap,}).
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Mais p, est plus grand que po; ApA — Ap, A est donc une
quantité négative; par suite nous pouvons, sans changer le
sens de l'inégalité, supprimer cette différence si nous vou-
lons trouver les conditions nécessaires du fonctionnement
de Yappareil; nous avons done -

(5) - Lm—p)<(—p)(To—T,).

249. Une seconde inégalité nous est fournie par le prin-
cipe de Carnot.

Considérons une.masse p. de vapeur dans le tuyau de prise
de vapeur et une masse 1— p d’eau dans le tuyau d’aspira-
tion; leur réunion donne une masse 1 dans le tuyau de
refoulement. Appelons §,, S,, 8, les entropies, rapportées a
Punité de masse, des fluides contenus dans ces trois luyaux.
L’entropie du systéme formé par la masse u de vapeur et la
masse 1 — @ de liquide est

(1—p) S+ p.8,

quand ces masses sont séparées, et S, quand par leur réu-
nion elles forment le mélange d’eau et de vapeur contenu
dans le tuyau de refoulement. La variation d’entropie est

donce
Sy — (1 — ) Sy—p8,.

Or, d’aprés une conséquence du théoréme de Clausius
généralisé, la variation d’entropie est plus grande que la
valeur de lintégrale ffd—TQ-: ol une des intégrations se

‘rapporte au cycle et autre au volume du systéme, et ol 4Q
peut avoir deux significations (188).
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Dans le cas qui nous occupe, il n’y a par hypothése ni
chaleur empruntée ni chaleur fournie & l'extérieur; mais
nous tiendrons compte des échanges intérieurs. ’

Il est clair que la variation d’entropie restera plus grande
d! .
que ffTQ alors méme que nous ne tiendrons compte

dans cette intégrale que de quelques-uns des échanges qui
se produisent réellement. On a, en effet, pour un quel-
conque de ces échanges, ainsi que nous I’avons fait remar-

f11%2 > 0.

Nous tiendrons compte seulement de I’échange considé-

quer bien des fois,

rable qui se produit au contact de la vapeur arrivant par le
tube de prise de vapeur et de I’eau arrivant par le lube
d’aspiration. Cette vapeur, déja refroidie par la détente
qu’elle a subie, se trouve i une température T, inférieure
a4 T,. L’eau est a la température T,; au contact de la vapeur
sa température s’éléve progressivement jusqu’a T,. La va-
peur, au contraire, en cédant de la chaleur a I'eau, reste
trés sensiblement & la température T,, mais se condense
partiellement.

Pour une variation de température d7T la quantité de cha-
leur absorbée par l'eau est dQ — (1 — p)dT, puisque la
chaleur spécifique est trés sensiblement 'unité et que la
masse A chauffer est 1 — p. Cette chaleur étant fournie par

la vapeur, la chaleur dQ relative a cette substlance est

dQ = — (1 — p)dT;
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nous avons donc

[ R=0—wrosg —a—w =

Par conséquent, nous devons avoir

d’ou

(6) Sy — (1— ) 8o — 115,

T, —1 :
>(l—~1*)L0gT (1—'I*) -

250. Pour calculer S,, S, et S, appliquons la formule

S = %m + CLogT
que nous avons trouvée (169) pour I'entropie d’un systéme
formé d’'une masse (1—m) de liquide- et d’'une masse m de
vapéur saturée; ici nous avons C =1 puisqu'’il s’agitde ll’eau.
La vapeur de S, s’obtient en faisant m = o, le tuyau d’aspi-
ration ne contenant pas de vapeur, et en faisant T =T,;

par suite,
= Log T,.

Celle de 8, s’obtient en faisant T =T, et m — 1, le tuyau
C, ne contenant que de la vapeur; par conséquent,

S, =L 4+ LogT,.
T,

Enfin, dans le tuyau de refoulement nous avons un meé-



MACHINES A VAPEUR. 333

lange d’eau et de vapeur et
S,— L m + Log T;.
1

L’inégalité (6) devient, lorsqu’on y remplace S,, S, et S,
par ces valeurs,

,Lm + LogT,— (1 — ) Log T,

T,
_R(L +LogT,> > (11— @) Log:-r—’ =T
T, T,

ou

M>(I_p)<LogT,_Long+,:, — )
1

En comparant cette inégalité a Vinégalité (5) on en tire
la suivante:

(LogT +———1><I‘—l‘,

ou
T ’ T
(7) l‘o<;-]§——1><l‘,Log-T_i.
Telle est la condition de fonctionnement de I'appareil.

251. Cette nouvelle inégalité permet de calculer une limite
supérieure de T,. En effet, pour que I'aspiration puisse. se
produire, il faut que la pression au point de branchement
des trois tuyaux soit inférieure 2 la pression atmosphérique
el par conséquent que T, soit plus petit que 100°; on trouve
ainsi 1oo° environ pour les machines & moyenne pression.
Cette valeur est bien supérieure a celle qu’on doit adopter
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en pratique, 20° environ, pour que l'injecteur puisse fonc-
tionner; cette différence provient des approximations trés
grossiéres que nous avons faites, et toujours dans le méme
sens, dans l’établissement de I'inégalité (7), et principale-
ment de ce que nous avons négligé les termes contenant
les carrés des vitesses; en outre, nous avons peégligé les
pertes de chaleur par rayonnement et nous n’avons pas tenu
compte du travail considérable transformé en chaleur par
les frottements des fluides contre les parois. Une théorie
dans laquelle entreraient toutes ces qualités donnerait cer-
tainement une valeur de T, beaucoup plus approchée de la
valeur réelle, mais I’établissement de cette théorie présen-
terait des difficultés presque insurmontables.

Quelque grossiére que soit d’ailleurs celte analyse, elle
suffit pour montrer que le paradoxe n’est qu'apparent, que
le fonctionnement de 'appareil n’est pas contraire aux prin-
cipes de la Thermodynamique et qu’il doit devenir impossible
si T, dépasse une certaine limite; mais on ne pourrail guére,
sans des calculs beaucoup plus longs, se rendre compte de
la valeur de cette limite. Une remarque importante reste a
faire.

La théorie que -nous avons donnée suppose le régime per-
manent élabli; elle nous apprend comment ce régime peut
continuer i se produire, mais elle ne.rend nullement compte
de la maniére dont ce régime s’établit; elle présente donc
‘unre nouvelle lacune qu’il serait diflicile de combler. Toute-
‘fois on peut s’expliquer I'aspiration de 1’eau d’alimentation
par un effet de la contraction de la veine de vapeur a la sor-
tie du tuyau de prise. Il faut en effet que 1'orifice de sortie
de ce tuyau soit trés étroit, surtout au moment de l'amor-
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cement de I'appareil; c’est dans ce but qu’on le termine en
cone suivant I'axe duquel peut se mouvoir une tige conique
appelée aiguille; en déplacant cette aiguille le long dc I'axe
oun rétrécit ou 'on augmente I'ouverture de l'ajutage de
sortie,



CHAPITRE XV.

DISSOCIATION.

252. Différents types de dissociation. — Les phénomeénes
de dissociation sont réversibles. Ils se partagent naturelle-
ment en deux classes, suivant I’état physique des composés
et du composant. Quand les composés et le composant sont
gazeux on dit que la dissociation a lieu au sein d’'un sys-
téme homogéne; les premiers phénoménes de dissociation
découverts par H. Sainte-Claire Deville se rangent dans
cette classe. Quand au contraire I'un des corps est liquide
ou solide la dissociation est dite s’effectuer au sein d'un
systéme hétérdgéne.

Cette derniére classe présente plusieurs types. L’un d’eux
est la dissociation du carbonate d’ammoniaque, o un com-
posé solide donne naissance & deux coustituants gazeux :
I’'ammoniaque et 'acide carbonique. Un autre genre de dis-
sociation est présenté par I'acide sélénhydrique, I'acide
tellurhydrique, le sesquichlorure de chrome; dans ces dis-
sociations un composé gazeux se sépare en un gaz et un
liguide ou un solide. Enfin le carbonate de chaux constitue
le troisiéme type : un composé solide dorne par sa disso-
ciation un solide et un gaz.
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Les dissociations rentrant dans cette catégorie ont été
judicieusement comparées par Deville aux phénoménes de-
vaporisation d’un liquide. Les lois des deux phénoménes
sont les mémes et I'on peut appliquer aux dissociations de
ce genre la plupart des résultats obtenus aux Chapitres X1
et XIIL

'253. Théorie de M. Gibbs. — Les lois expérimentales de
la dissociation en systéme homogéne sont beaucoup moins
bien connues que celles de la dissociation du carbonate de
chaux; en outre, la dissociation de I'acide iodbydrique est
la seule de ces dissociations qui ait donné lieu 4 de nom-
breuses recherches quantitatives. Toutefois la théorie de
ces phénomeénes est assez avancée, grice aux travaux de
M. Gibbs.

Dans la théorie qu’il a proposée, M. Gibbs suppose que
les lois des gaz parfaits sont applicables aux gaz qui com-
posent le systéme en voie de dissociation. 11 admet en outre
les deux propositions suivantes :

1° L’énergie interne d’'un mélange homogéne de plu-
sieurs gaz parfails est égale & la somme des énergies iu-
ternes (ue posséderaient ces gaz si chacun d’eux occupait
seul, 3 la méme température, le volume entier du mélange.

2° L’entropie d’un mélange homogéne de plusieurs gaz
parfaits est égale & la somme des entropies que posséde-
raient ces gaz si chacun d’eux occupait seul, 3 la méme
température, le volume entier du mélange. '

Ces deux propositions ne sont nullement évidentes : nous

les démontrerons successivement et nous verrons qae la

P. 22
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démonstration dé la derniére souléve plusieurs difficultés.
Mais, auparavant; établissons quelques relations, résullan.t
de I'application des lois des gaz parfaits aux gaz du systéme,
qui nous sont indispensables pour ces démonstrations.

254. Considérons un mélange de trois gaz parfaits G;, G,
ct G, dont la masse tolale 'est égale & I'unilé, et soient my,
m,, m; les masses respeclives de ces géz: nous avons

(1) ' my 4 my+ my=—1.

. Draprés la loi du mélange des gaz, la pression p du mé-
lange esL la somme des pressions p,, ps, p; que prendraient
les gaz si.chacun d’eux occupait seul, a la méme tempéra-

ture, le volume entier; par conséquent,
(2) . P=Pprt Pt pa

Si nous appelons ¢, ¢,, ¢; les volumes spécifiques qui
correspondent aux pressions py, p,, p; et d la température T,

nous avons les relations

pini=RT,
P2Vs— R, T,
psvi—=R,T.

Mais, d’apreés la signification de py, la masse m, du gaz G,
occupe, sous cette pression et a la température T, le volume
entier ¢ du mélange; par conséquent nous avons, pour le

volume spécifique ¢,,
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Les volumes v, et ¢, étant donnés par des expressions
analogues, les relations précédentes peuvent s'écrire .

pl —”VT‘ == Rl T,
3) p,7n"—2 — R,T,
Pa-—— prmag RzT.

8i nous en tirons p,, p,, Ps et si nous portons les valeurs
ainsi obtenues dans la relation (2), nous avons '

P=(m R+ mR, + maRs)%"

Les quantités R,, R,, R, sont proportionnelles aux poids
spécifiques des gaz. D’autre part, la loi de Dulong et Petit
nous apprend que les chaleurs spécifiques sous volume
constant des gaz parfaits sont proportionnelles aux poids
spécifiques de ces gaz. Par conséquent, les chaleurs spéci-
figues c,, c,, ¢, des gaz G,, G,, G; sont proportionnelles i
Ry, R,, R, et nous pouvons écrire ‘

C; c; 1

b 21 .

L’expression précédente de P devient, lorsqu’on y remplace
Ry, Ry, R; par les valeurs tirées de ces égalités,

) ' kT
(5) P:(micl‘f'mzcz‘f‘msca) el

255. Supposons maintenant qu'une partie du composé,
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le gaz G,, se dissocie; les masses des gaz en présence varie-
ront de dm,, dm,, dm;. Par suite de la relation (1) nous
aurons

(6) dm,+dm,+dm,:o.

Mais ces variations des masses sonl proportionnelles aux
poids moléculaires; nous pouvons donc poser

dm,= ady,
(7) ) dm:———ﬁdl-"{ )
dm;— ydp.,

« et 5 étant des constantes égales aux poids moléculaires
de G, el G,; y une conslante égale mais de signe contraire
au poids moléculaire de G;. 1’aprés la relation (6) elles .
doivent satisfaire a I’égalité

2+ fB+y=o.

La variation de pression résultant de cette dissociation
partielle est donnée par la différentiation de la valeur (5)
de p. Si nous supposons que la température et le volume

spécifique du mélange ne changent pas, nous aurons

dp = (¢;dm,+ ¢, dmqy+ c; dni.) k_v'l_‘
ou

kT
dp = (ac;+ Bca+ 76:) - dp.

Or, si le composé qui se dissocie est formé sans conden-

sation, la pression ne change pas; par conséquent nous



DISSOCIATION. 34t

devons avoir, dans ce cas,
ac,+ Bes+yes=o.

Si, au contraire, la formation du composé s’effectue avec
condensation, dp est différent de zéro et I'égalité précé-
-dente n’est-pas satisfaite. Nous poserons en général

(8) T Bes+ yey= kA,

A étant un facteur différent de zéro quand il y a condensa-
tion et égal a zéro quand il n’y a pas condensation.

256. Energie interne d'un mélange gazeux. — Appe-
lons U I'énergie interne de I'unité de masse du mélange a
la température T, et soient Uy, U,, U, les valeurs de I'éner-.
_gie interne, rapportées & I'unité de masse des gaz qui le

_composent, la température restant la méme.

D’aprés la loi de Joule, I'énergie interne d’un gaz parfalt

ne dépend que de sa température et la variation de cette

énergie a pour expression
dU =cdT.

Nous aurons donc par intégration, pour les trois gaz consi-
dérés,

- U,:C,T+h,,
(9) . Us=cy T + h,,
l Us=cT + Ay,

hy, hy, hs étant des constantes.
Admettons que ces gaz soient situés dans des vases sépa-
_rés; I'énergie interne du systéme qu’ils forment est A,w-
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demment égale A la somme de leurs énergies internes. Par
conséquent, la variation de cette quantité est, pour une
transformation élémentaire,

‘(10) dU =‘m| dU|+ m’dU""‘ m.dU,-

Mettons maintenant les trois vasés én communication ;
les gaz vont se mélanger par diffusion. La variation d’éner-
gie résultant de ce phénoméne est

dU = dQ + A dr.

Or, la diffusion des gaz s’effectuant sans emprunt ni abh-
“sovplidni deé chaleur, 4Q est nul; en outre, le volume du
-systéme-ne variant pas, dr est aussi nul. La variation -de
“Pénergie inferne est donc nulle. Par conséquent, la varia-
“tionid*énergie du systémé est toujours donnée par I'expres-

sien (10), que-les gaz soient ou ne ‘sotent pas mélangés,
'pou"rvd que‘lé‘ur masse ne vatie pass Adrietions qu'ils séient
" mélangés. L’expression (10) de U donne par irnitégration

U=m,U,+ myUy+ m U, + q)(r;l,, my, my)
ou, en remplacant U,, U,, U, par leurs valeurs (g) dans les-

“qtielles les constantes & peuvent étre négligées puisque ¢
est une fonction arbitraire, '

(11) U= (mc,+ mecs+ myc;) T + 9(m,, my, my). 3

Telle est ’expression de I'énergie interne du mélange.
" ‘#87. Pour déterminer la fonction ¢ considérons uni:second _
" mélitige gazeux formé des thémes gaz, trais led conténant
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- en proportions différentes. L’énergie interne de ce mélange
est

U'=(m} ¢+ mycy+ my ) T + ¢ (iny, my, my).

Si nous mettons le récipient contenant ce mélange en
communication avec celui qui contient le premier, -nous
aurons, aprés la diffusion, un mélange contenant une masse
“my+ m', du gaz G,, une masse m,—+ m, du gaz G,, et une
masse my-+ m, du gaz G,. L’énergie interne totale de ce
nouveau mélange sera

[(my+ my) ¢y + (ma+ my) e+ (my + my) 61T
+ ol(m,+ m’i ), (mg~+ m}), (ms—+ m})].

D’autre part, cette énergie doit éire la somme des énergies
.U et U’ des inélanges primitifs, puisque la diffusion n’ameéne
aucune variation dans la valeur de I'énergie; cetle somme
est

[(my+ m') ey + (my-+ m}) ey + (myg+-my) e ] T

+ ?(ml’ my, m;) + 9 (m’n m;) mi).
‘Nous devons donc avoir

el(my+m' ). (my+m}y), (my—+ m})]

= @(m,, my, my) + ¢(m'y, m,, mlﬂ,)'

Dérivons les deux membres de cette égalité par' rapborté

m,; nous ob@enons
¢ [(my+ m)), (my+ m}), (my—+m})] = ¢' (m,, my, sity).

.La:dérivée de la fonction 9. par rappert 3 m, a denc ia
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méme valeur, quelles que soient les valeurs de m,, m,, m,;
c’est donc une constante. Par conséquent, ¢ est une fonction
linéaire de m,. De méme elle doitétre du premier degré par

rapport a m, et & m,;. Nous pouvons donc poser
@ (my, my, my) = myhy+ myhy+ mshs,

hy, hy, hy étant des constantes arbitraires. Alors lexpres-
sion (11) de U devient, en y remplagant ¢ par cette valeur,

U=m(c;T + Iy) +my(csT 4 hy) 4+ my(c; T + Ay),

c’est-a-dire

~

(12) U= mU,+ myUy+ m,U,.

L'énergie interne d’'un mélange de plusieurs gaz est donc
~ égale 2 la somme des énergies internes de chacun d’eux
pour la méme température T. Par suile, la premiére des
propositions sur lesquelles s’appuie la théorie de M. Gibbs.
se trouve démontrée.

258. Chaleur de transformation. — Si I’on désigne par L dp
la quantilé de chaleur qu’il faut fournir 3 un systéme en
partie dissocié pour faire varier de adp, Bdp, ydp les masses
des gaz qui se trouvent dans 'unité de masse du mélange,
la température et le volume restant les mémes, le facteur L
est la chaleur de transformation moléculaire. '

L’expression de cette quanlité est facile a trouver.

La transformation s’effectuant sans changement de volume,
le travail dr fourni au sysléme est nul; par conséquent, la
variation de I’énergie interne est égale a la quantité de cha-
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leur fournie, Ldp. Nous avons done, en différentiant I'expres-
sion (12) de U,

-

Ldp = dU = U,dm, + Uydm,+ U,dm,,

les variations de U,, U,, U; étant nulles puisque la tempéra-
ture reste constante. Si nous remplacons dm,, dm,, dm, par

leurs valeurs (7), il vient, aprés avoir divisé par dy,

L:aU,+ﬁU,+}‘Ua,
ou

L=(ac;+Bey+yc;) T+ axhy+ 6h,+yh,,_

ou encore
L=FkAT + A,

en tenant compte de la relation (8) et en posant
h=oah,+ Bhy+ yhs.

_Cette expression de L. montre que, dans le cyas ol le com-~
posé qui se dissocie est formé avec condensation, cette quan-
tité est une fonction linéaire de la température; c’est une
constante lorsque le composé est formé sans condensation,
puisque alors 2 est nul.

259. Entropie d'un mélange gazeux. — Appelons S I'en-
tropie de I'unité de inasse du mélange lorsque la tempéra-
ture est T et le volume spécifique ¢, el soient S, §,, S, les
entropies, rapportées A 'unité de masse, des gaz qui le com-
posent, lorsque ces gazoccupent, & la méme température T,
le volume ¢, c’est-3-dire lorsque leurs pressions sont res-
pectivement g,, ps, ps.. '
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Faisons subir au mélange une transformation réversible
qui, sans altérer sa composition, fait varier les quantités p,
v, T. La variation de I’entropie résultant de cette transfor-
mation est

dS::f—l-(—?-sz

Apdv
T T )

+ -7

Or nous venons de démontrer que
U :Am|U(+szz+ m,U;;
par conséquent, puisque m,;, m,, m, ne varient pas,

dU dU, dU, dU,
T TR TRy e

D’autre part, nous avons Lrouvé

P =py+ P2+ Psy
et nous savons que
P =M, Oy == Ty 0y == M3 ¥y,

Nous pouvonsdonc écrire

s, (e ALY | (20 Ard)

T T T
dU, . Ap,d
- m (- 2H).
" Mais la somme
) dU] . Apl d‘-’l
il S |

. @st la variation.de 'entropie de Punité: de.masse du.gaz G,

lorsque, sa température étant T et.sa pression |p,, on fait
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‘varier ces quantités; c'est donc d8,. On verrait. -de- méme
-que les deux autres sonmmes anslogues ont respectivement
pour valeurs dS, et dS,; nous avons donc, pour la transfor-
mation considérée, -

das = midS] -+ mgdS, “+ m.dS,.
Nous en déduisons par intégration
- 8 =y Sy + my Sy -+ my S+ 9 (my, my, my).

La fonction arbilraire ¢ quientre dans cetle expression ne
peut étre déterminée de la méme maniére que la fonction du
méme genre que nous avons obtenue dans ’expression de
I’énergie interne. Cela tient 4 ce que la diffusion, qui estun
phénoméne irréversible, peut produire une variation de

. ’entropie, quoiqu’elle ne soit accompagnée d’aucun phéno-
meéne calorifique.

M. Duhem, dans son Quvrage Le Potentiel thermodyna-
migue (page 47, ligne 22), admet que cette-fonction est une
constante que 'on peut dés lors supposer nulle, puisque
I’entropie d’'un systéme n’est déterminée qu’d une constante
prés. Par suile de cette hypothése, I’expression de I’entropie
du systéme devient

(13) S=m,S,+ m,S,+m,S,

et la seconde proposition de M. Gibbs se trouve démontrée.

260. Admettons provisoirement I'hypothése de’M. Duhém
et, par suite, la proposition de-M. Gibbs, et cherchons I'ex-
pression de S. (
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La quantité de chaleur qu’il.faut fournir a 'unité de masse
d’un gaz parfait, pendant une transformation élémentaire, a
pour valear )

dT darT
dQ_C%dv+cd-—pdp,

C et ¢ étant les chaleurs spécitiques sous pression.constante
et sous volume constant. Si 'on remplace les dérivées par-
tielles de T par les valeurs déduites de la relation fondamen-
tale

(14) pv = RT,

on obtient c
' __Cpdv | codp -
dQ =R -+ R’

et, pour la variation d’entropie correspondante,

dS:é—Q—:Cﬂ +c€.£e,
T ~ 7 P
ou encore
dS:(C—-C)ﬂ—f—O(zg-i-d—p)'
Y v P
Mzis nous savons yue
C—c¢=AR,

et, d’autre part, la relation (14) nous donne, en la diftéren-
tiant et divisant par pv,
de - dp - dT

v+p T
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Nous pouvons donc écrire la variation d’entropie

aS=ARY 4T,
- g 3 T
et nous obtenons par intégration
(15) S—ARLogv +cLogT + a,

a étant une constante.
Appliquons cetle formule & chacun des gaz G,, G,, G;. En
remarquant que le volume spécifique de I'un d’eux, G,, par

[ 4 . P
exemple, a pour valeur v, = il désignant ici le volume
1

spécifique du mélange, nous avons
S, = AR, Log;lv—l +¢,LogT + a,
(£6) ¢ §,= AR, Log”—‘; + cyLogT + a,,
| S;= AR,Logr—Z—3 + ¢ LogT + a,.

En portant ces valeurs dans la formule (13), nous obtiendrons
I'expression de ’entropie du mélange en fonction de son
volume spécifique, de sa température et des masses des gaz
qui le composent.

264. Application i la dissociation. — Supposons que,
la température et le volume spécifique conservant la méme
valeur, on fasse subir au mélange une transformation réver-
sible ayant poureffet d’augmenter I'entropie de S, La quan-
tité de chaleur fournie pendant cette transformation satisfait



350 THERMODYNAMIQUK.

a I'égalité
as = 249,

=T

et, d’autre part, elle & pour valeur

dQ = Ldy; _
nous avons donc . '
L
dsS = T—dy.

Mais
dS = m,dS;+ m,dS,+ m;dS;+ S;dm,+ S,dm, + S;dm,,

La premiére des expressions (16) nous donne par différen-
tiation, puisque ¢ et T sonl constants,

dm
dS;—=— AR, 7’1;
nous en déduisons

m,ds,-'l— Sidm,:-_‘ (S““ AR,) dm‘_-—— [~4 (Sl -_ ARi) dpu

Les deux autres expressions du groupe (16) nous condui-
raient a des égalités semblables; par conséquent, en les
additionnant, nous obtenons

ds =[S+ BSs+ y8;—A(aR;+ BR, + yRy)] dp,
et par suite

8,4+ BSs+ yS;— A (aR, + BRy+ yRy) = %

Remplacons les entropies S,,.8,, S; par leur valeur (16); il
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vient
A Loge (xR, + BRy+ yR,)
— A(aR;Logm,+ BRiLogm,+ yR,Logm,)

+ (ac; +Bey+y6) LogT + aay +Bag+yag= -Il—i
Mais nous avons posé |
acy + Bey+ fc,: k2,
et de cette égalité et -des égalités (4) il Ar.ésulteﬂ
aRi;i- BRy+ )IR,_—..)\.A
Par conséquent, si nous posons ‘
AaR,=a,, ABR,=B, Ayn._;—_ Yoy
aa,+Pa,+ yay=a,
nous obtenons
A)Logv — &, Logm,+ 3,Logm,

- —vyiLogm;+ kkLogT +a= ],f

Telle est la formule-de la disseciation.

Elle conduit 4 plusieurs conséquences intéressantes d’ac-

cord avec I'expérience. Comme exemple, signalons la sui-
vante :
- Dans le cas out le.corps. .qui se dissocie -est:formé sans
condensation, A est nul et le. volume spécifique o disparait
de la formule; par-suite, la-composition du mélange ne dé-
pend pas.du volume. On peut donc le.comprimer 4 la tem-
pérature constante sans changer I’état du systdme. '
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262. Remarques sur 1'hypothése de M. Duhem. — Mais,
bien que les conséquences de la formule précédente ne
soient conlredites par aucune expérience et soient méme
confirmées par quelques-unes, la théorie précédente ne
peut étre acceptée sans restriction, la seconde des proposi-
tions qui lui servent de base reposant sur une hypothése
absolument arbitraire, I'hypothése de M. Duhem.

11 est facile de se rendre compte de l'arbitraire de cette
hypothése.

Appelons S, Pentropie de I'unité de masse du gaz G,
lorsque sa pression est égale & la pression totale p du mé-
lange, et sa température égale 4 T. Cette quantité est évi-
demment différente de 8, puisque cette derniére se rapporte
au cas ol le gaz est A la pression p; et que I'entropie d’un
. gaz parfait dépend de la pression. D’aprés la formule (15),
sa valeur est

Y = AR, Logv) + ¢, LogT + a,,

. ¢, étant le volume spécifique du gaz G, sous la pression p
et a la température T. La différence S, — 8/ est donc

S, — 8, =AR, Log

d .
m, ',

Le second membre de cette égalité ne dépend que des
variables m,;, my, m;. En effet, le volume spécifique de G,
étant v, pour les valeurs p et T de la pression et de la tem-
pérature, le volume occupé par la masse m; de ce gaz dans
les mémes conditions est m,¢;. En désignant par v, et ¢} les
volumes spécifiques des gaz G, et G; pour les mémes valeurs
de la pression et de la température, m,v, et m,¢; sont les
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volumes des masses m, et m; de ces gaz. Or le volume total
v du mélange est la somme de ces volumes; par conséqitent,

My~ My ¥y~ Mg ¥y = 9.
D’autre part,
poi=R,T, pva=R,T, poi=R;T;
par suite,

myvy  myvy,  mgo, v ,
m1R| ms Rg m,Rs In‘R“"}"‘ ms “2+ m,Ra

et il en résulte

9 my R;

Log my v, = Log miR, + maRe+ ms Ry

On prouverait de la méme maniére que les différences
S, — 8, et 8;— 8} sount des fonctions de m,, m,, m;. Nous
pouvons donc poser

m, S"‘*" m282+ msss

— m 8| — m; 8, — m; 8, = (my, my, my).
Or nous avons démontré que ’entropie S du mélange est .
S = m S+ my 8y + my 8, + ¢ (my, my, my);
par conséquent,
S =m 8| + m,8), + mzs',,;i- Y (myy my, my) + @ (my, my, my)
ou encore
S =m, S| + m, 8, + m; S, + y (my, m,, m,),

% étant une fonction quelconque des masses.
P. 23
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Nous pouvons supposer que cette fonction est une con-
stante absolue que l'on peutnégliger : Phypothése n’est ni
plus ni moins acceptable que celle de M. Duhem. Alors

S =m, 8|+ m,S, + m,8,,

c’est-a-dire : I’entropie d’un mélange homogéne de plusieurs
gaz est égale & la somme des entropies de ces gaz lorsque
chacun d’eux est a la température et a la pression du mé-
lange.

Cetle proposition peat servir de base 4 une théorie de la
dissociation au méme litre que celle qui précéde. Or une
telle théorie conduirait 3 des conséquences en contradiction
avec I'expérience et, par suite, ne saurait étre acceptée. La
proposition précédente n’a donc aucune chance d’étre vraie
malgré son. analogie avec celle que M. Duhem admet, et,
puisqu’elle résulte d’'une hypothése semblable & celle de
M. Duhem, celle-ci peut étre inexacte. Nous allons essayer

de la justifier.

263. Conséquence de cette hypothése. — Si nous admet-
tons que I'entropie du mélange est, (l’aprés les égalités (13)
et (16),

S—3 (AR,m. Log 5 +eim, LogT-*—mia,),
\ 1

pour un mélange a4 la méme température dont le volume
spécifique est ¢’ et contenant par unité de masse une masse
m du gaz Gy, m, du gaz G, et m; du gaz G;, I'entropie est

!
=2 <AR1 ', Log ;v(_ ~+4¢;m, LogT + m/, a,>.
1 .
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Si nous meltons en communication deux récipients que
nous supposerons contenir une masse 1 de chacun de ces
mélanges, nous obtiendrons par diffusion un nouveau mé-
lange dont 'entropie totale 8” a pour valeur

v+ ¢
7
m, -+ m

8"=ZAR,(m,+ m';) Log
+ ¢, (m;+ m) LogT + (m, + m'y) a,.

Cette valeur est plus grande que S, +- 8, puisque la diffusion
est un phénomeéne irréversible et que nous savons qu’un
phénoméne irréversible et isotherme est accompagné d’'une
augmentation de ['entropie. Cetle augmentation a pour
expression

v+ ¢
mi—*— ’nl

S’ 8§ —8§'=3ZAR, [( my -+ m'; ) Log

—my Log’—’-‘:-l— — m', Log r—n‘%] .

8’il n’y avait qu’un seul gaz, I'augmentation d’entropie
aurait précisément pour valeur le premier terme de la
somme gui forme le second membre de cette égalité. Par
conséquent, il résulte de I’hypothése de M. Dubem la pro-
position suivante :

Quand deux mélanges formés de plusieurs gaz se diffusent,
l'augmentation de I'entropie est égale a la somme des aug-
mentations qui résulteraient de la diffusion des gaz si cha-
cun d’'eux existait seul dans les récipients qui contiennent
les mélanges.

264. Montrons que, réciproquement, si cette proposition
esl admise, 'hypothése de M. Duhem en découle.
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Supposons que les masses m,, m,, m; des trois gaz G,, G,,
G, soient dans des récipients séparés sous la pression p et
a la température T. Les entropies de ces gaz sont alors §/,
S,, 8} par unité de masse, et ’entropie du systéme qu’ils
forment, étant évidemment égale & la somine des entropies
partielles, a pour valeur

(17) m,S'l—i- mgs;+ m,S;.

Mettons les trois récipients en communication; les gaz se
diffusent. Cherchons I'augmentation d’entropie qui en ré-
sulte. :

Si Je gaz G était seul, deux des récipients seraient vides
et la mise en communication des récipients aurait pour effet
de faire occuper par la masse m, de ce gaz le volume ¢ de
I’ensemble des trois récipients. Comme d’ailleurs nous sup-
posons que la diffusion s’opére sans variation de tempéra-
ture, conformément & la loi de Joule, la température de cette
masse gazeuse est T. Par conséquent, son entropie est S, par
unité de masse. La variation d’entropie résultant de la dif-
fusion de la masse m, supposée seule est donc

ml(sl—s/l)'

Les variations de l’entropié des masses m, et m; des deux
autres gaz, quand ces gaz, supposés seuls séparément, se
diffusent, ont des valeurs analogues. Si donc nous admettons
la proposition du paragraphe précédent, nous avons, pour
I'augmentation d"entropie résuitant de la diffusion des gaz
Gl) GZ’ GS’

_mx(sl_ 8)) + my (S, — 8y) + my (S, — 85).
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Ajoutant cette quantité a la valeur (17)de I'’entropie avant
{a diffusion, nous obtenons pour I’entropie du mélange

S'—':misl"‘l— mQSg+m3S;§.,

expression qui montre que la fonction ¢ (my, my, m,) est
nulle, comme 'admet M. Duhem. '

265. Justification de I'hypothése de M. Duhem. — L’hy-
pothése de M. Duhem se trouvera donc justifiée si nous
démontrons la proposition du paragraphe 263. Les dissocia-
tions dont le carbonate de chaux est le type nous permettent
de faire cette démonstration. Il importe de remarquer toute-
fois que cette démonstration repose sur certains faits
observés dans cette dissociation du carbonate de chaux, ou
plutdt sur certains faits généralement admis. La démonstra-
tion qui va suivre ne peut donc conférer a U’hypothése de
M. Duhem plus de certitude que n’en ont ces faits eux-mémes.

Nous avons déja dit que les dissociations de ce genre sont
c-omparab-les 4 la vaporisation d’un liquide. Or nous savons
que, pour ce dernier phénomeéne, la tension maximum de
la vapeur posséde la méme valeur lorsque la vaporisation a
lieu dans le vide et lorsqu’elle a lieu dans un gaz quelconque,
pourvu (ue la température reste la méme dans les deux
cas; en outre, cette tension est indépendante de la quantité
de liquide qui se vaporise. Il doit donc en étre de méme
dans les dissocialions ayant pour type celle du carbonate
de chaux; en d’autres termes, la pressionv du gaz provenant
de la dissociation est, pour chaque température, indépen-

dante de la nature et de la masse du gaz étranger qui peut
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se trouver dans 'enceinle ol s’effectue ce phénoméne et de
la masse du composé qui se dissocie. Cette loi peut d’ailleurs
étre considérée comme démontrée expérimentalement par
les recherches quantitatives faites par Debray sur le carbo-
nate de chaux et par M. Isambert sur les combinaisons des
chlorures et iodures métalliques avec 'ammoniaque. Admet-
tons-la donc et faisons-en usage pour le but que nous nous

proposons.

266. Prenons deux vases de volumes ¢ et ¢ contenant: le
premier, une masse égale a 'unité d’azote et une masse m
d’acide carbonique; le second, une masse m' d’acide carbo-
nique. Soit T la température commune de ces vases, et
admettons que la pression commune p soit égale & la tension
de dissociation du carbonate de' chaux i la température T.
Nous désignerons par A I’état du systéme formé par les
deux vases dans ces conditions.

Si nous mettons ces deux vases en communication, les gaz
se diffusent et I’entropie du systéme dans ce nouvel état B
est plus grande que précédemment. Pour avoir la valeur de
I'augmentation, employons un procédé analogue a celui qui
nous a servi au paragraphe 187 pour trouver la variation de
I’entropie du systémé de deux sphéres chargées de quantités
égales d’électricités de noms contraires quand on fait com-
muniquer ces sphéres.

Nous pouvons supposer que le vase de volume ¢ ¢ontient
une certaine quantité de chaux ('); nous ne troublons pas

(*) Voir plus loinle Tableau de la page 367.
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ainsi I’élat du mélange, car, aprés la diffusion, la pression
de P'acide carbonique est inférieure i la tension de dissocia-
tion p du carbonate de chaux a la température T et par con-
séquent ce dernier composé ne peut se former.
Comprimons les gaz contenus dans les vases, ceux-ci res-
tant en communication et la température conservant la
méme valeur. La pression de I'acide carbonique atteint la
valeur p, et, si la compression continue, une partie de ce gaz
se combine avecla chaux, puisque la présence de l'azote n’a
pas d’influence sur le phénoméne, d’aprés ce qui précéde.
Arrétons la compression au moment ol une masse m’ est
combinée. Alors nous avons un mélange gazeux formé d’une
masse 1 d’azote et d’'une masse m d’acide carbonique.
Séparons ce mélange du carbonate de chaux et laissons-
le se détendre jusqu’a ce que la pression jotale devienne p;
son volume est nécessairement ¢ si, comme nous le sup-
posons, la température reste T pendant cette détente. Une
partie du systéme est donc revenue a son état primitif,
Prenons le carbonate de chaux et augmentons le volume
du récipient qui le renferme. Le carbonate se décompose
peu a peu et la pression de ’acide carbonique conserve tou-
jours la méme valeur p. Quand le volume est devenu ¢/, la
masse d’acide carbonique & I'état gazeux est nécessaire-
ment m’, Tout le carbonate de chaux formé précédemment
est donc décomposé et, si nous faisons abstraction de la
chaux qui reste, le systéme tout entier est revenu dans son
état primitif A. '
Or toutes les transformations précédentes sont réversibles.
Par conséquent, si dQ est la chaleur fournie au systéme
pour une transformation élémentaire, la variation d’entropie
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’ tFA dQ
résultant du passage de I’état B & I’état A est T et celle
qui résulte du passage inverse ne différe de la précédente
que par le signe. Si donc nous appelons AS I'augmentation
d’entropie résulant de la diffusion des masses gazeuses con-
sidérées, nous aurons, d’aprés la définition de l’entropie
donnée au paragraphe 186,

— dQ
AS=— [ 5=

5 ) |
AS_—T/dQ,

puisque toutes les transformations sont effectuées a la méme

ou

température.

267. Si, aprés avoir passé de ’état B & I’état A par la série
de transformations réversibles que nous venons de considé-
rer, nous revenons de I’état B & I’état A par diffusion, nous
accomplissons un cycle fermé auquel nous pouvons appll-
quer le principe de I équivalence. D’aprés ce principe,

Q=Ars,

7 étant le travail extérieur accompli, et Q la somme des
quantités de chaleur fournies au systéme. Or la diffusion
s’effectue sans emprunter de chaleur 3 I’extérieur; par con-
séquent, Q est égale A I'intégrale qui figure dans l'exbression
de AS et nous avons pour la valeur de cette derniére quan-
tité
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Le travail 7 a pour expression pdv, d¢ étant la variation
du volume du mélange. Mais la pression totale du mélange
est la somme des pressions p; et p, qu'auraient les gaz si
chacun d’eux occupait a lui seul le volume tout entier. Par

'r:::fp,dv +fp2dv.

La premiére des intégrales du second membre représente le

conséquent,

‘travail ; qu'accomplirait I’un des gaz, 'azote par exemple,
s'il éiait seul & subir les transformations, son volume étant
toujours égal a celui du mélange; la seconde, le travail 7,
qu’accomplirait autre gaz dans les mémes conditions. Cal-

culons donc ces travaux 7, et 7,.

268. La masse de l'azote étant constamient égale a
Punité, on a
prv=RT
et, par conséquent,

d
rl:fp,dv:R,T —‘;(-)
Les limites de I'intégrale sont : le volume v + ¢’ qu'occupe
le mélange gazeux quand le systéme est dans I’état B, et le
volume v du mélange d’acide carbonique et d’azote quand

le systéme est revenu a I’état A; nous avons donc
(4]
73, =R, T Log ———-
! ! 8ok v

Le travail 7, est plus difficile & évaluer, la masse d’acide
carbonique gazeux étant variable. Cette masse est égale 2
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m -+ m’ quand le systéme est dans I’état B, et elle conserve
cette valeur jusqu’au moment ou, par compression, la pres-
sion de 'acide carbonique dans le mélange est devenue égale
a p. Pendant cette période de la transformation on a

pev=(m+ m)R,T

et, par conséquent,

fpgdv::(m—l-m’)R,Tf%‘—) :—_(m~|—m’)B,TLogv:_'v,;
vy étant le volume du mélange gazeux i la fin de cette pé-
riode.

Pendant ]a combinaison de la chaux et de Pacide carbo-
nique la pression reste p. Si done nous appelons ¢, le vo-
lume du mélange gazeux au moment ol une masse m’
d’acide est entrée en combinaison, le travail correspondant
a cetle période est

P(Vz—V;)-

La pression reste aussi égale & p quand on décompose le¢
carbonate de chaux formé; le volume du gaz étant ¢’ a la fin
de cette décomposition, le travail correspondant est

py'.

Quant a la masse m d’acide carbonique non combinée & la
chaux, elle fait partie d’'un mélange dont le volume passe de
v, a v; pendant cette transformation on a

pav=mR,T
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et, par suite,
fpgdv__mR Tf— _mR,TLog—
En additionnant ces divers travaux, nous avons

1'2__(m+ m YR, T Log

v+ ¢
[%
+ p(v 4+ vs—0y) +mR,T Log-‘,—-
2

Par conséquent, la variation d’entropie cherchée est

i
08) As——-A—’_AR Log """  (m+m')AR,Log 2*

S AP(Vy— 0y — o) +mAR,Log%’-

269. Evaluons maintenant cette variation en admettant la
proposition du paragraphe 263.

Le volume spécifique de I’azote dans I’état B du systéme
est v+ ¢ et son entropie a pour valeur, d’aprés la for-
mule (15),

AR, Log(v + ¢') + ¢, LogT + a,.

Dans I'état A du systéme le volume spécifique de ’azote
supposé seul est ¢ et son entropie

AR, Logv + ¢, LogT + a,.
Par conséquent, la variation d’entropie de ce corps est

» 14
AR, Logv+v
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Dans I'état B du systéme on a une masse m -+ m' d’acide
carbonique faisant partie d’'un mélange de volume ¢ + ¢';
son volume spécifique est donc m + m' et son entropie

m+m'){ AR,Lo L|r'—f)l——f—cLo T+a,).
( ) (AR Log o, + e, LogT + )

Quand le systéme est revenu & I'état A, I'acide carbonique
se trouve en partie dans chacun des deux vases; son volume
spécifique dans celui qui contient le mélange est m et son
entropie

m (AR, Log % + ¢, LogT + a2> ;

pour 'entropie de Pacide carbonique contenu dans P'autre
vase, on trouverait

<AR, Log ; =+ ¢y LogT + a2>

la variation d’entropie de l'acide carbonique est donc

-+ ¢

(m+m)AR,Log ° mAR,Log———m AR,Log—-

Par conséquent, d’aprés la proposition admise, la variation
d’entropie du systéme est

v+ ¢
m —+ m'

! .
AS = AR,Log =Y - (m + m')AR, Log
— mAR, Log-r% -—m’AB,Log-:—z,-l

270. 11 nous-faut & présent, pour démontrer I’exactitude
de cette proposition, faire voir que cette derniére expression
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estidentique al’expression (18). Leurs premiers termes étant
les mémes, il suffit de montrer que ’on a identiquement

(m+m’)R2Logv_: v + p(01— vy — v’)+mR,Log%’-»
1
, v+ ¢ 4 v’
= (m+ m’)R, Logm —mR,LOgE —m’R,LOg;—,

ou, en supprimant les termes communs aux deux membres,

(m-+m")RyLog 2" 4 mR,Log 22
vy m

‘)I
+ m'R, Log-n—l, + p(vy—v,— v )=o0.

Or, remarquons qu’a la fin de la premiére période de la
compression la pression de I'acide carbonique dans le mé-
lange est p; le volume de celui-ci étant ¢, et la masse d’acide
carbonique qu’il contient étant m + m’, on a

pvi=(m+ m')R,T.
A lafin de la seconde période de la compression la pression

de ce gaz est toujours p; la masse est m et le volume du
mélange gazeux est v,; par conséquent,

pva=mR,T.

Enfin, & la fin de la décomposition du carbonate de chaux on
a une masse m' d’acide carbonique occupant un volume ¢’
et dont la pression est p; on a donc

pv'=m'R,T.
De ces égalités il résulte immédiatement

P(vy—eg—v')==0



366 . THERMODYNAMIQUE.

et
m+m' _ m m'

[

4 B o T R,T

L’identité & démontrer se réduit alors &

BQT +m'L0g5;)—l-:0-

NLog P '
(ln+m)L0032T+mL0g o

Elle est évidemment satisfaite. _
Nous pouvons donc admettre ’hypothése de M. Duhem et
accepter la théorie tout entiére. '

271. Je crois devoir, pour lintelligence de ce qui pré-
céde, joindre les deux Tableaux suivants. Dans le grand -
Tableau, la premiére colonne indique les phénoménes qui
se produisent dans chacune des périodes du cycle; les
colonnes.suivantes indiquent quelles sont dans chacun des
vases et d la fin de chaque période la quantité d’azote, celle
d’acide carbonique, la pression et le volume. En ce qui con-
cerne le second vase qui contient de la chaux et du carbo-
nate de chaux, le volume indiqué dans la derniére colonne
n’est que le volume occupé par les gaz; on ne tient pas
compte du volume occupé par les composés solides.

Le cycle comprend ainsi cinq périodes; si ’on appelle V
le volume total des deux vases moins le volume occupé par
les composés solides et w la pression totale, on aura :

Nature

Chaleur de la
Relation entre V et ©. Travail. dégagée. transformation.
Premiére période (diffusion)... V=v+¢  m=p =0 =o irréversible
Deuxiéme période (diffusion)... Ve=(v+-¢)p 2o 2o réversible
Troisiéme période (diffusion).. V(o—p)=const. 20 20 réversible
Quatriéme période (diffusion).. Y& = const. zZo0 Zo réversible

Cinquiéme période (diffusion).. w=p 20 2o réversible



PREMIER VASE.

DEUXIEME VASE.

e e =
Az. cos. Press. Vol. Az. cos. Press. Yol.
Etat initial. I m P v o m' p v
Les vases sont mis en commu- | ¢ [v(m—+m') o v |v(m4m) P ¢
nication, les gaz se diffusent. o+l vt 14 v+¢'| oo
On comprime les gaz dans les
deux vases et 'on pousso la com-
pression jusqu'a ce que la pression
de CO? étant devenue égale & p, , , , ,
ce gaz commence a se combiber 3 , 1p(+m+m)(v+¢" )(m+m') o o p(i+m+m’) °
la chaux. On peut supposer quon | ! m+m m-m' I+m-+m m+m'
a réduit 3 zéro le volume du
deuxiéme vase, qui reste d’ail-
leurs en communication avec le
premier.
On continue Ja compression, la (v+9)m
pression de CO? reste égale & p, p(s+m) mamt plitm)
ce gaz se combine peu i peu & la 1 m —_— om o o — o
chaux, on s’arréte quand une m = m
quantité m' s’est combinée. 1+4m
On interrompt la communica-
tion entre les deux vases et I'on pli+m)
détend dans le premier vase jus- | 1 m P (4 0 0 o 0
qu’a ce que la pression redevienne m
égale A p.
On détend dans le deuxiéme
vase, la pression y demeure con-
stamment égale & p et le carbo- 1 | m P o o o P 0

nate se dissocie
arréte quand la
complate.

eu i peu, on

issociation est

‘NOILVIDOSSIA

Log



CHAPITRE XVI.

PHENOMENES ELECTRIQUES.

I. — PILES HYDRO-ELECTRIQUES.

272. Quantités définissant 1'état d'une pile. — La con-
naissance de la pression p et de la température T ne suffit
pas pour-déterminer complétement I’état d’'une pile hydro-
électrique; une troisiéme variable au moins est nécessaire
pour définir I’état chimique du liquide ou des liquides qui
composent la pile. Le zinc constituant 'une des électrodes
de la plupart des piles, nous pouvons prendre pour celte va-
riable la quantité m de zinc qui est dissoute a I'instant con-
sidéré. | "

Nousaurons d’ailleurs & considérerd’autres quantités, inais
elles dépendent des trois précédentes.

L’une d’elles est le volume ¢ des corps qui intervienneni
dans les phénoménes dont une pile est le siége; la variation
de ce volume est souvent trés petite, mais elle ne saurait
étre négligée dans le cas ol il y a des gaz dégagés, comme
dans la pile de Bunsen, ou des gaz absorbés, comme dans la
pile & gaz.

Si I'on appelle i Iintensité du courant qui ecircule dans le
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conducteur réunissant les pdles de la pile, la quantité d’élec-
tricité qui traverse une section de ce conducteur pendant
un temps dt est i dt. D’aprés la loi de Faraday, cette quantité
est proportionnelle & la quantité dm de zinc dissoute pendant
ce temps; nous avons donc

dm = ki dt.

L’énergie voltaique produite pendant le méme temps a

pour valeur

Eidt,
E étant la force électromotrice de la pile. Lorsqu’on prend
le volt et Pampére pour mesurer les forces électromotrices
et les intensités, 'énergie voltaique est exprimée par le
quotient d’un certain nomhre de kilogrammétres par ’accé-
lération g du mouvement des corps graves.

Pour que I’énergie voltaique soit exprimée en kilogram-
métres il faut donc modifier les unités électriques; nous sup-
poserons cette modification faite.

Alorslavaleuren calories de I’énergie voltaique ou chaleur
voltaique est

AEidt= AAE dm.

273. Théorie d’'Helmholtz. — L’énergie voltaique provient
nécessairement de I’énergie ﬂépensée dans la pile par suite
des réaclions chimiques qui s’y produisent. Pendant long-
temps on a cru que ces deux énergies étaient égales. 8’il en
était ainsi, on aurait, en appelant L dm la chaleur chimique
dégagée quand une masse dm de zinc est dissoute,

%dm = Ldm,
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et, par suite,
AE

- = L.

Au moyen de cette égalité il est possible de calculer la
force électromotrice d’'une pile quand on connaitlesréactions
chimiqués dont elle est le siége et les données thermochi-
miquesd»'«:es réactions. Ce calcul a été fait pour un assez
grand nombre de piles; il a toujours donné pour la force
électromotrice une valeur plus grande que celle qui est
fournie par l'expérience. 11 n’y a donc pas égalité entre
" I'énergie voltaique et I’énergie chimique de la pile. Nous
poserons

Ldm:%(ﬁﬂi,)dm.

Mais la chaleur chimique se compose de deux parties : 1a
chaleur compensée L'dm et la chaleur non compensée L"dm;
par conséguent,

(1) L'dm+L"dm=%Edm+%Eldm.

M. H. von Helmholtz admet que 'on a

A s
PR

L'=
c’est-a-dire : La chaleur voltaique est égale a la chaleur non:
' compensée que fournirait la réaction chimique, st cette réac+ -
tion se produisait sans engendrer de courant.
En s’appuyant sur cette proposition, admise a titre de pos-
tulatum, Helmholtz a édifié une théorie thermodynamique-
de la pile.
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274. Démonstration du postulatum d’Helmholtz. — Cette
proposition peut étre démontrée & 'aide d’une hypothése :
la force électromotrice E d’une pile peut dépendre des va-
riables p, T, m, maiselle est indépendante de l’intensité i du
courant.

En particulier, la force électromotrice de la pile reste la
méme quand le courant change de sens et qu’elle devient
ainsi contre-électromotrice; c’est ce qu’on exprime quelque-
fois en disant que la pile est réversible. Il peut donc y avoir
des piles auxquelles cette théorie ne serait pas applicable,
car cette condition peut ne pas étre toujours remplie.

Admettons cette hypothése et considérons un circuit fermé
contenant une pile de force électromotrice E et une machine
d’induction de force électromotrice E’; la pile et la.machine
sont en opposition,

Par suite du passage du courant dans le circuit et du fonc-
tionnement de la pilé il se développe de la chaleur, et la
température du systéme formé par le circuit et la pile varie.
Nous supposerons que la chaleur est enlevée 3 mesure qu’elle
est produite, de telle sorte que la température du systeme
reste constamment T; nous supposerons aussi que la pres-
sion reste constante. Alors des trois variables dont dépend
I’état du systéme, une seule, m, change de valeur; soit dm
~ sa variation pendant un intervalle de temps d¢.

275. Les phénoménes qui se produisent dans le systéme
étant irréversibles, nous devons avoir

(2) fds>f‘—ll—9-
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D’aprés la définition de la chaleur compensée, la variation

d’entropie de la pile est

(3) de:— %dm.

Nous ignorons si I’entropie du systéme varie par le fait
qu’un courant électrique y circule, mais il est facile d’élimi-
ner la variation qui peut en résulter en supposant qu’au
commencement et A la fin de 'intervalle de temps considéré
Pintensité du courant est nulle. Par suite de cette hypothése,
le premier membre de I'inégalité (2) est donné par I'éga-
lité (3).

La quantité de chaleur développée dans le circuil est,

fAR tdt,

R étant la résistance du circuit. Puisque nous supposons
que cette chaleur est enlevée et que la température du sys-

d’aprés la loi de Joule,

X . v d .
téme reste constante, la portion del mtégralef—Tg-re]alwe

A 3
—_ Tle’dt.

La chaleur dégagée par la réaction qui se produit dans la

dem:%f(E-a—E,)dm.

. : . A . .
Mais, puisque la portion FfE dm esttransformée en éner-

au circuit est

pile est

gie voltaique, celle qui doit étre enlevée pour maintenir
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conslante la température de la pile est

%fE,dm:AfE,idt,

. . . d . .
et, par suite, la partie de l’mtegralefTQ qui est relative a

la pile a pour expression

— %fE,idt.

L’inégalité (1) devient donc

L' A . A .
—dem>—Tle2dl——,—l;fElldt

fL'kidz<AfRi=dz+.AfE,id¢.

276. Nous pouvons toujours supposer U'intervalle de temps,

ou

pendant lequel nous considérons le systéme, assez petit pour
que les quantités E, E,, R el L’ puissent étre regardées
comme constantes pendant cet intervalle. Comme nous vou-
lons que I'intensité { du courant soit nulle au début et a 1a fin
de cet intervalle, nous sommes obligés de supposer que iet
que la force électromotrice E’ de la machine d’induction sont

variables. Dans ces conditions P'inégalité précédente peut

kL’/.idt<ARfi’dt+AEifidt.

Elle peut étre transformée au moyen de I’égalité fournie

s’écrire

par la loi de Ohm. D’aprés cette loi, nous avons, en dési-
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gnant par M le coefficient de self-induction du circuit,
: , di .~
E—~E+M 7 R,
ou, en multipliant par { dt,

(E—E)idt+Midi=Ride,

et, par suite,

(E—E’)fz’dt+Mfidi::Rfi’dt.

., . g o . .
L’intégrale idi a pour valeur —- Mais, puisque nous
> p

avons supposé l'intensité du courant nulle au commence-
ment et & la fin de P'intervalle de temps considéré, cette va-

leur se réduit a zéro. L’égalité précédente devient donce

(4) (E-Ef)fid:;ﬁfﬂde

et la derniére inégalité peut s’écrire
kL’fidt<A(E+E,—E’)fia’t.

Le second membre de l'égalité (4) est nécessairement
positif, puisque R et i* le sont; par suite le premier membre
'est aussi, et nous pouvons, sans changer le sens de l'iné-
galité précédente, en diviser les deux membres par

(E—E’)fidt.
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1l vient alors

L A(E+~E —E)
MN—E < E=F
ou
(5) - ) —]T_T—+F>O.

277. Cette inégalité doit étre satisfaite quel que soit E'.

Montrons qu’il ne peut en étre ainsi que si

(6) %EI—L': 0.

En effet, si cette différence était positive, son quotient
par E — E’ pourrait étre négatif et trés grand pour une va-
{eur de E —E' négative et (rés petile; alors 'inégalité (5)
ne serait plus satisfaite. Si elle était négative, il suffirait de
prendre pour E' une valeur un peu plus grande que E pour
que 'inégalité cesse encore d’avoir lieu. Elle doit donc.bien
étre nulle.

Mais, si ’égalité (6) est satisfaite, il résulte de l'éga-
lité (1)

A

’—'—-
L._.kE,

ce qui démontre le postulatum d’Helmholtz.

278. Influence de la température et de la pression sur la
force électromotrice. — Appelons Cdt¢ la quantité de cha-
leur qu’il faut fournir au systéme qiland la température
varie de dT, les autres variables petm conservant les mémes
valeurs, et 1 dp celle qu'il faut fournir quand la pression
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varie seule d’'une quantité dp. Pour une variation dm de la
troisiéme variable m la chaleur produile par la réaction
chimique est L dm. Par conséquent, la quantité de chaleur
4 fournir quand les quantités p, T et m varient simultané-
ment est v

dQ = CdT + X dp — L dm.

Toutefois cette expression n’est exacte que si le circuit de
la pile est ouvert, car s’il est fermé le passage du courant
dans le conducteur reliant les poles y développe de la cha-
leur. Supposons donc le circuit ouvert.

Si la variable m restait constante pendant une transfor-
mation, deux quantités p et T suffiraient & définir & chaque
instant I’état du systéme et cetle transformation serait en
général réversible. Nous aurions donc pour la variation
d’entropie - o

as=9Q _ CaT +2dp
T - T

Si uu contraire m variail seule de dm, la variation d’en-
tropie correspondante serait
.-

L
ds—‘_Tdm-

Par conséquent, la variation d’entropie résulfant d’une
variation infiniment petite des quantités p, T et m est
__CdT +3xdp L’

— w=dm.

s T T

279. Calculons maintenant la variation dH’ de la fonction
H' de M. Massieu. On a

(7) H=TS —-U—Apv
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et, par suite,
dH'=8SdT +TdS —dll —Apdv — Av dp.
Mais, d’aprés le principe de 'équivalence,
dU=dQ — Apdy;

par conséquent, en remplacant dU par cette valeur dans
I’expression de dH’, il vient

dH'=S8 dT + T dS — dQ — Av dp.

8i nous remplagons dQ et dS par les valeurs précédem-
ment Lronvées, nous obtenons aprés simplification

dH'=8dT —L'dm + Ldm — Ac dp
ou
dH' =8dT — Avdp + L" dm.

'280. Or dH' et dS sont des différentielles exactes. Les
coefficients de dT et de dm dans I'expression précédente
de dH doivent donc satisfaire a ’égalité

s _dur
dm — dT’
: " das
En remplacant L” par sa valeur (7) et ~m Par sa valeur
; A
—L —— 'EE‘,
on a .
A A dE
TR T AT
ou encore
dE
(8) —= ——E,.
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En exprimant que d5 est une différentielle exacte, nous
obtenoans une nouvelle relation,

d (C\__4dL
am\T)/~ " dr T’

1 dC d (AE:)

ou

Tdm— dT\ &
ou enfin, en remplacant E, par la valeur tirée de la rela-
tion (8), ‘

dC

m

>
%
=
=3 =

(9)

&
-

De cette derniére relation il résulte que la force électro-
motrice d’une pile hydro-électrique est une fonction linéaire
de la température quand la capacité calorifique du systéme
n’est pas altérée par la réaction qui se passe dans la pile.
D’aprés la relation (8) elle est constante quand E,'est nul,
c’est-d-dire quand I'énergie chimique de la pile est entiére-
ment transformée en énergie voltaique.

284. L’expression de dH’ nous fournit une nouvelle rela -
tion en écrivant que les coefficients de dp et de dm satisfont
a l'égalité

dL’ dv
ap = Aam
En y remplagant L” par %E, noeus avons
dE__, dv
dp — dam

La force électromotrice d’'une pile augmente donc avec la
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. dy L. <
pression lorsque Zm &St négatif, ce qui a lieu quand des gaz
sont absorbés par la pile; elle diminue au contraire quand

. dy ‘s .
la pression augmente lorsque Tm est positif, ce qui se pro-

duit dans les piles dégageant des gaz, la pile de Bunsen par
exemple.

II. — PiLES THERMO-ELECTRIQUES.

282. Circuits hétérogénes. — Considérons un circuit
fermé formé de plusieurs métaux soudés hout a bout. Cha-
cune des soudures étant le siége d’une force électromotrice,
le circuit est en général parcouru par un courant; iln’y a
d’exception que si tout le systéme est & la méme tempéra-
ture, cas dans lequel, d’apreés la loi de Volia, la somme des
forces électromotrices de contact est nulle. Appelons i 'in-
tensité de ce courant.

Prenons deux points A et B sur ce circuit. 8i nous dési-
gnons par R la résistance de cette portion de circuit et
par ZE la somme des forces électromotrices de contact
comprises entre A et B, la loi de Ohm donne, pour I'excés
V,—V, du potentiel de A sur le potentiel de B,

“V;—V,=Ri— ZE.

Si nous admettons que la loi de Joule s’applique a un pa-
reil circuit, la quantité de chaleur dégagée dans la por-
tion AB du circuit pendant un temps dt est

A(Vi—V,)ide= AR dt — Aidt3E.
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283. Dans le cas ou le circuit est homogéne, ZE est nul
et la quantilé de chaleur dégagée est AR dt; le second
terme — A7dtEE se rapporte donc aux soudures; ei, s'il
0’y a qu'une soudure entre A et B, la chaleur qui s’y dégage
est égale 8 — Aid¢E.

284. Théorie élémentaire des piles thermo-électriques.
— Prenons deux métaux A et B (fig. 38) dont les soudures

Fig. 38.

M, et M, sont a des températures différentes, et intercalons
une machine d’induction C sur le circuit. Cette machine
est mise en mouvement par le courant qui circule dans le
circuit et produit du travail. Le systéme est donc tout 2 fait
analogue a une machine thermique : on y trouve une source
froide et une source chaude, puisque les soudures sont
maintenues a des températures différentes, et I'on produit
du travail. Il est donc naturel de lui appliquer les principes
de la Thermodynamique.

Admettons que l'intensité du courant reste constante et
Supposons qu’a chaque instant on enléve aux divers points
du circuit et des soudures la chaleur qui s’y développe. Dans
ces conditions le systéme reste constamment identique, et,
quel que soit I'intervalle de temps pendant lequel on le con-
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sidére,. le cycle est toujours fermé. Nous devons donc avoir

e

I'une des intégrations se rapportant au cycle décrit par un
des éléments du systéme, 'autre devant étre étendue a tous
les éléments du systéme. ’

Mais, puisque le cycle est toujours fermé quel que soit
I'intervalle de temps, nous pouvons supposer cet intervalle
infiniment petit. Alors le cycle de chaque élément est lui-
méme infiniment petit et on n’a plus & considérer qu’une

seule intégrale. La condilion est donc

aQ
fT << 0.
285. La quantité de chaleur qu’il faul enlever & un élé-

ment du conducteur, pendant I'intervalle de temps consi-
déré dt, pour qu’il ne s’échauffe pas est

AdRea de.

Par conséquent, la portion de l'intégrale précédente qui

se rapporte au circuit entier est

—Azadzfi",rﬁ.

A la soudure M, la quantité de chaleur dégagée est, si l’on
admet que la loi de Joule s’applique 4 un pareil circuit,

— AE, i dt,

E, étant la force électromotrice i cette soudure. A 'autre
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soudure la force électromotrice a une valeur différente Ey;
elle doit étre prise avec un signe contraire a celui de E,,
puisque les métaux A et B sont rencontrés dans un ordre
inverse & la soudure M, et a la soudure M, quand on par-
court le circuit entier dans le méme sens. La chaleur dé-
gagée a cette soudure est donc

+ AE,idt.

Si nous désignons par T, et T, les températures des sou-

dures M, et M, les termes de f? qui y correspondent
sont
AE,idt —AE,idt

T, ° T,

Par suite, I'inégalité de Clausius devient

) dR E, E,
— A i
Al dtf T + Al d‘(l‘, To)<o.

286. Cette inégalité doit étre satisfaite quelle que soit
T’intensité du courant, puisque nous n’avons rien supposé
sur la valeur de la force électromotrice de la machine inter-
calée dans le circuit et que, par suite, nous sommes libres
de faire varier I'intensité en faisant varier cette force élec-
tromotrice. Or le premier membre de 'inégalité est nul
pour { = o; c’est donc sa valeur maximum. Par conséquent,
sa dérivée par rapport a i,

_ dR E, E,
2Atdtf +Aa’t<T’ "f;)’
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doit étre nulle quand on y fait {=o. On doit donc avoir

E,

_E
T1 - Tll
et, par suite,

E,—E,= k(Tif Ty).

D’aprés cette formule, la force électromotrice d’un couple
thermo-électrique doit étre proportionnelle a la différence
de température des soudures. Cetle conclusion est en con-
tradiction avec les faits expérimentaux, puisque ceux-ci
montrent que la force électromotrice change de signe pour
une certaine valeur de la différence de température et
qu’elle peut étre représentée par la fonction

b \
a(T,—T,) — 2 (T1—T}),

La théorie élémentaire que nous venons d’exposer doit
donc étre rejetée.

287. Théorie de sir W. Thomson. — Sir W. Thomson ad-
met qu’il existe une force électromotrice au contact de
deux portions d’un méme conducteur a des températures
différentes ; il assimile donc ces deux portions & deux con-
ducteurs de nature différente, assimilation qui parait trés
vraisemblable.

Par suite de cette hypothése un circuit fermé homogéne
dont tous les points ne sont pas a la méme température est
parcouru par un courant, et chaque élément du circuit est le
siége d’une force électromotrice. Cette force électromotrice
dépend nécessairement de la température T del’élément et
de la différence dT entre cette température et celle del'élé-
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ment voisin. Nous poserons donc
E=1¢(T)dT.

Des forces électromotrices de ce genre se produisent dans
le circuit considéré précédemment, car, par suite de la con-
ductibilité thermique, la température décroit uniformément
dans les métaux A et B depuis la soudure chaude jusqu’ala
soudure froide. En tenant compte de ces forces électromo-
trices, sir W. Thomson a établi une théorie des piles thermo-
électriques dont les conclusions sont conformes a l'ex-
périence.

Mais, malgré cette concordance, la théorie de sir W. Thom-
son a soulevé quelques objections. On lui a reproché no-
tamment de ne pas tenir compte de la chaleur qui passe de
la soudure chaude & la soudure froide par conductibilité
thermique. Toutefois cette objection est sans importance,
car nous allons voir qu’il est possible de présenter la théorie
de sir W. Thomson sans donner prise & cette critique.

288. Reprenons le couple thermo-éléctrique dont les sou-
dures M, et M, sont aux températures T, et T, et dans le cir-
cuit duquel est intercalée une machine d’induction. Nous
supposerons encore que l'intensité { du courant demeure
constante et qu'on enléve la chaleur 4 mesure qu’elle se
produit, en chaque pointdusystéme. Nous admettrons aussi
qu’on ne considére le systéme que pendant un intervalle de
temps infiniment petit d¢. Nous aurons, pendant cet inter-

JEo

valle,



PHENOMENES ELECTRIQUES. 385

Dans cette intégrale dQ peut indifféremment représenter
la chaleur fournie 4 chaque élément du systéme soit par les
corps extérieurs seuls, soit par les corps extérieurs et les
autres éléments de systéme. Adoptons cette derniére inter-
prétation et posons

4Q =dQ' + 4Q’,

dQ' se rapportant aux corps extérieurs, dQ” aux éléments
du systéme.

. La différence de potentiel entre les extrémités d’un élé-
ment du conducteur A est

idR — ¢(T)dT

lorsqu’on tient compte de la force électromotrice due 4 la
variation de température. Si nous admettons laloi de Joule,
qui, comme nous le verrons plus loin, pourrait bien ne pas
atre applicable aux circuits hétérogénes, la chaleur dégagée
dans cet élément par le courant pendant le temps dt est

AitdtdR — Aidte(T)dT.

En méme temps l'élément recoit par conductibilité des
autres éléments du systéme une certaine quantité de chaleur;
comme les échanges de chaleur entre éléments ne peuvent
se faire que par conductibilité, cette quantité est dQ’. La

quantité de chaleur regue par I'élément est donc

AitdtdR — Aidto(T)dT +dQ’,

et, puisque cette chaleur doit étre enlevée, la chaleur fournie
par les corps extérieurs au systéme & I’élément considéré
P. 25
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est
dQ'=— Ai*dtdR + Aidto(T)dT — dQ".

Nous déduisons de cette égalité
dQ =dQ' + dQ"=— Ai*dtdR + Aidto(T)dT;

l’expfession de dQ ne change donc pas, que lon tienne
compte ou non de la conductibilité thermique.

Pour un élément du conducteur B nous avons une expres-
sion analogue; il n’y a que la fonction qui donne la force
électromotrice due 2 la variation de température qui se
trouve changée. Si nous appelons ¢ (T) cette fonctlion, nous
avons

dQ =— AidedR + Aidey(T) dT.

A la soudure M, nous aurons, comme dans la théorie pré-
cédente, ' ’

dQ = AE,idt,

et a la soudure M,,

dQ =— AE, idt.

289. L’inégalité de Clausius devient donc
g ( )
— Azt dR e(T)
Al dtf T +Atdtf T dr

. $(T) . E,  E\
+Aidt = dT + Aidt T, To) < o.

Le maximum de son premier membre ayant lieu pouri{—o,
sa dérivée par rapport i/ est nulle pour cette valeur de la

variable, ce qui donne la relation

E _E o(T) ¢(T) o
,ﬁ-—T-o—i-f———T d’l‘—o—f———,r dT =o.
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Mais, si 'on se déplace sur le circuit dans le sens CBMy,AM, C,
les limites de la premiére intégrale sont T, et T,, celles de
la seconde T, et T,; nous pouvons donc écrire la relation
précédente

E, E, To(T) —9(T) .\
T, T, +‘/T‘ B = dT =o.

D’ailleurs, on peut poser
E, E _ [/"d[E\,
ror =), a1

E désignant la force électromotrice résultant du contactdes
métaux A et B lorsque ces mélaux sont a la température T;

nous avons douc

. .
‘d (E\ .- (M) — ¢ (T) o
A (—{T<T>dl +f'ro ——T——~dl_o

A B L oM =M
‘/T“ I:(_[T<T>+_—-——T———]({l_0.

Celte condition devant étre satisfaite quelles que soient les

ou

limites de l'intégrale, puisque T, et T, sont arbitraires, la
quantité placée sous le signe d’intégration doit étre nulle,
c’est-a-dire

d (E (1) — (1) __
tTT(T) -+ T =0

290. Les fonctions ¢ et ¢ sont inconnues; ’hypothése la
plus simple est de supposer qu'elles sont proportionuelles
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ala température; posons donc
o(T)=aT et $(T)=BT.

Nous avons alors

Y m——

et, par suite,
E—=—b6T*+ aT.

La force électromotrice du couple est lasomme des forces
électromotrices de contact et de celles qui proviennent de
la variation de température, c’est-a-dire

Ty T,
E,—Ey+ [ o(T)dT+ [ ¢(T)dT

To Te

fT |55 +e(D—¥(m] ar.

Si nous portons dans cette expression les valeurs précé-

ou

dentes de ¢, Y et E, nous obtenons

T,
(— 26T +a+ bTYdT = a (T;— T,) — g(T}—Tg);
T,
I’expression de la force électromotrice d’'un couple en fonc-
tion de la température est donc de la méme forme que celle
qui résulte de 'expérience.
Mettons T,— T, en facteur; nous avons

(M=) (a—s Tt Te),
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Lorsque T, est trés peu supérieur a T,, le second facteur
différe peu de
a—bTy;
si nous supposons cette quantité positive, les deux facteurs
sont positifs. Quand T, augmente, le terme négatif du second
facteur augmente en valeur absolue, et pour une certaine
valeur de T, ce facteur est nul; pour une valeur plus grande,
il est négatif et par suite de signe contraire au premier
facteur qui reste toujours positif. La force électromotrice
change par conséquent de signe en s’annulant. La théorie
de sir W. Thomson explique donc Iexistence du point

d’inversion.

291. Modification de la théorie précédente. — Reprenons
les équations qui servent de point de départ aux théories
que nous venons d’exposer.

En premier lieu, nous avons écrit que la différence de po-
tentiel entre deux points A d’un circuit hétérogéne a pour
valeur, d’aprés la loi de Ohm,

V,—V,=Ri—3E.

Ensuite nous avons admis, en étendant la loi de Joule aux
circuits hétérogénes, que la quantité de chaleur dégagée
dans la portion considérée du circuit est

A(V,—V,)ide,
ou, en tenant compte de la relation précédente,
AR 2dt — Aidt2ZE.

De cette derniére expression nous avons conclu que la
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chaleur dégagée dans le circuit est AR 2dt quand le circuit
est homogéne, puisque alors ZE est nul el que la chaleur
dégagée au point qui est le siége d’une force électromo-
trice E a pour valeur — AE{d¢. '

De ces deux conclusions la premiére est vérifiée par 'ex-
périence, puisqu’elle n’est autre que la loi expérimentale
de Joule; la seconde, au coutraire, ne saurait élre acceptée
sans examen, '

En effet, d’apreés la seconde conclusion, la chaleur dégagée
2 une soudure quand un courant la traverse devrait étre
proportionnelle a la force électromotrice de contact dont
elle est le siége. Or celte chaleur dégagée est I'effet Peltier,
et 'on ne peut démontrer que cet effet soit proportionnel a
la force électromotrice de contact. En effet, dans un courant
fermé, cette force de contactestinaccessible a I’expérience,
qui ne peut atleindre que la somme algébrique de toules les
forces de contact du circuit.

La chaleur dégagée dans un élément d’un circuit dont la
température n’est pas uniforme devrait également étre pro-
portionnelle & la force électromotrice ¢(T)dT résullant de
la variation de température d’une extrémité a l'autre de
I’élément. En est-ilréellement ainsi? C’est ce qu’on ne saurait
dire, car, si I’effet Thomson a pu étre mis en évidence par
I'expérience, I'expérience, comme nous venons de le dire,
ne peut atteindre les forces électromotrices qui lui donnent
naissance, pas plus qu’aucune aulre force de contact envi-
sagée individuellement.

292. Reprenons donc celte théorie et montrons que cette
nouvelle difficulté n’en change pas les conclusions:
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Désignons par
By, —E;, ¢(T)dT, ¢(T)dT
les forces électromolrices de contact et les forces électro-
motrices élémentaires résultant de la variation de tempéra-

ture d’un point & un autre; nous aurons, pour la force élec-

tromotrice du couple,

E{—E,+ f
. To

Si nous continuons & désigner par ,

Ty

[¢'(T) — ¢/ (T)] aT.

— AE,idt, + AE,id¢
les quantités de chaleur dégagées aux soudures, et par
Aidto(T)dT, Aidey(T)dT

les quantités dégagées dans un élément du métal A et un
élémenl du métal B, tout ce que nousavons dit dans les pa-
ragraphes 288 et 289 reste exact. Par conséquent, en ad-
mettant que ¢ et $ sont proportionnels 4 T, nous aurons
encore '

Ty

(1) El-Eo+f (¢ (T)— ¢ (T)] dT

To

b
=a(T,—To) — = (T} —T}).

Appelons E, la force éiectromotrice de la machine d’in-
duction intercalée. Le travail produit alors est E;id¢, et, par
conséquent, la somme des quantités de chaleur dégagées
dans le circuit doil étre équivalente & ce travail; nous avons
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donc

AE, idt — AEoidt-—-Ai’dtde

T,
+Aidt | [¢(T)—¢(T)]dT = AE,:dt
T,
ou

T
(3) E—E,+ f [9(T) — ¢(T)] dT = Ri + Ey.
To .

Si nous partvons d’un point du circuit et si nous revenons
en ce point aprés avoir décrit le circuit entier, la différence
V,—V, entre le potentiel du point de départ et celui du
point d’arrivée est nulle; par conséquent, la loi de Ohm

donne

ou
T,
(3 E—E+ [ [¢(D—¢MldT=Re
T,

Ces égalités (2) et (3) nous montrent que le premier
membre de I’égalité (1) est égal a la force électromotrice de
Ja pile. Nous arrivons donc au méme résultat que précédem-
ment,

Mais quelle relation y a-t-il entre la force électromotrice E’
en un point et le quotient E de la chaleur dégagée en ce
point par Aidt? Les considérations précédentes ne peuvent
nous le dire; les égalités (2) et (3) ne nous apprennent
qu’une chose : c’est que dans un circuit fermé on a

IE'=2E.

Des nombreuses théories proposées pour trouver la rela-
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tion entre E et E' nous n’exposerons que celle de M. Duhem,
Nous verrons qu’elle souléve encore d’assez graves difficultés
et la discussion que nous en ferons montrera qu’elle reste
douteuse.

I1I. — Tatorie ¢ M. Durgx.

293. Potentiel électrostatique. — Des recherches expé-
rimentales de Coulomb il résulte que deux corps électrisés
dont les dimensions sont trés petites par rapport A la dis~
tance r qui les sépare exercent entre eux une force

_d9dq

re
[}

dq et dq’ représentant les charges électriques des deux
corps, la mesure de ces quantités étant effectuée au moyen
d’une unité convenablement choisie.

Pour une variation dr de la distance, le travail de cette

force est
14
tj.q_?_q_ dr
=
ou
']
—d <£”ld_‘7> .
r

Par conséquent, le travail des forces électriques qui
s’exercent enlre les diverses molécules d’un systéme élec-
trisé lorsque ce systéme subit une transformation ayant
pour effet de faire varier de dr la disltance de ces molécules

- Ju(22).

est
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I'intégrale étant étendue aux combinaisons distincles des
molécules prises deux a deux. On peut encore écrire. ce

_Lf‘d<_d_v£1),
2 r g

dq et dq' désignant les charges de deux motiécules quel-

travail

conques, et I'intégration étant maintenant étendue a toutes

les molécules du systéme.

!
W:lf‘ﬁ_"_‘l_;

2 r

Posons

.le travail des forces électriques pour une transformation

¢lémentaire du systéme a alors pour expression

—dW.

Cette fonction W, ainsi définie, est appelée I'énergie électro-
statique du systéme. ‘

Eile peut se mettre sous une autre forme. En effet, le po~
tentiel du systéme élant

V:fﬁ,
r

I’énergie électrostatique peut s’écrire
w:i/vwa

294. Systémes formés de conducteurs homogénes. —
Considérons un éystéme formé de conducteurs électrisés
homogeénes. Si nous lui faisons subir une transformation
qui modifie les charges et les positions dans I’espace des
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_conducteurs, sans altération de la forme, du volume, de
I’état physique ou chimique et de la température de ceux-
ci, et sans qu’il y ait échange d’électricité entre deux con-
ducteurs de nature différente, la différence U — AW et I’en-
tropie 8 du systéme restent constantes. .

Pour démontrer cette propriété, supposons d’abord que
les conducteurs du systéme changent de position dans l'es-
pace, mais conservent la méme distribution électrique.

Si nous appliquons & chacun des conducteurs une force

" égale el contraire a la résultante des forces électriques aux-

quelles il est soumis, la vitesse de ces corps est constam-

ment nulle pendant la transformation; par suite, I’accrois-
sement de force vive du systéme est nul. Le principe de la
conservation de I’énergie donnera donc

dU=4dQ + Az.

Les forces extérieures appliquées aux conducteurs étant
égales el contraires aux forces électriques, leur travail est
égal 4 celui de ces derniéres changé de signe. Le travail ©
fourni au systéme pendant la transformation est donce

+ dW;
par conséquent,
dU=dQ +~ A dW
ou

d(U—AW)=dQ.

Mais, dans les conditions ou elle s’effectue, la transfor-
mation est réversible; par suite,
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Or illn’y a aucune production ou ahsorption de chaleur,
puisque nous supposons que la distribution électrique sur
les conducteurs ne change pas; dQ est donc nul. Les égalités
précédentes montrent qu’alors U— AW et S ne varient
pas.

295. Considérons un des conducteurs du systéme, et mon-
trons que les fonctions U — AW et S conservent les mémes
valeurs quand la distribution électrique de ce conducteur
varie,

Prenons une molécule matérielle m de ce conducteur

possédant une charge dg et occupant le point M ( fig. 39g).

Fig. 39.

Transportons cette molécule avec sa charge en M/, et en
méme temps transportons la molécule matérielle qui occupe
le point M’ en M. Ensuite laissons la charge électrique dg
revenir de M’ en'M par conductibilité. La forme, le volume,
I'état physique ou chimique du conducteur ne sont pas
altérés par cette transformation, puisque le conducteur est
homogéne et que nous n’avons fait que permuter entre elles
deux molécules de matiére; les fonctions U et S conservent
donc la méme valeur. D’autre part, la distribution électrique
est la méme avant et aprés cette transformation ; par consé-
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quent, I’énergie électrostatique, qui ne dépend que des posi-
tions des masses électriques, reprend la méme valeur. Les
variations de U — AW et de 8 sont donc nulles. Celte con-
clusion subsisterait évidemment siles points M et M’ appar-
tenaient, respectivement, & deux conducteurs de méme
nature.

Cette opération se décompose en deux phases :

1° Transport des molécules matérielles M et M';

2° Transport de P’électricité par conduction.

La premiére phase, ainsi que nous 'avons vu, ne modifie
pas les fonctions U— AW et S; I'opération tlotale ne les
modifie pas non plus; donc il doit en étre de méme de la
seconde phase.

Les variations de la distribution électrique par conduction
n’altérent donc pas ces deux fonctions.

Nous pouvons donc modifier la distribution électrique sur
Ies conducteurs du systéme, faire passer de ’électricité d’un
conducteur sur un autre de méme nature, et en méme temps,
d’aprés le paragraphe précédent, déplacer ces conducteurs
sans modifier U— AW et 8. La proposition énoncée se
trouve ainsi démonirée. 1} en résulte immédiatement que
ces fonctions ne dépendent ni des positions des conducteurs,
ni des distributions électriques; elles dépendent des quan-
tités qui fixent I’état physique ou chimique, la forme, etec.,
de ces conducteurs et des charges électriques qu'’ils possé-
dent, Cherchons comment elles dépendent de ces derniéres

quantités,

296. Expressions de U— AW et de S en fonction des
charges. — Pour simplifier, réduisons le systéme i deux
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conducteurs A et B Homogénes mais de nature différente et
dont les charges sont ¢; et ¢,. Appelons U, S et W les
valeurs de I’énergie interne, de I’entropie et de l’énergie
électrostatlique dans I’état considéré, et U, et S, les valeurs
des deux premiéres fonctions quand le systéme est & I'état
neutre. )

Adjoignons au systéme un certain nombre m + n de
sphéres égales entre elles dont m sont formées avec la ma-
tiere du conducteur A, et » avec la matiére du second con-
ducteur; nous appellerons s, 'entropie d’une des premiéres,
ets,celle d’'une des secondes quand elles sont i I’état neutre.

L’ensemble du systéme considéré et de ces sphéres sup-
posées & I’état neutre forme un systéme dont I’entropie est

S'= 8 + ms, -+ ns,.

Faisons passer la charge ¢, du corps A sur g, des sphéres
formées ‘de la méme matiére; ce corps reviendra a I’état
neutre et chacune des sphéres possédera une charge 1; soit s}
la valeur de I'entropie de I'une d’elles dans ces conditions.
Faisons également passer la charge ¢, de B sur ¢, des
sphéres formées de la méme matiére, et désignons par s, l'en-
tropie d’'une de ces sphéres quand elle posséde une charge 1.
Nous avons alors un nouvel état du systéme total pour lequel
I’entropie est

8, =8+ (m — ;)51 + g15, -+ (n — q5)$2+ 915}

Mais, d’aprés ce qui a été dit au paragraphe précédent, le
passage de I’électricité d’un conducteur sur un autre de
méme nature ne modifie pas I’entropie du systéme; par con-



PHENOMENES ELECTRIQUES. 399

séquent, 8'= 79/, ce qui nous donne
S =84 q,(5,— 8§1) + g2 (5, — 5).

Or s, —s; ne dépend que de la nature et de I'état phy-
sique des sphéres et, par suite, du conducteur A ; nous pou-
vons donc poser .
$, — §1=1"n;.

Pour les mémes raisons nous poserons

Sy Sa == Ty

1, et n, étant des coefficients ne dépendant pas des charges
¢1 et g,. Nous aurons alors, pour I'expression de I'entropie
du systéme des conducteurs A et B en fonction de ces
charges,
S—-‘——Si‘*‘m%-*-‘%%-
Pour un systéme comprenant un plus grand nombre de

conducteurs nous aurions, en général,
(l) szst+ﬂ‘q1+ﬂ2q2+-..+nnqn.

Nous n’avons considéré que l'entropie. Mais les mémes
considérations s’appliquent évidemment a la fonclion
U — AW; nous trouverions pour cette fonction

(2) U—AW=U+0,¢g1+0ygs+...+ G,qn,

U, désignant I'énergie interne du systéme & I’état neutre et
6., 65 -.., 8, des coefficients indépendants des charges.

297. Différence de potentiel au contact et effet Peltier. —
Considérons deux conducteurs de nature différente, mis en

communication métallique.
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Il circulera un courant dans le fil qui les joindra I'un &
I'autre et ce fil sera en général le siége d’'un phénoméne
irréversible, A savoir la production de la chaleur de Joule.
Mais, si la différence de potentiel des deux conducteurs est
trés voisine de celle qui correspondrait a ]’équilibre, Iin-
tensité du courant sera infiniment petite et, comme la cha-
leur de Joule est proportionnelle au carré de cette intensité,
elle sera un infiniment petit du deuxiéme ordre. Nous pour-
rons alors la négliger et les phénoménes seront réversibles.
La variation d’entropie du systéme est donc, en supposant
les deux corps 3 la méme température T,

_ 49
(3) a8 =5

La variation d’énergie interne est
dU =dqQ,

puisqu'il n’y a pas de travail fourni au systéme. Par consé-
quent, nous avons

(%) dU =T dS.

Appelons dg la quantité d’électricité qui passe du premier
conducteur au second; la charge de ce dernier devient
q:+ dq et celle du premier ¢, — dq. Par conséquent, la va-
riation d’entropie du systéme est, d’aprés la formule (1),

(3) , dS =dg (ny— )
et celle de I’énergie interne, d’aprés la formule (2),

dU = AdW + dq (6,— 6,).
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Nous avons donc, en vertu de 'égalité (4),
AdW +4dg(6,— 0,) =dg (n,— ;) T.

Mais, si nous appelons V, el V, les potentiels des deux
conducteurs, la variation de dW est

dW = (V,—V,)dg.

En remplagant dW par ces valeurs dans 1’égalité précé-
dente, nous trouvons, pour ’expression de la différence de
potentiel au contact,

(6) Vi— Vo= £ [(a—n) T+ 6, — 6,].

La chaleur absorbée par le systéme est donnée par la
relation (3); en y remplagant dS par sa valeur (5), il vient

dQ = (ny—m,) T dg.

La chaleur dégagée, c'est-a-dire l'effet Peltier, est done
proportionnelle a

(7) \ — (ny—mny)T.

298. 1l est maintenant possible de trouver quelle relation
existe entre le coefficient de I'effet Peltier et la différence
de potentiel au contaclt.

Montrons d’abord qu’il existe une relation entre les coef-
ficients 6 et .

Echauffons les conducteurs de telle sorte que les tempéra-
tures de leurs points soientconstamlﬁem égales entre elles
et effectuons cet échauffement de maniére que la transfor-

P. : 26
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mation soit réversible; nous aurons encore
dU=TdS
ou, puisque la température est la seule quantité qui varie,

dU dS
art = g7

Remplacons dans cette égalité les dérivées partielles de U
et S par leurs valeurs tirées des expressions (1) et (2); nous
obtenons

au, db, do, .. dS,

i+ q =T +Tq

dn,
at T 9aT T gt T ' ar

daT

dn,

+To gy

Cette égalité devant étre satisfaite quelles que soient les
charges, il faut qu’on ait

du, . dS,
aT = ' ar
et en outre
df . dn
(8) T = I‘(—ﬂ;,

6 et 7 désignant, en général, les fonctions relatives & une
méme matiére. '
Servons-nous de cette relation pour trouver celle que
nous cherchons entre V,—V, et le coeflicient de I'effet
Peltier.
Nous avons, en dérivant par rapport 4 T les deux membres
de I’égalité (6), ’

d(Vi—Vy) _

d(ng— d(6,— 6
- —‘ﬂg.—'fh—i-T (ng—n) (6s 1)7

A dT daT




PHENOMENES KLECTRIQUES. 403
ou, a cause de la relation (8),

d(Vi— V)

A aT = Tig — Yiy.

Si nous portons cette valeur de n,— 7, dans expres-
sion (7), nous trouvons que le coefficient de I’effet Peltier
est proporiionnel 3
d(V,—Vy),

—AT—%

La variation de la différence V,— V, avec la température
étant généralement plus petite que V,— V,, Peffet Peltier
est plus faible que la chaleur équivalente a la variation de
Pénergie électrostatique. Il semble donc que nous soyons
arrivés a déterminer la véritable force électromotrice de
contact, qui, dans le cas d’'un courant fermé, ne peut étre
mesurée ni méme définie. Il semble qu’'on a tourné la diffi-
culté en envisageant des courants ouverts comme ceux qui
déchargent un condenseur.

Pour établir ce résultat nous avons d faire certaines hy-
pothéses. Mais jappellerai l'attention sur I'une d’elles qui,
on le verra plus loin, peut sembler douteuse. Nous avons
supposé qu’il n’y avait pas d’aulre chaleur dégagée que
celle qui est due 3 I'effet Peltier, au contact des deux con-
ducteurs (outre la chaleur de Joule qui, dans le cas actuel,
peut étre négligée comme infiniment petit du deuxiéme
ordre).

Mais, si 'on adopte les idées de Maxwell, il n'y a que des
courants fermés et les courants que l'on appelle ouverts
(tel que serait celui qui nous occupe ici) se ferment en
réalité a travers le diélectrique. Dans cette maniére de voir,
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la surface de séparation du conducteur et du diélectrique
est traversée par un courant. Elle est d’ailleurs le siége
d’une différence de potentiel, comme nous le verrons au
paragraphe 302. On peut donc se demander si elle ne peut
pas étre aussi le siége d’un effet Peltier.

Je reviendrai plus loin sur cette question; supposons
provisoirement que cet effet Peltier particulier est nul et
admetlons par conséquent la théorie de M. Duhem.

299. Pour que }a chaleur dégagée par l'effet Peltier soit
équivalente a la variation de I'énergie électrostatique, c’est-
a-dire proportionneile a la force électromotrice du contact,
il faudrait, d’aprés les expressions (6) et (7), que

61 = 9,.

Il n’y a évidemment aucune raison pour que cette égalité
soit salisfaite, puisque 6, et 6, se rapportent a des maltiéres
différentes. D’ailleurs elle conduirait & des conséquences en
contradiction avec Pexpérience.

En effet, nous aurions alors

do, __ db,
dT — dT

et par conséquent, a cause de la relation (8),

dny _ dny
aT = dT

La différence n,— m; serait alors indépendante de la tem-
pérature, et, par suite, la force électromotrice du contact,
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qui se réduit a

VA_V2: i(ﬂz_"ﬂl)Ta

serait proportionnelle 4 Ja température; il en serait de
méme de V'effet Peltier. Or '’expérience a moniré qu’il en
est autrement.

L’ancienne hypothése de la proportionnalité de I'effet
Peltier a la différence de potentiel au contact doit donc étre
absolument écartée.

300. Différence de potentiel vraie et différence de poten-
tiel apparente de deux corps au contact. — La différence
de potentiel V;— V, donnée par Y'expression (6) est celle
de deux points M, et M, (fig. 40) appartenant respective~
ment & 'un et 3 'autre des conducteurs en contact. Maxwell

Fig. 4o.
M M

a fait remarquer que cette différence de potentiel pouvait
n’avoir pas la méme valeur que celle des deux points M
et M, situés dans Pair & une distance infiniment petite des
conducteurs. Nous ignorons eh effet s'il n’existe pas une
différence entre le potentiel d’'un conducteur et celui des
points de P'air voisins; U'existence de cette différence parait
méme probable d’aprés ce qui a lieu au contact de deux
conducteurs en équilibre. I1 y a donc lieu de distinguer
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entre la différence de potentiel des points M; et M, et celle
des points M} et M;; la premiére est la différence de poten-
tiel au contact vraie, la seconde est la différence de poten-
tiel apparente.

La différence de potentiel vraie intervient dans les phé-
noménes thermo-électriques ; la différence apparente, dans
les phénoménes d’attraction des plateaux d’un condensateur
lorsque ces plateaux sont formés avec des métaux différents
et sont réunis par un ﬁ'l métallique. En effet, la brusque
différence de potentiel au contact de deux corps exige
I’existence d’une couche double électrique. Parsuite, I'attrac-
tion des plateaux du condensateur résulte non seulement de
I'attraction des couches simples de noms contraires qui les
recouvrent, mais aussi des deux couches doubles provenant
du contact de l'air; elle dépend donc de la différence de
potentiel apparente.

Si la loi de Volta s’appliquait & une chaine de corps for-
mée par l'air et les conducteurs, les deux extrémités de cette
chaine devraient étre au méme potentiel; les points M)
et M, pouvant étre considérés comme les extrémités de
cette chaine, la différence de potentiel apparente serait
nulle, L’expérience prouve qd’elle n’est pas nulle.

301. Effet Thomson et force électromotrice correspon-
dante. — Nous allons discuter maintenant les conséquences
de la théorie de M. Duhem et des hypothéses sur lesquelles
elle repose, et en particulier de celle dont j’ai parlé un peu
plus longuement & la fin du paragraphe 298.

Voyons d’abord quelles difficultés on rencontre quand on
cherche & calculer par la théorie de M. Duhem les fonctions
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@(T) et ¢'(T) considérées au paragraphe 292. Voici en effet
le raisonnement qu'on est tenté de faire.

Prenons un condensaleur dont les armatures A et B
(fig. 41), formées du méme métal, sont i des températures
différentes et réunies par un conducteur C de méme ma-
tiére. Supposons P'équilibre établi, et soient alors ¢, et ¢,

Fig. 41.

ies charges respectives des armatures. Si une cause infini-
ment petite fait passer une quantité dg d’électricité de A
a4 B, le phénoméne est réversible, car si I'intensité du cou-
rant est infiniment petite nous pouvons négliger son carré
et par conséquent la chaleur de Joule, et I'on a

— [4Q
ds_f—T—,

dQ étant la chaleur absorbée par un élément du systéme et

I'intégration étant étendue i tous ces éléments. Par consé-

T,
dQ__Adf (P(T)dT

quent,

T, et T, désignant les températures des armatures. D’autre
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part, I'égalité (1) nous donne
dS = (n,— ) dg;
par suite, nous avons

T’ r|
?(F)dT.

Ne—1ny=A T

Ty

Cette égalité devant étre satisfaite quelles que soient les
températures T, et T;, on doit avoir

- T
(9) T=at

relation qui donne I'expression ¢(T).
La transformation considérée s’effectuant sans absorber

" de travail, on a
dU=4dQ

ou, d’aprés l'égalité (2),

T,
AdW + (9,—6,)dg=A ¢(T)dT,

Ty

T,
ou encore, en remplacant dW par sa valeur dg f (T)dT,

Ty
T

Ty
A q:’('l‘)dT-i-e,—G,:Af o(T) dT.
T,

T, 1

Cette égalité devant encore étre satisfaite quelles que
soient les températures T, et Ty, nous en déduisons

do
A (T)+ Zr=Ag(T),
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d’ou nous tirons, en tenant compte de I'égalité (g),

dn dé
! _ —— — t—
AvM =T — g5
Mais, d’aprés la relation (8), le second membre de cette

derniére égalité est égal 2 zéro; par conséquent,

?(T)=o.

302. Ainsi, d’aprés ce raisonnement, la force électromo-
trice élémentaire correspondant a l'effet de Thomson serait
nulle; il en résulterait que la différence de potentiel des
armatures est nulle.

Or M. Pellat a constaté que, si les armatures d’un conden-
sateur sonl formées d’un méme métal & des températures
différentes, ce condensaleur se charge lorsqu'on réunit mé-
talliquement les armatures. Il existe donc une différence de
potentiel. 1l est vrai que dans les expériences de M. Pellat
c’est la différence de potentiel appareate qui intervient. Il
pourrait donc se faire que la différence de potentiel vraie
entre le métal froid et le métal chaud soit nulle. Toutefois,
c’est bien peu probable.

On peut dire également (mais il ne serait pas difficile de
répondre 2 cette objection) que la théorie de M. Duhem ne
peut s’appliquer au phénoméne Thomson, et, par suite, les
conséquences résultant de cette application peuvent n’étre
pas vraies. k

En effet, dans ’établissement des formules (1) et (2), nous
avons admis que I’état de chaque conducteur du systéme est
complétement déterminé par un certain nombre de variables

parmi lesquelles se trouve la température. La température



410 THERMODYNAMIQUE.

de chacun des conducteurs doit donc étre uniforme, condi-
tion qui n’est pas remplie parle fil de communjcation C dans
le systéme précédemment considéré. En outre, pour arriver
A la relation (8), nous avons supposé que les conducteurs
sont a la néme température, nouvelle condition qui n’est

pas réalisée dans le cas qui nous occupe.

303. Nous aurions donc le choix entre trois interpréta-
tions :

1° Ou bien on admettrait que l'effet Thomson n’est pas
nul, comme le prouve une expérience direcle, mais que la
force électromotrice qui, d’aprés Thomson, lui donne nais-
sance est nulle; que par conséquent, dans I'expérience de
M. Pellat, la différence de potentiel vraie entre les deux
plateaux est nulle et que la différence de potentielle appa-
rente est au contraire différente de zéro;

2° Ou bien on supposerait que la théorie de M. Duhem
n’est applicable qu’au cas ol tous les conducteurs sont & la
méme température; )

3 Ou bien on admettrait qu’il y a un effet Peltier au con-
tact d’'un conducteur et d'un diélectrique.

Mais, en présentant notre raisonnement sous une forme
un peu différente, nous allons voir que les deux premiéres

interprétations doivent étre rejetées.

.

IV. — QUELQUES REMARQUES.

304. Phénoméne Peltier an contact d'un conducteur et
d'un diélectrique. — Pour le montrer abandonnons la
théorie de M. Duhem et considérons le condensateur dont
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les armatures A et B ( fig. 41) formées du méme métal sont
a des lempératures différentes T, et T,.

Laissons I'armature A & la méme température T, et faisons
varier celle de B de dT,; en méme temps faisons varier la dis-
tance des armatures. Pendant un intervalle de temps d¢, une

- quantité dg d’électricité passera d’une armature & I'autre en
dégageant dans le fil une cerlaine quantité de chaleur; une
partie est due & l'effet Thomson, l'autre a l'effet Joule. La
chaleur correspondant & ’effet Thomson étant proportion-

nelle a l'intensité i = fi-—z du courant et celle qui correspond

a I'effet Joule au carré de cette quaulité, cette derniére peut
étre négligée par rapport i la premiére si dg¢ est infiniment
petit. Cette condition esl réalisée quand le déplacement des
armatures et ’échauffement de B sont excessivement lents.
Nous supposerons qu’il en est ainsi. Alors le cycle est réver-
sible.

305. La quantité de chaleur produite dans un élément du
conducteur C par l'effet Thomson étant

~— A dge(T)dT,

celle que doit fournir 'extérieur pour maintenir cet élément
a la méme température est

Adgqe(T)dT.

Pour le conducteur C tout entier, on aura

ngQ-:Adqu’E%E—)dT
Ty
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4Q
f—T‘—A""q’
[ ]
T

n:[ "2l g,
Jr,

ou

en posant

T

Pour élever de dT, la température de ’armature B il faut
fournir a cette armature une quantité de chaleur CdT,,
C étant sa capacité calorifique. On a done, pour la transfor-
mation élémentaire considérée,

daQ C
1 —_— d ==—dT?2,
(1) f T Andg + T,
Le premier membre de cette égalité est une différentielle

exacte, puisque la transformation est réversible; par consé-
quent, on doit avoir

dq 1 dC
(2) AT, =T, 47

Si maintenant nous counsidérons la somme des quantités
de chaleur fournies au systéme, nous avons

T,

fdQ:Adq ¢(T)dT -+ CdT,
T,

ou
(3) fdQ:Aadq+CdT,,
si 'on pose .
= o(T)dT.
T,

Montrons qu’elle est une différentielle exacte.
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Pour cela il faut prouver que

’ ds dC

Or, d’aprés les égalités qui définissent § et m, on a
- db
ar, = ¢(T,)

et
dn 1
d—ﬁ—rf;?('l’a)-

Il en résulte
df

'dT; = Tg _d_T—,’
et 'égalité (4) a vérifier devient

dC

dn __ .
(5) ATz;ﬁ;—ga;

elle est évidemment satisfaite, d’apres 1’égalité (2),

306. Aiansila quantité de chaleur absorbée dans une trans-
formation élémentaire est une différentielle exacte; il en
résulte que, si I'on fait décrire au systéme un cycle fermé,
il n'y a pas de chaleur absorbée. D’aprés le principe de
I’équivalence, il ne peut donc y avoir, pour un tel cyclek, de
travail produit. Par suite, contrairement aux expériences
de M. Pellat, l'attracltion des armatures serait nulle.

En effet, faisons décrire au systéme le cycle suivant :

1° La température de B restant égale & T,, rapprochons
les deux armatures; s’il y a attraction entre les deux pla-
teaux, comme le prouve l'expérience de M. Pellat, il se pro-

duit un travail positif;
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2° La distance des deux armatures demeurant constante,
faisons varier la température de B de T, 4 T,; les armatures
ne hougeant pas, il n’y aura pas de travail produit;

3° La température de B restant égale a T,, éloignons les
‘deux armatures de facon 2 les ramener & leur distance pri-
mitive; les deux armatures étant i la méme température, il
n’y aura pas d’attraction et par conséquent pas de travail;

4° La distance des deux armatures demeurant constante,
ramenons 2 la température de B de T, a T,. Ici encore pas
de travail.

Le travail total produit serait donc positif, de sorte que dQ
ne pourrait étre une différentielle exacte.

Le calcul et I’expérience donnent donc des résultats con-
tradictoires.

Mais, en écrivant les égalités (1) et (3), nous avons admis
qu’il n’y avait pas d’autre cause d’absorption de chaleur que
I'effet Thomson et que la variation de lempérature de B.
Supposons maintenant qu’a la surface de contact de l'air et
d’une des armatures, B par exemple, se produise un effet
Peltier et-appelons — AAdgla chaleur dégagée par cet effet
dans une transformation élémentaire.

Nous avons alors

dQ A C
f_T_—A<n+T;>dq+T;dT’

fdQ:A(G—{—A)dq—-l—CdT,.

et

La premiére quantité étant une différentielle exacte, on a

L de_
T, dg —

dn A di AR

©) Aar, *Tan, T
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Pour que la seconde le soit il faudrait

dC daé dh
%_A—d—T—g_’_Am

ou, a cause de la relation (5),

dC __ dn
%—AT?ZI‘—?“'A

L
dT,

Or cette condition ne peut étre salisfaite en méme temps
que I'égalité (6) que si A est nul, c’est-a-dire s’iln’y a pas de
phénoméne Peltier, Comme la chaleur fournie ne saurait éire
une différentielle exacte, un phénoméne de ce genre doit
donc se produire. Comme il n'y a pas de raison pour qu’il se
produise sur la surface de B plutdt que sur celle de A, il
doit exister 2 'une et & I'autre de ces surfaces.

307. Supposons que T, varie en méme temps que T,.
Soient C, et C, les capacités calorifiques du plateau A et du
plateau B, A, et 2, les coefficients de notre nouvel effet Peltier
a la sarface de A et a celle de B; il viendra

aQ __ Ay A Gy C,
et

fdQ: A(8 4+ Ay— hy) dg + C, dT, + Cy dT,.

Soient « I'attraction des deux plateaux et ¢ leur distance;
le travail extérieur 7 égal &

ds dd do
T—a<@dq+deT’+—d-]T,dT’>' .
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D’aprés les deux principes de la Thermodynamique,

f‘fr—Q et fdQ—Ar

doivent &tre des différentielles exactes. On en déduit

de da dd dx dd N  da d5  da dd

T, ~ dT, dg

dg df,, T, dg 4T, dT, dg’

Mais ce raisonnement suppose qu’il ne se produit aucun
autre effet calorifique que notre nouveau phénomeéne Peltier,
et les pages qui précédent ont dii nous apprendre a nous
méfier de semblables bypothéses.

Quoi qu'’il en soil, la théorie de M. Duhem semble devoir
étre ahandonnée. Reprenons en effet le raisonnement du
paragraphe 297. Nous aurons 3 envisager trois effets Peltier,
le premier a la surface de séparation des deux conducteurs,
les deux autres & la surface libre de chacun de ces deux
conducteurs. Nous n’obtiendrons plus alors qu'une relation
entre ces trois effets et la force électromnotrice de conlact, et
nous ne pourrons calculer le premier de ces trois effets en
fonction de cette force électromotrice.

Si, au contraire, on refusait d’admettre I'existence du phé-
nomeéne Peltier au contact d’un conducteur et d’un diélec-
trique, on une pourrait rendre compte de l'expérience
de M. Pellat.

Nous pouvons résumer la question comme il suit :

A la fin du paragraphe 292, nous avons trouvé la relation

2E'=2E,

mais nous avons d reconnaitre que la considération des
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courants fermés ne suffisait pas pour calculer E’ en fonction
de E.

M. Dubem a cherché a tourner la difficulté en considérant
des circuits ouverts; mais, si ’on adopte les idées de Max-
well, il n'y a pas de circuits ouverts, de sorte que 'artifice
de M. Duhem devient illusoire.

On n’a aucun moyen de mesurer E'; et méme la notion de
cette différence de potentiel vraie E’, n’étant -accessible i
aucune expérience, peut étre regardée comme dépourvue de
sens, 3 moins que I'on ne veuille la préciser par une défini-
tion arbitraire, ¢’est-a-dire en posant par convention

E'=E,

comme on le fiit le plus souvent, ou en posant, toujours par
convention,

o dE

E=T-—,

dr
comme le fait M. Duhem; ou en définissant E', toujours par
convention, en s'aidant de considéralions empruntées aux

phénoménes électrocapillaires.

308. Rendement thermique des moteurs électriques. —
Employons une pile hydroélectrique a faire mouveir un
moteur électrique. Quand la force contre-électromotrice du
moteur est égale A la force élecltromotrice de la pile, I'inten-
sité du courant est infiniment petite et la chalear dégagée
par l'effet Joule est du second ordre. On peut donc la négli-
ger et toute la chaleur transformée dans la pile en énergie
voltaique se retrouve tout entiére ean travail produit. Or

la chaleur transformée en énergie voltaique est, d’aprés
P. 29
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Helmbholtz, égale & la chaleur non compensée L” de la réac-
tion; la chaleur produite est L ; le rendement thermique du

systéme est done
L

L

Dans la plupart des cas, ce rapport est voisin de %, Le ren-
dementd’un moteur électrique est donc beaucoup plus grand
que celui des machines therrhiques. Il est vrai que le rap-
port précédent donne la valeur maximum du rendement d’un
moteur électrique, car il suppose que I'intensité du courant
est infiniment petite, ce qui aurait pour effet dé produire un
travail infiniment petit dans un temps fini. Pratiquement,
I'intensité du courant doit étre finie et il faut retrancher de
la chaleur voltaique la chaleur résultant d¥ reffet Joule.
Néanmoins, le rendement reste encore de beaucoup supé-
rieur & celui des machines & vapeur. L’emploi des moteurs
électriques présenterait donc un avantage marqué sur celui
‘de ces machines si le prix de revient de la chaleur chimique
d’une réaction n’était pas plus grand que celui de la chaleur
produite par la combustion du charbon.



CHAPITRE XVIL

REDUCTION DES PRINCIPES DE LA THERMODYNAMIQUE
AUX PRINCIPES GENERAUX DE LA MECANIQUE.

309. Théories diverses. — La réduction du principe de
I’équivalence aux principes fondamentaux de la Mécanique
ne rencontre pas de difficulté : ’hypothése des forces molé-
culaires suffit, comme nous 'avons vu, pour déduire le prin-
cipe de la conservation de V'énergie et, par conséquent, celui
de I’équivalence des équations générales du mouvement.

Il en est antrement du second principe de la Thermo-
dynamique. Clausius a, le premier, tenté de le ramener aux
principes de la Mécanigue, mais sans y réussir d’une ma-
niére satisfaisante.

Helmholtz, dans son Mémoire sur le Principe de la moindre
action, a développé une théorie beaucoup plus parfaite que
celle de Clausius; cependant elle ne peut rendre compte des
phénomeénes irréversibles. '

310. Fondements de la théorie d'Helmholtz. — Considé-
cons un systéme de points _mat(;riels, libres ou soumis a des
t

liaisons, dont la situation est Ninie par des parameétres ¢,,
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915 G3s -+ +» In- Désignons par ¢}, ¢4, ..., g, les dérivées de
ces paramétres par rapport au temps, et par T la demi-force
vive du systéme. Enfin soit

Ql 6q1+ anq:-f‘- .o+ Qn 6(],,

I'expression du travail des forces auxquelles le systéme est
soumis dans un déplacement virtuel. Nous aurons a chaque
instant, pour chacun des paramétres,

ddar_ar_ o
dt dg;  dg; — "7

c’est I'équation de Lagrange relative au paramétre g¢;.

Dans son Mémoire, Helinholtz change ces notations habi-
tuelles. La lettre T est conservée pour désigner la tempé-
rature absolue : la demi-force vive est alors représentée
par L. Les paramétres sont appelés p,, p,, ..., et leurs
dérivées par rapport au temps sont représentées par q,,
Gy -

Le travail virtuel des forces intérieures au systéme est
distingué de celui des forces extérieures. Helmholtz sup-
pose que les forces intérieures admettent une fonction des
forces, ou énergie potentielle, ®; alors le travail de ces
forces pour une variation dp, de I'un des paramétres est

d(l)6
—_a_’: Pa.

Quant au travail des forces extérieures résultant de cette
variation, il est désigné par

— P,3p,.
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Avec ces nouvelles notations I'équationde Lagrange rela- .
tive au paramétre p, est

d dL aL a®

") @ dg.” dpa  dpa

P,.

311. L’énergie potentielle ® ne dépend que de la position
des molécules du systéme; c’est donc une fonction des
paramétres p, mais non de leurs dérivées g.

Au contraire, I'énergie cinétique L dépend a la fois des p
et des g; elle est homogéhe et du second degré par rapport
A ces derniéres quantités. En effet, L qui est égal & Imo*
est du degré —2 par rapport au temps; si donc on double
Punité de temps, la valeur de L se trouve quadruplée. Or
Pa De varie pas par ce changement d’unité, tandis que
g, devient double; il est donc nécessaire que chaque terme
de L contienne les ¢ au second degré.

Par suite de cette propriété de la fonction I, nous avons

(2) - 2L=2qagq—"a.
312. Posons

(3) H=® L

et

{4) . U=®+L;

U est alors I’énergie Lotale du systéme.
Eu dérivant la premiére de ces égalités par rapport & p,,
nous obtenons

48 _ do  dl
dp. ~ dp, dp,’
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la dérivation par rapport & g, nous donne

dl dL

dg.~—  dqa’
puisque @ ne dépend pas des g. De ces égalités tirons les

dérivées de L par rapport a p, et ¢,, puis portons les valeurs
trouvées dans I’équation (1); nous avons

d dA 4dH
(5) — & 4. -+ apa =—P,.
Posons maintenant
dd __ dL _ |
© ~ . = g, =

s, et les quantités s,, ..., définies par des équalions ana-
logues, sont des fonctions des p et des g. Nous pouvons donc
considérer U comme une fonction des p et des s, H restant
toujours regardé comme une fonction des p et des g. Les
égalités (3) et (4) nous donnent, pour cette fonction U,

U=H-+ 2L
ou, d’aprés les relations (2) et (6),
U=H+ Zq,s,.

De cette nouvelle égalité il résulte, en prenant la dif-
férentielle totale des deux membres,

au dU

—Z dp+2d dq + Zsdq + Zq ds.
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Mais, d’aprés (6),
dH
2 ?l;dq = — s dq,
par conséquent, ’égalité précédente se réduit a

au du aH
E‘Edp_;_ b= ?{;dpﬂ—zqu.

Nous déduisons de 1a

(7) dU __ dH
7 dpa  dp.
et

dU
(8) E—‘qa-

423

343. L’expression du pridcipe de la conservation de I'éner-~
gie se déduit immédiatement des relations (7) et (8). Ces

relations nous donnent

au __ ds,
dp, — de ¥
U _ gu= Pe.
&, =g
Par conséquent,
du dU
_ ds dp

ou
dU =~ ZP, dp,.
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La variation de I'énergie totale du systéme est donc égale
au travail des forces extérieures au systéme : c’est bien
I’éuoncé du principe de la conservation de I'énergie.

314. Hypothéses sur la nature des paramétres. —
Helmholtz adimet que les paramétres qui définissent la situa-
tion du systéme peuvent se diviser en deux classes suivantla
maniére dont ils varient avec le temps; ceux de 'une d’elles
varient trés lentement, ceux de P'autre varient au contraire
trés rapidement. Nous désignerons les premiers paramétres
par p,, les seconds par py.

Cette hypothése semble assez naturelle. Ainsi les mouve-
ments moléculaires dus a I’échauffement d’un corps ont des
vitesses incomparablement plus grandes que celles que nous
pouvons conirfmniquer a l’ensemble du corps. Les para-
meétres qui définissent les positious relatives des molécules
varient donc rapidement; au contraire, ceux qui fixent la

position du corps dans ’espace sont & variation lente.

315. Helmholtz fait ensuite une autre hypothése qui pour-
rait sembler plus difficile & accepter. Il admet que la fonc-
tion @ ne dépend pas des paramétres p, et que dans la fonc-
tion L ces paramétres n’entrent que par leurs dérivées g,.

On peut donner certains exemples simples empruniés a la

“Mécanique élémentaire et ou cette hypothése se trouve
réalisée.

Ainsi considérons une poulie mobile autour de son axe.
La position de la poulie peut éire définie par I'angle p, que
fait un plan fixe dans I'espace avec un plan passant par un
point de la poulie et par I'axe de celle-ci; p; estdonc un des
paramétres du systéme. La demi-force vive de ce systéme
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est égale au produit du moment d’inertie de la poulie par
le carré de la vitesse angulaire; le moment d’inertie ne dé~

apy
dt

la demi-force vive ne dépend que de g, et non du para-

pend pas de p,; la vitesse angulaire estg, = ; par suite,

métre p,. D'autre part, le centre de gravité de la poulie
élant sur 'axe de rotation, ’énergie potentielle ne varie
pas; elle est donc indépendante de p,.

Prenons un auntre exemple. Considérons un canal circu-
laire parcouru par nii liquide et supposons le régime per-
manent établi. On pewt définir la position du systéme par
I'angle p, fornié par un diamétre du canal, fixe dans 'espace,
et un diamétre passanl par une des molécules du liquide.
Mais ni I'énergie potentielle, ni I'énergie cinétique ne dé-
pendent de ce paramétre, car ces quantités restent con-
stantes. En effet, le régime permanent étant établi, une
molécule est immédiatement remplacée par une autre dés
que la premiére s'est déplacée; la force vive ne varie done
pas; en outre, le travail des forces intérieures est nul et par
suite 'énergie potentielle counserve la méme valeur.

1l résulte de ces exemples que I'hypothése d’Helmholtz
est exacle dans le cas de corps tournant autour d’un axe;
elle parait done applicable aux mouvements tourbillonnaires
des molécules. Peut-elle encore s’appliquer au cas ou les
molécules des corps se déplacent rectilignement de part et
d’autre d’un point tixe? (Vest ce que nous examinerons plus
loin.

316. Admettons }'hypothésé d’Helmholtz et continuons
I’exposé de la théorie de ce savant.
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Puisque @ et L sont supposés indépendants des para-
métres p,, H n’en dépendra pas non plus. Nous aurons donc,
d’aprés 'équation (5),

(9) — e 5= =—P,

ou, d’aprés la définition des fonctions s,

dSb

—JZ :—Pb.

Le travail extérieur correspondant au paramétre considéré
est — P, dp,, pour une variation dp, de ce paramétre. Expri-
mée en fonclion de lintervalle de temps d¢, cette variation

d| . -
est —(%f’ dt ou g, dt. Par conséquent, le travail extérieur peut
s’écrire — P, g, dt. Helmholtz pose
de: —_ P[,qb dt.

Si, dans cette égalité, nous remplagons P, par sa valeur
tirée de I’équation précédente, il vient

d
(IO) de: qb?iifdt:qbdsb'

Telle est I’équation relative aux paramélres variant trés
rapidement. '
Occupons-nous des paramétres qui varient lentement et

d
montrons que pour ceux-ci la dérivée ‘% Zlq_H peut étre né-~
b
gligée.
Iy’aprés les égalités (6), nous avons

dH dL

dqa~  dga
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Or, L est une fonction homogéne el du second degré par
dH

rapport aux ¢, et g,; 7. est donc formée de termes de la
a

forme Aq.q. et Bgrq,. Par suite, la dérivée de cette quan-

L d dH .
tité par rapport au temps — 7. ne conticnt que des termes
R a

de la forme

dq. daq.. d

Mais, puisque les paramétres p, varient trés lentement,
g« et g, sont trés petits et les dérivées de ces quantités par
rapport & ¢ sont également trés petites; nous pouvons donc
négliger les termes des deux premiéres formes, puisqu’ils
contiennent le produit de deux quantités trés petites. Nous
pouvons également négliger les termes de la troisiéme

forme, mais & une condition : c'est que nous supposerons
trés petite la dérivée 7;-];'1 de la quantité finie g,. (Ainsi, si,

pour fixer les idées, nous revenons A la poulie qui nous
servait tout 4 I’heure d’exemple, cela revient & supposer
que la vitesse angulaire de cette poulie est trés grande,
mais sensiblement constante.) Cette hypothése étant admise,

d dH .
tous lgs termes de i dg. seront négligeables.

Nous avons alors, pour I'équation relative aux para-
métres p,,

dH _

(11) Z)————Pa’

obtenue en négligeant le premier terme de 1'équation (5).
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317. Systémes monocycliques. — Helmhoitz donne le
nom de systémes monocycligues A ceux pour lesquels le
nombre des paramétres & variation rapide indépendants se
réduit & 1; dans le cas ou le nombre de ces pararhélres est

plus grand que 1, le systéme esl polycycligue.

Dans tous les systémes monocycliques, on a % = difté-
rentielle exacte. '
Pour démontrer cette propriété, considérons d’abord un
systéme monocyclique dont la situation est définie par un
seul paramétre a variation rapide que nous pouvons, sans
ambiguité, désigner par p.
Dans la relation (2), ‘
al = an'%;—‘;;
ga désigne la dérivée d’un paramétre quelconque, variant
rapidement ou lentement. Mais, pour ces derniers, ¢, est
trés petit et les termes qui leur correspondent peuvent étre
négligés; il ne reste donc dans le second membre que le

terme correspondant au paramétre p; par suite,
(12) zL::q%_—_qs.

D’aprés la relation (10), on a pour dQ

dQ =g ds.
Par conséquent, :
dQ _ 2q9ds _ .
(13) —L-——-qT-—ZdLOgS,

le quotient considéré est donc bien une différentielle exacte.
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318. Systémes incomplets. — Helmholtz divise les sys-
témes polycycliques ou monocycliques en deux classes : les
systémes conzplet$ ou les systémes incomplets. Ces derniers
sont ceux pour lesquels le travail — P, dp, correspondant 3
une variation différente de zéro de I'un des paramétres p,
est égal a zéro.

Pour ces systémes, on aura, d’aprés ’équation (11), autant
d’équations

dH _

(‘4) -JITa-—_O

qu’il y a de paramétres p, jouissant de la propriété précé-
dente. Nous désignerons par p, ces paramétres. La fonction H
ne dépendant pas des parameétres & variation rapide p,
d’aprés I'hypothése d’Helmhboltz, et les dérivées|g, pouvant
8ire négligées, les équations analogues a (14) peuvent étre
considérées comme des relations entre les paramétres p,,
les parameétres p, et les dérivées ¢,. Puisqu’elles sont en
méme nombre que les paraméties p., nous pourrons nous
en servir pour exprimer ces parametres en fonctions de p,
et de ¢,. Ces paramétres ne sont donc pas nécessaires pour
détinir la situation du systéme; les paramétres p, (déduc~
lion faite de ceux que nous venons de désigner par p.) et
les paramétres p, suffisent pour cela.

Les équations seront-elles changées, quand on prendra
seulement comme variables indépendantes les paramétres
Pa €t pp?

Appelons H' 'expression de H, dans ces conditions; H' dé-
pend des p, et des q,; H dépend des p,, des p. et des g,.

Comme H' et H désignent une seule et méme fonction
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exprimée avec des variables différentes, nous aurons
H' —=H.

Prenons maintenant les dérivées de ces fonctions par rap-
port & p,; nous avons

dH dpc
d dpa 2 dpc dpa

Or, d’apres la relation (14),

dH
E;):. =03
par conséquent,
dH’ _ d4dH
dp. - dp,

Les équations de Lagrange relatives aux parameétres & va-
riation lente conservent donc la méme forme : la forme (11).
Prenons la dérivée par rapport & ¢,; nous avons

dH’ dH 2 dH dp,
dp, dp, dg,’

et, par suite, pour la méme raison que précédemment,

dH _ dH
dgs - dq,

De cette égalité et des égalités (6) il résulte immédiate-
ment que la fonction s, reste la méme, soit que les para-
métres p. entrent explicitement dans le nombre de ceux
qui définissent la situation du systéme, soit qu’ils n’en fassent
pas partie. Par conséquent, dans un cas comme dans 'autre,
les équations de Lagrange relatives aux paramétres 2 va-
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riation rapide sont de la forme (10) :
dQ, = q,ds,.

La forme des équations restant la méme, il est évident

’ P . 1
que dans le cas d'un systéme monocyclique le facteur f sera

un facteur intégrant de dQ.

319. Les sysiémes incomplets ne différent donc que peu
des systémes complets. Toutefois il est une propriété im-
portante qui les distingue.

L’énergie cinétique L est en général une fonction homo-
géne du second degré des g, et des g,; elle dépend en outre
des paramétres a variation lente. Or nous venons de voir
que dans les sysiémes incomplets une partie de ces para-
meélres, les paramétres p,, sont desfonctionsdes g, et desp,.
Par conséquent, si nous remplacons dans L les p. par leurs
expressions en fonctions des ¢,, L cessera d’8tre du second
degré par rapport aux g,; elle pourra donc étre d’un degré
impair par rapport & ces dérivées et, par sui(e, d’un degré
impair par rapport au temps. Nous verrons bientdt 'impor-
tance de cette remarque.

L’exemple le plus simple que I'on pdisse citer est celui
d’une poulie sur 'axe de laquelle est monté un régulateur a
force centrifuge. Quand la vitesse ‘de la poulie augmente,
les boules du régulateur s’écartent et le moment d’inertie
du systéme augmente.

La force vive n’est donc pas propor uonnelle au carré de
la vitesse angulaire, puisqu’elle est égale au produit de ce
carré par le moment d’inerlie variable avec celte vitesse.
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320. Application aux phénomeénes calorifiques. — Admet-
tons avec Helmholtz que les paramétres p, se rapportent
aux mouvements moléculaires dus a la chaleur et les para-
métres p, aux mouvements visibles du svstéme.

Par suite de cette distinction entre ces divers parameétres,
I’équation

AU =—Zp,dp,
du paragraphe 313 devient

dU =— Zp,dp,— 2p,dp,
ou
dU=—Zp,dp,+ 2dQ),.

Ainsi, d’apres cette relation, la variation de I'énergie in-
terne est égale a la somme chargée de signe des travaux
extérieﬁrs 2pa.dp, des mouvements visibles et des travaux
extérieurs — 2dQ, des forces moléculaires. Comparons
cetle expression de dU i celle qui nous est fournie par le
principe de I'équivalence ; la variation de I’énergie interne,
exprimée en unités mécaniques, est la somme du travail
et de la chaleur dQ, exprimée avec les inémes unités, qui
sont fournis au systéme. On voit qﬁe les deux énoncés
deviennent identiques si 1'on admet que

dQ - 2 ths

c’est-a-dire si 'on admet que le travail extérieur des forces
moléculaires changé de signe est ¢quivalent a la chaleur
fournie au corps pendant la transformation. Le principe de
Iéquivalence se raméne donc aux principes généraux de la
Mécanique, si I’on considére les corps formés de molécules
agissant 'une sur 'autre. Nous le savions déja.
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321. Considérons maintenant un systéme monocyclique,
Nous savons que dans ce cas

(15) ig—'l —différentielle exacte.

Mais dQ, n’est autre que la chaleur exprimée en unités
mécaniques fournie au systéme, puisque pour un systéme
monocyclique ZdQ, se réduit a dQ,. Il suffit donc, pour
se rendre compte du principe de Carnot, de supposer que la
température du systéme est proportionnelle 2 I’énergie ciné-
tique L. Comme d’ailleurs les termes de cette énergie qui
contiennent g, sont négligeables, cette énergie peut se
confondre avec ’énergie cinétique moléculaire.

Est-il possible d’admettre que la température absolue d’un
systéme est proportionnelle & I'énergie cinétique molécu-
laire? La théorie cinétique des gaz montre qu’il en est ainsi
pour ces corps. La théorie d’Helmholtz, comme on va le
voir, nous obligerait 4 admettre qu'il en est encore de méme
pour tous les autres corps. |

Posons, d’aprés le principe de Carnot considéré comme
démontré expérimentalement,

(16) - irg —ds,

§ étant ici le produitde I’entropie par1’équivalent mécanique
de la chaleur, Puisque dQ = dQ,, dS et la différentielle (15)
s’'annulent en méme temps. Cette dernigre est donc une
fonetion de S; posons

%”=¢(S)~
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Nous en tirons

d
W _ gr(8) ds = /(8) 22

et, par suite,
L=T§&(8).

Pour déterminer 6 considérons deux systémes pour les-
quels les quantités L et 8 auront respectivement pour va-
leurs L, et S,, L, et S,.

Nous supposerons que les deux systémes sont 3 la méme
température T. Cela est nécessaire puisque nous ne voulons
considérer pour le moment que des phénoménesréversibles.

Nous aurons alors

Ll:TG,(S,), Lg:Teg(Sg).

Les valeurs de ces quantités pour I’ensemble des deux sys-
témes seront L, + L,et §;+ S,. Nous aurons donc

L1+ L1:T93(S|+ SQ)
et, par conséquent,
6:(81) + 02(8y) = 0,(8, + 8,).

Dérivons par rapport & S, les deux membres de cette éga-
lité; nous obtenons

61(81) = 6,(85,+38,)
et, en dérivant de nouveau par rapport a S,,

0= 6(S;+S,).

LY
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Nous én déduisons pour la valeur de 6;(S; + S,)

63(S|+Sg)=a -+ b(S|+S,)

et, par suite,
6,(8,) = a' + b8,, 0:(8,) = a"+ dS,.

Les trois fonctlions linéaires 0,, 8,, 0, ne différent donc que
par le terme constant @, @’ ou a”, mais le coefficient b est le
méme pour toutes. : ;

Nous auronsdonc, en désignanl par a et b deux constantes,
la premiére dépendant de la nature du corps, tandis que la
seconde est la méme pour tous les corps,

L=T(a+ 68).

Mais nous venons de voir que le coefficient 4 doit avoirla
méme valeur quel que soit le corps considéré. Par suite,
b est nul pour tous les corps puisqu’il I'est pour les gaz. La
température absolue est donc toujours proportionnelle a
Pénergie cinétique moléculaire.

322. La théorie d’'Helmholtz s'applique aux mouvements
vibratoires. — Comme nous P'avons fait remarquer, I’hypo-
thése d’Helmholtz (348) n’est justifiée que dans le cas des
mouvements tourbillonnaires. Or les mouvements molécu-
laires semblent étre des mouvements vibratoires de part et

- . d . cons
d’autre d’un pointfixe. Le quotient TI‘Q est-il encore une diffé~

rentielle exacte pour ce genre de mouvement? Nous allons

montrer que cette propriété subsiste dans le cas des systémes
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monocycliques, méme lorsqu’on abandonne 'hypothése du
paragraphe 315.

Si nous abandonnons cette hypothése, I'énergie potentielle
® est une fonclion du paramétre & variation rapide p que
nous pouvons écrire

(1) ="+,

A et C étant des fonctions des p,. En effet, écrire cette éga-
lité revient & négliger dans le développement de ®, parrap-
port aux puissances croissantes de p, les termes d’un degré
supérieur au second et & supprimer le terme du premier
degré. Or les coeflicients des termes d’un degré supérieur
au second sont nécessairement treés petits, et nous pouvons
négliger ces termes. D’autre part, il est toujours possible de
prendre le paramétre p, de telle sorte qu’il soit nul quand
la molécule est au milieu de l'oscillation; dans ces condi-
tions, ® est d’un degré pair par rapport a p, et, par suite, le
terme du premier degré est nul. , ‘ l
L’énergie cinétique L. est homogéne et du second degré

, par rapport & ¢ et aux ¢q,; nous pouvons donc poser
2
(18) , L= P;L,

B désignant une fonction des p,, si nous supposons toujours
les gq trés petits.

323. Cherchons I’équation de Lagrange relative au para-
métre p. Nous avons, d’aprés 'une des égalités (6),
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et par conséquent, pour ’équation cherchée,

dBg dH _
7— -+ *‘E =—P.
Mais
H=®-—L,
e, par suite,
) dH db dL
— :AP:

dp —dp  dp

l’équation précédente peut donc s’écrire
('9) ' T - Ap = — P.

8i nous supposons le mouvement vibratoire stationnaire,
P est nul et A et B restent constants; par conséquent, cette
équation devient

dg —
B p73 -+ AP =0
ou ,
di
B gt—]: + Ap—=o.
Si nous poséns
A =n'B,

une solution de cette équation est
p=hsin(nt + w);
nous en tirons par dérivation |
g=nhn cors(nt +w)
et, en portant cette valeur de g dans le second membre
de (18),

__ Bhlntcos*(nt+ w)
- 2

L
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Lorsqu’on considére le systéme pendant un temps suffi-
samment long par rapport A la période de vibration, c’estla
valeur moyenne de cette quantité qui intervient; nous devons

donc prendre pour dénominateur durapport # I’expression
Bh*n® _ AA?
L = TN mm—
i (20) A A

324. Supposons maintenant que les paramétres a variation
lente changent de valeur; en d’autres termes supposons que
le mouvement vibratoire n’est pas stationnaire, alors P n’est

pas nul. Evaluons le travail

3Q =— f Pdp
fourni par ’extérieur et relatif au paramétre a variation ra-
pide pendant un temps d¢, Lrés pelit d’'une maniére absolue,
mais cependant trés grand par rapport a4 la période de vi-
bration.
Nous avons donc, d’aprés I'équation (19),

dB d
dQ:qudp—i—fB?de +prdp.

La premiére de ces intégrales s'effectue facilement. Les
fonctions B ne dépendant que des paramétres 4 variation
1ente, sa dérivée par rapport a¢ est petite et varie lentement;
nous pouvons donc la considérer comme constante et l'inté-
grale a évaluer devient

dB dB
qudp-——deq’dt.
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L’intégration étant prise pendant un temps trés petit d¢,
Iintégrale précédente peut étre remplacée par le produit
h*n?

de d¢ par la valeur moyenne 2

de ¢?; nous avons donc

dB . dB  hn* _,, .
d—tqdp__-a-?at—r _.hn6B,.

dB désignant la variation de B pendant le temps d¢.

Pour avoir les deux autres intégrales développons A et B
par rapport aux puissances croissantes de ¢; nous avons, en
supposant pour un instant que nous avons pris pour origine
du temps le commencement de l'intervalle d¢,

dr,  dA

A:A—&-Et—a— i ...,
. .dB _dB,
B—B+EJ+T{FC+....

Mais I'intervalle de temps &¢ pendant lequel on considére
le systéme étant trés petit, il est inutile de tenir compte des
termes du second degré en ¢ et d’'un degré supérieur; en
outre, nous pouvons regarder %%— et ‘fl—? comme constants

pendant cet intervalle; il vient donc,.pour les intégrales &
évaluer, '

dq , _ dB
.fBEdp-—qudq——qudq+——d,ftqdq,
dA
prdp:Afpdp+37ftde-

325. Nous pouvons choisir l'intervalle de temps 3¢ de ma-
niére que p soit nul au commencement et & la fin de cet in-
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tervalle; pour ces deux instants ¢ est alors égal 4 nA. Dans
ces conditions,

2
qudq:Bé-'—l-;i

Afpdp:o.

Les deux autres intégrales peuvent s’écrire, en intégrant
par parties,

et

dB __dB (g e

il ‘qdq—m<3‘—f;d‘)’ :
dA _dA{, p*

rn ‘P"P—d—t<"’ —f‘;d‘>’

et I'on voit facilement qu’elles ont pour valeurs, la premiére,

dB nth? nth? nth?
» <a¢..___2 — et ) =B,

1a seconde,

%(a—&t%):—éz\!g-

Par conséquent, en remplagant dans dQ les intégrales
par leurs valeurs, nous obtenons
252 2 5t 3 52 2
sQ=oB™H el spmA  a®,
2 2 4 4
ou .

nih? niht h2

Divisons cette égalité par L dont les valeurs sont données
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par les égalités (20); nous avons

°Q
T

S 'Y
B nh? A

Chacun des termes du second membre étant la dérivée
d’un logarithme, la somme de ces termes est la dérivée du
logarithme du produit; c’est donc une différentielle exacte.
Le théoréme de Clausius se trouve, par conséquent, aussi
bien démontré dans le cas d’'un état vibratoire des molé-
cules que dans le cas d'un état tourbillonnaire.

326. Phénoménes irréversibles. — Revenons 4 la théorie
d’Helmholtz. 11 semble tout d’abord gu’elle ne peut rendre
compte des phénoménes irréversibles. '

Considérons la fonction H. C’est,‘ nous le savons, une
fonction des p el des ¢; ces derniéres quantités y entrent
au second degré puisque H—=® — L et que ® ne dépend
pas des g, tandis que L contient ces quantités au second
degré. Quand on change le signe du temps, c’est-d-dire si
Fou fait revenir le systéme vers son état initial, les p ne

changent pas de signe, mais les dérivées g = ‘-Zg en chan-

geﬁt. Mais, puisque ces quantités figurent au second degré
dans H, cetle derniére fonction conserve la méme valeur.
Or les équations qui définissent & chaque instant l’état du
systéme peuvent se mettre sous la forme (5) :

d dd dH

-—a—taq—aﬂ—%;:—-l)a.

Son premier terme ne change pas de valeur quand dt de-
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vient négatif, puisque dg, change en méme temps de signe
et que nous venons de voir que H conserve la méme valeur;
quant aux autres termes, ils ne changent pas aon plus de
valeur. Ces équations restent donc les mémes quel que soit
le signe de dt; par suite, le systéme, quand il revient vers
son état initial, repasse exactement par les états qu’il a pris
en'partant de Pétat initial; les transformations sont donc
réversibles.

»

327. Mais nous avons vu que, dans le cas des systémes
incomplets, L peut s’exprimer par une fonction du troisiéme
degré des ¢. Par suite L, dans ces conditions, change de
valeur avec le signe de d¢. Les phénoménes irréversibles
pourraient donc avoir, lieu avec les systémes incomplets ;
c’est ce qu'admet Helmholtz.

Mais P'illustre physicien a recours également & uné autre
interprétation, d’ailleurs analogue.

Supposons que, pour quelques-uns des paramétreé a va-
riation rapide p;, les quantités P, soient nulles. Nous dési-
gnerons ces paramétres par la notation p.. 1l vient alors

dQ.

dsy—= ——= = — P,dt =o.
(4 qe [
Les s, sont donc des constantes que jappelle s2. Les rela-

tions
so=1+s°

me permettront d’éliminer les quantités ¢, et de ne con-
server comme variables indépendantes que les p, et les g,
‘(non compris les ¢.).
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Désignons alors par la notation d les dérivées partielles
caleulées avec le systéme de variables anciennes p,, g, et g,,
et par la notation d les dérivées partielles calculées avec
les variables nouvelles pa et ¢,.

Posons de plus

H=H+ Zs52q,;
il viendra
Tou= e Dy, e~ e~ e =y~ 2

— y

oH' _ oH e o 99,

0pa Opa $Opa
d’ou -
oW _ aH
dpa dp,

De méme nous aurons

oH _ dH dg.
dq,  dqgs 2 ‘ dq,

et

doH _ddi ~po_dog. ~ods. dge.
T 53, = @ d5, ~ N Gg. "X ds agy

et, puisque

Se—=1589 Cﬁ—‘: —=o0
e e dt s
il vient
d o _d dH d dq.
dt dq,  di dgq, -2 o9,
De méme

d o _ d ol Esoi‘_’_’!.i.
dt dqh T dt dql, ¢ dt dq;,,
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donc

Nos équations deviennent donc

oH' oH’
—_— = P,, d— —— dQ,.
0Pa 01]1; qs Qb _
Elles conservent donc la méme forme. Si le nombre des
parametres & variation rapide autres que les p, se réduitar,

le systéme est monocyclique; mais le facteur intégrant

1 S
n’est plus —»> mais —--
L g6Ss .

Les relations s,=— s ne sont pas homogénes par rapport
aux ¢, puisque le premier membre est du premier degré et
le second du degré o.

Il en résulte qu’aprés I'élimination des ¢,, L ne sera plus
- homogéne du second degré par rapport aux g et que H
pburra contenir des termes de degré impair par rapport a
ces quantités.

Les équations cessent donc d’étre réversibles, c’est-a-dire
de demeurer invariables quand on change le signe du temps.

Helmholtz désignant par mouvements cachés ceux qui
correspohdent aux paramétres p, pour lesquels P, est nul,
I'irréversibilité des phénomeénes doit alors étre attribuée
a lexistence de mouvements cachés dans le systéme.
L’exemple le plus simple d’un tel systéme est le pendule de
Foucault; dans ce cas, le mouvement caché est celui de la
Terre; c’est ce mouvement qui empéche le pendule de re-
passer en sens inverse par les positions gqu’il a occupées
antérieurement et détruit la réversibilité du phénoméne.
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328. Cette explication des phénoménes irréversibles peut
parailre satisfaisante. A mon avis elle ne peut rendre compte
de tous les phénoménes thermodynamiques. Montrons-le.

Considérons un systéme soustrait i toute-action exté-
rieure. Dans ce cas les P, sont nuls et nous avons pour les
équations relatives & un paramétre

ds dH
(2[) Ez—*‘d—p“——o,

en supprimant les indices.
D’aprés les relations (2), (3) et (4), nous avons pour
I'énergie du systéme

-

dL
ou, en tenant compte de (6),
U=H -+ Zgs.

Considérons U comme fonction de p et de s; nous obte-
nons pour les dérivées partielles de cette fonction

dU _ dHl
dp — dp’
dU
a7

ou, d’aprés ’équation (a1) et la signification de ¢,

dU _  ds du _ dp
(22) dp =& & di
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Le systéme étant isolé, son entropie ne peut aller en di-
.ods o, -
minuant; par suite T doit étre positif quand ¢ augmente.

Or nous pouvons considérer S comme une fonction des s
et des p. Alors nous avons

ds dS ds dS dp
& T a\ds dt v dpdt)’
ou, en remplacant Z—‘: et gg par leurs valeurs tirées des

équations (22),

4 _ (48 dU_ 45 dU
dt dp ds ds dp)’

Par conséquent, lacondition & laquelle doit satisfaire le

systéme est
¥ (454U _ds du)

(23) a(dp & dsdp)T
et celte inégalité doit étre satisfaite pour toutes les valeurs
des p-et des s,

Nous allons voir qu’elle n’est pas toujours remplie.

329. 1l est en effet possible d’imaginer un systéme pour
lequel S passe par un maximum. Puisque S ne peut dé-
croitre, cette quantité reste constante quand elle a atteint sa
valeur maximum, valeur pour laquelle le systéme est en
‘équilibre. Nous pouvons supposer que cet état correspond
4 des valeurs nulles de s et de p, car, si ces variables avaient
alors des valeurs différentes de zéro, s et p/, il suffirait de

poser .
s= 8+ s", p=p+p
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el de prendre s” et p" pour nouvelles variables pour que
dans I’état d’équilibre les variables soient nulles. Nous pbu-
vons également supposer que, pour cet état, U et § sont
nuls, puisque ces fonctions contiennent une constante ar-
bitraire.

Développons 8 par rapport aux puissances croissantes des
variables.

Le premier terme de ce développement est nul d’aprés
I’hypothése précédente; {’ensembie des termes du premier
degré en s et p est aussi nul puisque S passe par un maxi-
mum quand s = p —o; pour cette derniére raison, l'en-
semble des termes du second degré est négatif. Par consé-
quent, si nous négligeons les termes d’un degré supérieur
au second, S est une forme quadratique négative de s et
de ¢; nous pouvons donc la décomposer en carrés dont tous
les coefficients sont négatifs.

Développons également la fonction U; le terme constant
du développement est anul. Il en est encore de méme de
I'ensemble des termes da premier degré; en effet, puisqu’il
y a équilibre du systéme, ‘

ds odp
-d—t =0 et .(T[ =0
et, par suite des équations (22),
Woo o Lo
dp — S ds T

En négligeant les termes du développement d’un degré
supérieur au second, U se réduit donc a une forme quadra—‘
tique de s et p.
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330. Les fonctions 8 et U étant quadratiques, leurs déri-
vées partielles par rapporl aux variables sont du premier
degré et, par suite, le premier membre de l'inégalité (23)
est une fonction guadratique. Pour que cette inégalité soit
toujours satisfaite, il faut que cette fonction quadratique
puisse se mettre sous la forme d’'une somme de carrés dont
les coefficients sont positifs. Alors elle ne peut s’annuler
que pour s =p —o.

‘s . U
Or considérons la fonction — 5 Elle est homogéne et du

degré zéro par rapport & p et s. On peut donc, sans changer
la valeur de cette fonction, multiplier s et p par un méme
facteur quelconque. Profitons-en pour rendre ces variables
toujours plus petites qu'une certaine quantité, c’est-a-dire
finies. Alors U et S restent finis quelles que soient les va-

. U o .
leurs données aux variables et — g e peut devenir infini
que si 8 est nul. Mais S étant une fonction quadratique

e o U .
négative ne peut s’annuler; — g ne peut donc devenir in~

fini et doit présenter un maximum que nous désignerons’
par A pour un systéme de valeurs des s et des p autre que
S :P = 0.

Pour ces valeurs des variables correspondant & ce maxi-
mum, on a

par suite,



REDUCTION DES PRINCIPES DE LA THERMODYNAMIQUE. 449

De méme on a
dv__ ;48
dp — " "dp

8i nous portons ces valeurs de 4u et 4u dans le premier
ds dp.
membre de P'inégalité (23), celui-ci s’annule. La fonction
quadratique qui lui est égale peut donc s’annuler pour des
valeurs de p et s différentes de zéro. Par suite, tous les coef-
ficients des carrés ne sont pas positifs et la fonction peut
étre négative.

Les équations d’Helinholtz ne peuvent donc expliquer
I'augmentation d’entropie qui se produit dans les systémes
isolés soumis a des transformations irréversibles.

1l résulte de la que les phénoménes” irréversibles et le
théoréme de Clausius ne sont pas explicables au moyen des
équations de Lagrange.

334. L’explication des phénoménes réversibles n’est méme
pas compléte. En particulier, il faudrait expliquer pourquot
quand deux corps 4 la méme température sont mis en con-
tact il n’y a pas passage de chaleur d’un corps 4 un autre.
On a bien tenté d’en donner une explication. On a comparé
les deux corps a4 deux poulies dont les vitesses de rotation
sont égales; quand on embraie ces poulies, il n’y a pas de
choc et par suite pas de transmission de force vive de 'une i
l'autre; quand on met les deux corps en contact il n’y au-
rait pas non plus de chocs entre les molécules, celles-ci
possédant la méme vitesse dans les deux corps puisque les
températures sont les mémes. L’explication est loin d’atre

satisfaisante.

P. 29
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332. Travaux de Boltzmann. — Aux noms d’Helmholtz et
de Clausius il faut ajouter celui de M. Boltzmann. Parmi les
travaux de ce dernier savant sur le sujet qui nous occupe
nous ne signalerons que sa démonstration de I'hypothése
d’Helmholtz.

M. Boltzmann sépare encore les paramétres du systéme
en deux classes : les paramétres & variation lente et les pa-
raméires & variation rapide, mais il ne suppose plus que
H est indépendant de ces derniers. Il décompose le systéme
total en un grand nombre de systémes pour lesquels la pé-
riode est la méme, mais la phase différente. En considérant
cet ensemble de systémes M. Boltzmann montre que tout se
passe comme si H ne dépendait pas des paraméltres & varia-
tion rapide; I'hypothése d’Helmboltz se trouve donc justi-
fie. A ce point de vue le travail de M. Boltzmann devait
étre signalé ici.

333. Toutes les tentatives de cette nature doivent donc
étre abandonnées; les seules qui aienl quelque chance de
succeés sont celles qui sont fondées sur l'interveuntion des
lois statistiques comme, par exempie, la théorie cinétique
des gaz.

Ce point de vue, que je ne puis développer ici, peut se
résumer d'une fagon un peu vulgaire comme il suit :

Supposons que nous voulions placer un grain d’avoine au
milieu d’un tas de blé; cela sera facile; supposons que nous
voulions ensuite I'y retrouver et I’en retirer; nous ne pour-
rons y parvenir. Tous les phénoménes irréversibles, d’aprés
certains physiciens, seraient construits sur ce modéle.

FIN.
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