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NOTES ON EXTRACT 4

POINCARE starts by considering the experiments of Michelson and the expla-
nation of Lorentz and Fitzgerald, and he has already in mind the later article
of Lorentz (Extract 3). His own approach has been quite independent of
Lorentz, and he remarks that the results which he has obtained agree in all
important respects with those of Lorentz. The first section recapitulates the
results already given by Lorentz, and he next proceeds, with typically French
elegance, to deduce all of these results from a variational principle. This
deduction is carried out in order that in the third section Poincaré can relate
the invariance under the Lorentz transformation to the invariance of the
variational principle. In the fourth section he goes on to show that the trans-
formations do indeed form a group. Subsequent sections (which are omitted)
are then concerned with rather technical matters of less interest now, but at
the end of the paper there is a section in which Poincaré attempts to relate
what he has found to the problem of gravitation. This problem is one which
will occupy us exclusively in the succeeding book, since it found its complete
solution not by means of field theories of the kind envisaged by Poincaré
but by an entirely reformulated theory (general relativity) some years later
It is, however, of the greatest interest to observe what an extremely sophistic-
ated gravitational theory can be produced by Poincaré in a Lorentz invariant
fashion.

One mathematical point needs to be noted. Poincaré adheres to the old
usage of 4 for both partial and ordinary differentiation. He then introduces
what would usually be a symbol of partial differentiation, with a specialised
meaning, in Section 2.
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EXTRACT 4

The dynamics of the Electron

By H. POINCARE

Introduction

It would seem at first sight that the aberration of light and the
optical and electrical effects related thereto should afford a means
of determining the absolute motion of the Earth, or rather its mo-
tion relative to the ether instead of relative to the other celestial
bodies. An attempt at this was made, indeed, by Fresnel, but he
soon perceived that the Earth’s motion does not affect the laws of
refraction and reflection. Similar experiments, such as that using a
waterfilled telescope, or any in which only the first-order terms rela-
tive to the aberration were considered, likewise yielded only nega-
tive results. The explanation of this was soon found; but Michel-
son, who devised an experiment wherein the terms involving the

square of the aberration should be detectable, was equally unsuc-

cessful.

This impossibility of experimentally demonstrating the absolute
motion of the Earth appears to be a general law of Nature; it is
reasonable to assume the existence of this law, which we shall call
the relativity postulate, and to assume that it is universally valid.
‘Whether this postulate, which so far is in agreement with experi-
ment, be later confirmed or disproved by more accurate tests, it is,
in any case, of interest to see what consequences follow from it.

[* Rend. del Circ. Mat. di Palermo 21, 12946 and 166-75 (1906).]
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146 SPECIAL RELATIVITY

One explanation, suggested by Lorentz and Fitzgerald, in-
volves the hypothesis that all bodies undergo a contraction in the
direction of the Earth’s motion, of an amount proportional to
the square of the aberration; such a contraction, which we shall
call the Lorentz contraction, would explain the result of Michel-
son’s experiment and of all others conducted heretofore. The hy-
pothesis would nevertheless be inadequate if the relativity postu-
late were valid in its most general form.

Lorentz has sought to extend and modify the hypothesis so as
to make it fully compatible with the relativity postulate. This he
has succeeded in doing, in his paper “Electromagnetic pheno-
mena in a system moving with any velocity smaller than that of
light” (Proceedings of the Section of Sciences, Koninklijke Akade-
mie van Wetenschappen te Amsterdam 6, 809-831, 1904).

In view of the importance of this problem; I resolved to examine
it further. The results which I have obtained agree with those
of Lorentz in all the principal points, and I have needed only to
modify and augment them in certain details. These differences,
which are of but minor importance, will be shown in later sections.

Lorentz’s concept may be summarised thus: if 2 common trans-
latory motion may be imparted to the entire system without any
alteration of the observable phenomena, then the equations of an
electromagnetic medium are unaltered by certain transformations,
which we shall call Lorentz transformations. In this way two sys-
tems, of which one is fixed and the other is in translatory motion,
become exact images of each other.

Langevin' sought to derive a modification of Lorentz’s con-
cept. Both authors consider that an electron in motion assumes
the form of an oblate spheroid; but Lorentz considers that two
of the axes of this spheroid remain constant, whereas Langevin
supposes that its volume remains constant. These two authors

t Langevin had been anticipated by Bucherer of Bonn, who earlier put

forward the same idea. See A. H. Bucherer, Mathematische Einfiihrung in die
Elektronentheorie, Teubner, Leipzig, 1904,
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have shown that the two hypotheses are in agreement with the
experiments of Kaufmann, as is Abraham’s original hypothesis
of a rigid spherical electron.

The advantage of Langevin’s theory is that it involves only the
electromagnetic forces and the constraints; but it is not compat-
ible with the relativity postulate. This was shown by Lorentz, and
I have likewise proved it by a different method, based upon the
use of group theory.

We must return therefore to Lorentz’s theory, but, in order to
maintain this free from unacceptable contradictions, a special
force must be invoked to account both for the contraction and
for the constancy of two of the axes. I have attempted to deter-
mine this force, and have found that it can be regarded as a con-
stant external pressure acting upon an electron capable of deforma-
tion and compression, the work done being proportional to the
change in the volume of the electron.

Then, if the inertia of matter is exclusively of electromagnetic
origin, as has been customarily supposed since Kaufmann’s ex-
periment, and if all forces (other than the constant pressure to
which I have just alluded) are of electromagnetic origin, the re-
lativity postulate can be accepted as strictly valid. I show this by
means of a very simple calculation based upon the principle of
least action.

But this is not all. Lorentz, in his paper already mentioned,
has deemed it necessary to extend his hypothesis in such a2 manner
that the postulate remains valid when there exist forces other
than the electromagnetic forces. In Lorentz’s view, all forces, no
matter how originating, are affected by the Lorentz transforma-
tion (and therefore by a translatory motion) in the same manner
as the electromagnetic forces. :

It was necessary to consider this hypothesis more closely, and
in particular to ascertain the changes which it would compel us
to apply to the laws of gravitation.

First of all, we find that gravitational action would be propa-
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gated with the velocity of light, and not instantaneously. This
might in itself appear to be sufficient reason to reject the hypo-
thesis, for Laplace has shown that such propagation cannot oc-
cur. But, in fact, the effects of this are largely counterbalanced
by another phenomenon, and there is, therefore, no contradiction
between the proposed law and astronomical observations.

The question arises whether it is possible to discover a law
which satisfies Lorentz’s condition and which yet reduces to
Newton’s law whenever the velocities of the bodies are so small
that the squares of these velocities (and the products of the acce-
lerations and the distances) may be neglected in comparison with
the square of the velocity of light.

It will be seen later than the answer must be affirmative.

Is the law, thus modified, compatible with astronomical obser-
vations ?

At first sight it appears to be so, but a more detailed discussion
is necessary to settle the question.

Even assuming, however, that the new hypothesis survives this
test, what conclusion is to be drawn? If the gravitational attrac-
tion is propagated with the velocity of light, this cannot occur by
mere chance, but must be dependent on the ether; we should then
have to investigate the nature of this dependence, and attempt to
relate it to other such dependences.

We cannot be satisfied with formulae that are merely placed
side by side and agree only by a lucky chance; these formulae
must, as it were, interlock. The mind will consent only when it
sees the reason for the agreement, and when this agreement even
seems to have been predictable.

But the matter may be viewed in a different light, as an analogy
will show. Let us imagine some astronomer before Copernicus,
pondering upon the Ptolemaic system. He would notice that, for
every planet, either the epicycle or the deferent is traversed in
the same time. This cannot be due to chance; and there must be
some mysterious bond between all the planets of the system.
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Then Copernicus, by a simple change of the co-ordinate axes
which were supposed fixed, did away with this seeming relation-
ship: every planet described one circular orbit only, and the pe-
riods of revolution became independent of one another—until
Kepler once more éstablished the relationship that had apparently
been destroyed.

Now, there may be an analogy with our problem. If we assume
the relativity postulate, we find a quantity common to the law
of gravitation and the laws of electromagnetism, and this quan-
tity is the velocity of light; and this same quantity appears in
every other force, of whatever origin. There can be only two ex-
planations.

Either, everything in the universe is of electromagnetic origin;
or, this constituent which appears common to all the phenomena
of physics has no real existence, but arises from our methods of
measurement. What are these methods? One might first reply,
the bringing into juxtaposition of objects regarded as invariable
solid things; but this is no longer so in our present theory, if the
Lorentz contraction is assumed. In this theory, two lengths are
by definition equal if they are traversed by light in the same
time. :

Perhaps the abandonment of this definition would suffice to
overthrow Lorentz’s theory as decisively as the system of Ptolemy
was by the work of Copernicus. Should this ever happen, it would
by no means argue the futility of Lorentz’s analysis: whatever the
faults of the Ptolemaic theory, it was the necessary foundation
for Copernicus to build upon.

I have therefore not hesitated to pubhsh these incomplete re-
sults, even though at the present time the entire theory may seem
to be threatened by the discovery of cathode rays.
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§ 1. The Lorentz Transformation

Lorentz has adopted a particular system of units, such that the
factors of 4z no longer appear in the formulae. I shall do likewise,
and moreover I shall choose the units of length and of time in
such a way that the velocity of light is equal to unity. Then, if
/> &, h denote the electrical displacement; «, 8, ¥ the magnetic
force; F, G, H the vector potential; u the scalar potential; o the
electrical charge density; £, #, ¢ the velocity of the electron; u, »,
w the current, the fundamental equations become

sl o oBdy s dp
u=Zrtet=L_2,

dr =712—_"@’ dt dx 6))
il T dE
Semall eenion s U

dz a4
Secre e

Oy=-¢, OF=—gt. J

An elementary particle of matter, having a volume dx dy dz, is
acted upon by a mechanical force, whose components X dx dy dz,
Y dx dy dz, Z dx dy dz are given by the formula

X = of+olmy—2p). ()

These equations can be subjected to a remarkable transformation
discovered by Lorentz, the significance of which is that it explains
why no experimental demonstration of the absolute motion of the
universe is possible. If we put

’

X' = ki(x+et), t =klt+ex), y = lyy zli=ilz - (3)
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where / and e are any constants, and

1

YTk
and if we also put
P
P
then
O’ =g.l-—2

Let a sphere be carried alon g with the electron in a uniform trans-
latory motion, and let the equation of this moving sphere be

=8+ =+ (z— Lo = r2;

the volume of the sphere is then &+ s,

The foregoing transformation will change the sphere into an
ellipsoid, whose equation is easily found. From the equations (3),
it immediately follows that

ke S K s z
x—T(x—.st), t=-1—(t-—sx), V= Z = 3)

The equation of the ellipsoid is then
KE(x' — et! — &0+ eEx' Y2 (3 — ke + mkcex?
+ (2 —Ckt' + Ckex')? = 122,
The ellipsoid moves uniformly; when ¢ = 0, it is
k2x2(1 —I—Ees)2+(y’-f—mrkex’)z—f-(z’—!—é.‘lcax’)2 = /22

and its volume is

4 1
37 TaE:

If the charge on an electron is to be unaltered by the transfor-
mation, and if the new electrical charge density be denoted by

K-STR 11




152 SPECIAL RELATIVITY

o', it follows that
k
o' =g loteed). )

The new velocities &, ', £’ will be given by
dx! dbcte): = S+

= ety
Gimeay e dyS e S
"= T kditer)  k(+ed)’
5 4
= e
whence
1Er k ’ f_l 'C’ziQC- (41)

Here I must for the first time indicate a disagreement with
Lorentz’s analysis. Lorentz (op. cit., page 813, formulae (7) and
(8)) writes, in our notation,

!

1 ’ gV P
0 =7w0 & =k¥+e), 7' =k U =K.

These lead to the same relationships

’

k ; 1 L
08 = Fi+ed, e =g V=g
but with a different value of o’. :
It should be noticed that formulae (4) and (4") satisfy the con-
tinuity condition
5 3@E) _
dt dx'

For, let A be an undetermined coefficient, and D the Jacobian of

t+2ip, x+2AgE, y+iom, z+Ael (5)
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with respect to #, x, y, z. Then
D = Do+ DA+ Doi? + DgA3+ DA%,

: & i dos dlol)
with 120 =ik .Dl _'E-'-E e 0.

Let A’ = [22; then the four functions

t:+lrgr, xl+ /?Q'E', y’+ﬂ-'9"n’ Z'+/1’9’C’ (5/)
are related to the functions (5) by the same linear relationships
as those which exist between the old and new variables. If, there-
fore, D’ denotes the Jacobian of the functions (5") with respect to

the new variables, then

D'=D, D' =Dy+Dix+ ... +Di14
whence =
Do = Dy = 1, DI:;D=0
dgf I"I)
= 'Ht—’+2 T g.e.d.

With Lorentz’s hypothesis, this condition would not be ful-
filled, since the value of o’ is not the same.

The new vector and scalar potentials will be defined so as to
satisfy the conditions

G'TP’ = _Q.r, DJF; =_Q’Ef- (6)
Hence we find
k
=T(’*P+8F), F'=-1;(F+s1p), G' = 1G H’_.llH
)]

These formulae are noticeably different from those of Lorentz,
but the difference rests, ultimately, only on the definitions used.
The new electric and magnetic ﬁe]ds will be defined so as to
satisfy the equations
Y 44O ®
dr'  dx dy dz

11*

W ! - féf}f
Nt
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It is easily seen that

dekd AN A id
ar 1( dx) 'dx_"T(E_SEE)’
& 1

I

e d & ST d
dyais dy dz' — 1 dz°’

and therefore

] K s
f ='i2_'ﬂ g =72-(g+5'?): h =1—2(h—$ﬁ),
9
; - )
=% B —-— —ch), v =l—2('y-[—€g).

These formulae are identical with those of Lorentz.

Qur transformation does not affect equations (1): the conti-
nuity condition and equations (6) and (8) are identical with some
of the equations (1) if the primes are omitted.

The equations (6), together with the continuity condition, give

dy’ dF’

We have only to prove that

i, oAyl de e ab

TSy T w Ty
gl
“E =

and it is easily seen that these relationships necessarily follow
from equations (6), (8) and (10).

Let us now make a comparison of the forces before and after
the transformation.

Let X, ¥, Z be the force before the transformation, and X”, ¥”,
Z' the force after it, both per unit volume. If X” is to satisfy the
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same equatlons as before the transformatlon we must have
Xi= Qf ey =P,
Y’ = o'g'+o' G —&Y),
Z = h+ g @B
or, substituting the expressions (4), (4") and (9) and using equa-
tions (2),

=

ik
X' = & (X+eZX8),

1
Pi= ¥ i | (11)
; 1

If X3, Y1, Z; denote the components of the force per unit

_electric charge on the electron, and X7, ¥;, Z; the same quan-

tities after the transformation, then
X, = frny—08, Xi=f"+ny-CF,

X = oXy, Xi— X
and we should obtain
i
X =% ‘3 L e |
Y= Oy (11
1 5 e.r 1, [
L
0 J

Lorentz’s result was, in our notation (op. cit., page 813, for-
mula (10)),
= [2X|—Pe(n'g’ +L'R),

S 12 g
Y Y + & ’7
3 ] 1 k (11”)
B S
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Before proceeding, it is necessary to ascertain the reason for -

this considerable difference. It occurs, evidently, because the for-
mulae for &, ', {’ are not the same, whereas those for the electric
and magnetic fields are the same.

If the inertia of the electrons is of purely electromagnetic origin,
and if moreover they are subject only to forces of electromagnetic
origin, the condition of equilibrium requires that, within the elec-
trons,

X=Y=2Z=0.

From the relations (11), these are clearly equivalent to
K= =7 =0

Thus the equilibrium conditions are unaffected by the transforma-
tion.

Unfortunately, such a simple hypothesis is inadmissible. For,
if we assume that £ = = { = 0, the conditions X =¥ = Z = 0
will imply that f = g = & = 0, and therefore

df fs
E‘;—O, I.C.Q-—O.

Similar results would be obtained in the general case. Hence we
must assume that there are not only electromagnetic forces but
also cither other forces or constraints. We then have to determine
the conditions governing these forces or constraints such that the
equilibrium of the electrons is unaffected by the transformation.
This will be done in a subsequent section.

§ 2. The Principle of Least Action

Lorentz’s derivation of his equations from the principle of least
action is well known. I shall, however, discuss this point further
(although I have nothing essential to add to Lorentz’s analysis),
since I prefer to present it in a slightly different form, which will

o
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be of use later. I write

= f dt d[15f+ L Ea?— ZFu], 1)

with f, «, F, u, etc., assumed subject to the following conditions
and those obtained from them by symmetry:

> dh dH: dGidf

b et 2
B dy dz’ T odt Zr Hes 2)

The integral J is taken over the following ranges:

(a) the whole of space, for the volume element dr = dx dy dz;
(b) the interval between #o and f;, for the time element dt.

According to the principle of least action, the integral J must
have a minimum value when the quantities in it satisfy:

(a) the conditions (2);
(b) the condition that the system is in spec:ﬁed states at the
limiting times #, and #;.

The latter condition enables us to transform the integrals, using
an integration by parts with respect to the time. For, given an

integral of the form
J‘ drded BBIC a’B 6C

where C is one of the quantities defining the state of the system,
and JC the variation of C, integration by parts with respect to
the time shows that this integral is equal to

f dr[AB ac] f dtdr—a’B 5C.
=ty

Since the state of the system at the limiting times is specified,
0C = 0 for ¢t = ty and for ¢t = #;; the first integral is therefore
zero, and only the second integral remains.




158 SPECIAL RELATIVITY

We can effect a similar integration by parts with respect to x, y
or z, since

dA4
J.Agx— dxdydzdt = f AB.dy dz dt._f BEE— dxdydzdlt.
The integrations extend to infinity, and in fhc first integral on
the right-hand side we must therefore put x = + e this integral
is then zero, because all the functions are assumed to tend to zero
at infinity, and we have

J.A%Edzdt _—fB—dzdz

If the system were assumed subject to constraints, the con-
straint conditions would have to be included among the condi-
tions to be satisfied by the various quantities appearing in the
integral J.

First, let F, G, H receive increments 6F, 6G, 6H; then

doH doG

e

We must have

6J=jdtd1:2 AOHE GoGi a0,
- Sdyidz

or, on integrating by parts,

6J=fdtdr[ (aG——aHd“) EuéF-J.

; 7
T dy.dgy
5 fdtdtZéF(u d—y+dz) —0,

whence, equating to zero the coefficient of the arbitrary quantity
oF,

u=———_r 3)

POINCARE: THE DYNAMICS OF THE ELECTRON 159

From this we obtain (using an integration by parts)

fEFu e JE‘F(wdl—fé) &
dF  dF
=J2(ﬁdz Y )d’
dH dG
= J‘Z&X(?y———dz—) d‘ﬂ,

fZFu drv = f Za? d,

or

whence finally
i f dt du( 35— 152). @

Henceforward, having regard to the relation (3), 8J is indepen-

dent of dF, and therefore of d«. Let us now vary the other quan--

tities. :
The expression (1) for J gives

= f dt du(Zf 8 — ZF 8u).

But f; g, & must satisfy the first condition (2), so that

dof
T (3)

and we may write
a9f
b= J dt dz[}.‘f AT e qJ( ag) ] ©)

From the calculus of variations, it is known that the calculation
should be made as if y were an arbitrary function, éJ were repre-
sented by the expression (6), and the variations were not subject to
the condition (5).
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We also have

dé
o =21 1508,

and therefore, on integration by parts,

dF dy

8J = f dt er‘éf(f—;— 'Z?*?E)’L J' dt de(y Sp—ZF 8(08)). (7) -

If now it be assumed that the electrons undergo no variation,

then dp = 6(o&) = 0, and the second integral vanishes. For 6J
to be zero, we must have

daF dy
f+_EI—+EC. =0. (8)

In the general case, therefore,

8J = f dt du(y do—ZF 8(0E)). ©)

It remains to determine the forces acting upon the electrons.
To do so, we must assume that a complementary force —Xdr,
—Y dv, —Z dv is applied to each electron volume element, and
write down the condition for this force to balance the forces of
electromagnetic origin. Let U, ¥, W be the components of the
displacement of the electron volume element dz, measured from
any given initial position. Let 6U, 6V, W be the variations of this
displacement. The virtual work corresponding to the complemen-
tary force will be

——fZ‘X 8U dx,

and the equilibrium condition just mentioned will therefore be

6J =-—JEX 6Udrdt. . (10)
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In order to transform 8J, we first seek the equation of continuity
stating that the electron charge remains constant under the varia-
tion.

Let xo, o, Zo be the initial position of the electron. Its position
at the time considered will be

x=x0+U, y=yot+V, z=2z0+W.

We shall define also an auxiliary variable ¢ to generate the varia-
tion of each function: for any function 4,

dA

This is done because it will be convenient to be able to change
between the notation of the calculus of variations and that of the
ordinary differential calculus whenever desired.

The functions under consideration may be regarded in two
ways: (a) as functions of the five variables x, y, z, ¢, &, so that the
position remains unaltered when only ¢ and e vary, in which case
derivatives with be denoted by d as usual; (b) as functions of the
five variables xo, Vo, Zo, £, €, so thata particular electron is followed
when only ¢ and ¢ vary, in which case derivatives will be denoted
by the symbol 8. Then we have

oU oU au du au Ox
——é?'_—“—é}—'i‘é:?x“"rﬂ—'l‘c__—— (11)

5 dy dz or

Now, let 4 denote the Jacobian of x, y, z with respect to xo, Yo,
Zg-
_ 0x,y.2)
= 9(x0, Yo, Z0)

If # receives an increment 8¢ while &, Xo, Yo, Zo remain constant,

there will be consequent increments 0x, 8y, 0z of x, y, z,and 84

of 4, with
dx=2¢&ot, oy=mnot, 0z=1C_0r
8(x+0x, y+ 0y, 2+ 0z)
A4+04 =
e &(xo0, Yo, 20)
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whence
1_’_@_ 0(x+0x, y+ Oy, z+ 0z)
A5 a(x, y, 2)
_ O(x+&0t, y+not, z+£ 00
S o(x, y, z) ’

From this we obtain
1 24 deE dn dt

Aot od (12)
Since the mass of an electron is constant,
8(ed) _
TR 0, (13)
and therefore
dp dsie Jo do
el = +2&
do d@)_,
dx

These are the various forms of the equation of continuity with
respect to the variable ¢. Similar forms can be deduced with respect
to the variable €. Let

aU=6—Ua e O ey
O¢ Oe
then
dU du dU dU ;
1 94 _oU B(QA) e :
Op doUu Op _ dp oU dp

it s o

do 6U &)
2 il
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It will be seen that there is a difference between the definition of
= (0U/0e)de and that of dp = (dp/de)ée, and that this defini-
tion of 6U is the one which is appropriate to the formula (10).
The first term in equation (9) can be transformed by means of
the last equation (13'):

fd:dmp ag_—fdzdmz ‘-’dU,

or, after integration by parts,

fdtdrw e fdtdr.Z‘g Y 5. (14)

Let us now seek to determine

3ed) = A& 5

We may notice that p/ can depend only on Xy, o, zo; for, if an
electron volume element be considered whose initial position is a
rectangular parallelepiped with edges dxo, dyo, dzo, the charge on

this element is
od dxo dyo dzo .

Since the charge must remain constant,

0(ed) _ (o)

I T L )
Hence' we have
BZ(QAU)_i 6_U 50, oU
0tde ~ 0 (QA 61)_ 8t(d e)' )

For any function 4 we have, by the equation of continuity,

1 8(44) _ dA ., d(4E)
T T T
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and similarly

1 8(4d) _ dd . d(4 6U/e)
Al T T dx $

Hence

1 0/ U\ _ ddU/ds = d(e(dU/dr)(dU/o
3 (E’Aa_z) = e ( - )

= d(e(aU/B;J))(aVlae)) # ‘?(9(3(1/522(5”’/35)) . a7
1 09U\ _ dedU/ee) _d(o(dU)o)(8U/os)
4 ot (9 35) ST dx( )

d(o(8V [01)(8U[3e))  d(o(8W /5
4+ Ao /2}( /e))Jr (o( /;;(BUIGS))_ a7)

The right-hand sides of (17) and (17°) must be equal, and, since

oU oU d
w5 =6 %=, (Qg)a_a(e)

we obtain

8(08)+ d(ejxﬁU) L e 6V)+a'(ga‘,; ;SW)

dy
— e dU) | d(et dU) , d(gn 8U)  d(et 8U)
S wane . advoaa e D)
Now transforming the second term in (9), we have
f dt dv ZF 8(pk)
= f at dr[EFd(e 5m+zpd(92w)+2pd(9§w)
Z

_5F d(gk V) EFd(QE 5W)}
dy dz
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Integration by parts on the right-hand side yields

jdt dr[—Zg.éU ‘;F e aU d _Zot U ‘;F
+ Tk an—+2 : awf]
Next we note that
> gavil": =zt 0 2L,
Sl = suZ.

dz

For, if the sums on either side are expanded, they become iden-
tities. Since also

G d s i, 40 A
x dz O dx @

the right-hand side becomes

'[dt a’r[—EQ 6U%+Z’g'yn SU—ZoBt «SU],

and thus finally -
57 = fdtdrzg av(j’*’ = +ﬁC—yn)
= sz de Zo 8U(—f+BE—m).

Equating the coefficients of 6U on either side of (10), we have
X = f—Bl+m.

This is equation (2) of Section 1.
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§ 3. The Lorentz Transformation and the Principle
of Least Action

Let us consider whether the principle of least action can ex-
plain the success of the Lorentz transformation. First of all, we
must examine the result of applying this transformation to the in-
tegral

i f dt do(3Ef— 1 Za2)

(formula (4) of section 2).

We have firstly :
dt’ di' = I* dt dr,

since x’, y’, z’, ¢’ are related to x, y, z, ¢ by linear expressions whose
determinant is /4. Next,
l42f’2 — f2+k2(g2+h2) +k2s2(ﬁ2_{_.y2) + 2k2£(gy ol hﬁ), (1)
BZ = o2+ B2+ 9%) + K2e2(gh+ ) + 2k2e(gy— hB)

(formulae (9) of section 1), whence
WZf2—2a'?) = Tf2— 2«2
Thus, if we put
= fdt' dv' (3 Zf2—12a"),
the result is
J = J.

However, for this equation to be valid, the limits of integration
must be the same. Hitherto we have assumed that 7 ranged from
to to #1, and x, y, z from — <o to + . The limits of integration
would then be altered by the Lorentz transformation; but there is
no bar to assuming that o = — o=, #; = + e, and the limits for J
and for J’ are then the same.
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We have thus to compare the two following equations, which are
analogues of equation (10) in section 2:

5]=—f2X6Udzdt,

@
8J = — f ZX' 8U" dv’ dt'.

To do so, we must first compare §U’ with §U.
Let us consider an electron having initial co-ordinates x,, y, zo.
Its co-ordinates at the instant # will be

x=x0tU, y=yo+V, z=zo+W.

- If the corresponding electron after the Lorentz transformation
1s considered, its co-ordinates will be

X =Kx+et), y=ly, z=I,
where

X' = X0+ U, y =yo+V', 2z’ =zo+W';
but these values will be reached at the instant
v = ki(t+ex).

If the variables are subjected to variations 80U, 6V, OW, while
at the same time # receives an increment ot, then the total incre-
ments of the co-ordinates x, y, z will be

0x = OU+E 81, 8y = oV +ndt, 6z = W+ ét.
Similarly, :
Ox' = 8U'+¢&' 8t', Oy’ = V' 4y 8, 6z = W'+ ér’,
and, by the Lorentz transformation,
Ox' = ki(dx+¢c d1), 8y =16y, 6z = [ bz,

0t = ki(6t+e 6x);
K-STR 12
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hence, assuming 67 = 0, we find
ox' = U +& 8¢ = kI dU,
oy = 0V +n' & = 16V,
ot = kle &U.

Since

,_E+€ i 7
S ~ k(1+Ee)

we have, on replacing &' by its value,

Ki(1+£) 8U = 8U'(1 +E¢) + (E+ e)kle 8T,
I(1+&&) 8V = 6V'(1+&e)+nle 8U.

Using the definition of k, we obtain from these equations

83U = % av’+$£ s,
and similarly
1
W = 76W'+%C 8U";

hence

1

IX 38U = (kX 8U'+Y 6V'+Z aW')+—"‘-}i-aU'zX§. 3)
Now, according to the equations (2), we must have
fz:x' SU' dt’ dv’ = f:X U dt dv — -,17 fzx SUat dv'.

ﬁ Replacing 2X 6U by its value (3) and equating coefficients, we
nd
k k 1 1

X':—_ ._i L A 3 s
FX+EIX, Y =xY, Z=pZ

POINCARE: THE DYNAMICS OF THE ELECTRON 169

These are the equations (11) of Section 1. Thus the principle of
least action leads to the same results as does the analysis given in
Section 1.

Returning to formulae (1), we see that 2f? —2u? is unaltered by
the Lorentz transformation, apart from a constant factor. The
same is not true of the expression Zf2+2u? which appears in the
energy. If we consider only the case where ¢ is so small that its
square may be neglected, so that £ = 1, and if we also assume
that / = 1, then

Zf2 = Zf*+2e(gy—hp),
Zo'? = Zu+2e(gy—hp),
and, by addition,

Sf24 T = Zfe+ Zat+de(gy—hp).

§ 4. The Lorentz Group

It is noteworthy that the Lorentz transformations form a group.
For, if we put

x =kix+et), y =1y, 2z =1Iz, ¢ =Fklt+ex),
and '
xn —_ k’[!(xl'_l_s’t?), yfl‘ —_ Ifyf, zlf — l.’zf, trl — kf[f(tf+£fxl),
with
k=t =1-—¢2, Kk'"2=1-—¢g"

we find that
xff — k”l”(x'i“a”t), y" —_ llf 7,
z.” — lfl'z, tl‘f = k{llll(t+slfx),
with
ol it £+€’ L ’ L e, ’ N 1
e Y=l —kk(1+ss)_\/(1_£”2)_

Taking / = 1 and assuming ¢ infinitesimal, with

x' =x+6x, y =y+éy, 2z =z+dz, t =1+t
12+
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we have
0x =¢t, dy=10z=0, 6t= ex.

This is the infinitesimal generating transformation of the group,
which I shall denote by T, and which in Lie’s notation may be
written

If we take ¢ = 0 and / = 146/, on the other hand, we obtain
dx=x 08, dy=y ol 6z= z6l, &t=14l,

which yields another infinitesimal transformation T, of the group

(assuming that / and e are regarded as independent variables); in
Lie’s notation, :

do de dp  do

Ty = xa‘f'yqa';j’--f-zg‘f‘tdt :

It is also possible to assign to the y-axis or to the z-axis the par-

ticular significance which has been given to the x-axis, thus obtain-
ing two further infinitesimal transformations

_ 40, do
WE e
_ . db dp
T—IT'FZ'E,

which likewise would leave Lorentz’s equations unchanged.
The combinations defined by Lie, such as
do  do |
Ty = x-—y—~,

[Th 2] x dy Y dx L T
can also be constructed; but it is easily seen that this transforma- :
tion is equivalent to a rotation of the co-ordinate axes through a |
very small angle about the z-axis. It is therefore not surprising that
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this does not affect the form of Lorentz’s equations, which are ob-
viously independent of the axes chosen.
We are thus led to consider a continuous group, to be called the

Lorentz group, possessing the following infinitesimal transforma-

tions:

(1) the transformation Ty, which commutes with every other;
(2) the three transformations T, T, Ts;
(3) the three rotations [T, T2, [Ts, T3], [Ts, T4].

Any transformation belonging to this group can be resolved
into a transformation having the form

’ ’

xX'=lx, y=1ly, zZ=1I t¢=1I

and a linear transformation which leaves unaltered the quadratic
form
x2+y2+22__t2_
The group can also be generated in another way. Any trans-
formation of the group may be regarded as comprising a trans-
formation having the form

X' =kllx+et), y'=1l, z = Iz, ¢ =kit+ex), (1)

. preceded and followed by an appropriate rotation.

For our purposes, however, we have to consider only certain
of the transformations in this group. We must regard [ as being
a function of &, the function being chosen so that this partial
group, which will be denoted by P, is itself a group.

Let the system be rotated through 180° about the y-axis; then
the resulting transformation must also belong to P. This opera-
tion is equivalent to changing the signs of x, x', z and z’; hence
we have :

X =klilx—ct), y=1ly, z=8, 1= klt—ex). (2)

Thus / is unchanged when ¢ is replaced by —e.
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Next, if P is a group, the substitution inverse to (1), which is
) ’ f_ it

T ] (—ex), (3
must likewise belong to P; it must therefore be identical with (2),

so that
= 1/L

Consequently, we must have [ = 1.

[Note: there follow here four sections of a technical character, dealing
with details of the electron theory not now of importance. Then Poincaré
continues:]

§ 9. Hypotheses Concerning Gravitation

Thus Lorentz’ theory would entirely account for the impossibility
of demonstrating absolute motion, provided that all forces were
of electromagnetic origin.

But there exist forces, such as gravitation, which cannot be
regarded as being of electromagnetic origin. It may happen that
two systems of bodies create equivalent electromagnetic fields, in
the sense of exerting the same action upon electrified bodies and
currents, while at the same time these two systems do not exert
the same gravitational action upon Newtonian masses. The gra-
vitational field is therefore not identical with the electromagnetic
field. Lorentz was thus compelled to augment his hypothesis by
assuming that forces, of whatever origin, and in particular gravi-
tation, are affected by translation (or, if one prefers, by the Lorentz
transformation) in the same way as the electromagnetic forces.

We must now examine this hypothesis in detail. If the New-
tonian force is to behave in such a way under the Lorentz trans-
formation, we can no longer suppose that this force depends only
on the relative position of the attracting and the attracted body
at the instant concerned; it must depend also on the velocities of
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the two bodies. Moreover, we may reasonably assume that the
force acting upon the attracted body, at an instant #, depends on
the position and velocity of the body at that instant; but it will
also depend on the position and velocity of the attracting body,
not at the instant z but at some previous instant, as if gravitation
required a certain time for its propagation.

Let us consider therefore the position of the attracted body at
the instant zo, and let its co-ordinates at that instant be xo, yo, Zo,
and the components of its velocity be &, 1, {; and let us consider
the attracting body at the corresponding instant #o+7, its co-
ordinates at that instant being xo+ x, Yo+, Zo+ 2, and its velocity
components &y, 91, &1

First of all, we must have a relationship

¢(IE X, Y 2, E: M, C: Els N1 Cl) = 0 (1)

to determine the time . This relationship expresses the law of
propagation of gravitational action; I shall by no means impose
the condition that propagation occurs with the same velocity in
every direction.

Next, let X1, Y1, Z; be the three components of the action ex-
erted upon the attracted body at the instant . We have to express
X1, Y1, Z, as functions of o

ts X, y, z, &: n’ C‘J 513 11, Cl - (2)

The conditions to be satisfied are as follows.

1. The relationship (1) must not be affected by the transforma-
tions of the Lorentz group. ;

2. The components X7, Y1, Z; must behave, under the Lorentz
transformations, in the same manner as the electromagnetic for-
ces denoted by the same letters, that is, as shown by equations
(11") of Section 1.

3. When both bodies are at rest, the usual law of attraction
must apply.

S WAL N Co
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In the latter case, however, it should be noted that the relation-
ship (1) plays no part, since the time # is of no significance if both
bodies are at rest.

The problem thus stated is clearly indeterminate. We shall
therefore seek to satisfy as many further conditions as possible.

4. Astronomical observations do not appear to reveal any per-
ceptible deviation from Newton’s law, and we shall therefore
choose the solution which differs least from this law when the
velocities of the two bodies are small.

5. We shall attempt to ensure that ¢ is always negative; for,
whereas it is reasonable that the effect of gravitation should re-
quire a certain time for its propagation, we should find it more
difficult to understand how this effect could depend on a position
of the attracting body which the latter has not yet reached.

There is one case where the problem is no longer indeterminate,
namely if the two bodies are at relative rest, i.e. if

E=&, n=m, =0y

we shall therefore first investigate this case, assuming that these
velocities are constant, and therefore that the two bodies are
executing a common uniform motion of translation in a straight
line. ‘ .

We may assume that the x-axis has been taken to be parallel
to this motion of translation, so that = ¢ = 0, and we shall take
e= =&

If, under these conditions, we apply the Lorentz transforma-
tion, the two bodies will be at rest after the transformation, with
gl — ??r — C.r = 0

The components X7, ¥;, Z; must then be in accordance with
Newton’s law and we have, apart from a constant factor,

r ’

z
Z;.=—r13’

’

X ¥y
Y e
1 778 1 73’

©)]

r'? = x"t+y242"%
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But, from Section 1,
X =k(x+et), y =y 2= z, U = k(t+ex),

% = k(1+£e) = k(1—e?) = % SXE=ty.

’

Xi = k& (Xi+eZ8) = BX(1—) = X,

Yi =—eg,Y1 = kyl,

Moreover,
xXtet = x—8f, r? = k(x—ER+yit 2,
and
_—kx—g) . —y —z
Xl___—rfs___’ Yl“ﬁ, ZI=W, (4)
which may also be written
- ay av. av =
i g G as Ve @

It seems at first sight that the indeterminacy remains, since no
hypotheses have been made concerning the value of ¢z, that is,
concerning the velocity of propagation. Moreover, x is a function
of ¢. But it is easily seen that the quantities x —&¢, y and z which
appear in the formulae do not depend on ¢.

Thus, if the two bodies have a common translatory motion,
the force acting upon the attracted body is normal to an ellipsoid
having the attracting body at its centre.

In order to proceed further, it is necessary to ascertain the
invariants of the Lorentz group.

It is known that the substitutions forming this group (if / = 1)
are linear and such that the quadratic form

X24yPtz2—p2
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is invariant. Putting

= 0x _ oy S0z
e AT
____alx __61}’ 6]_2
e o o

we see that the Lorentz transformation causes dx, dy, éz, 6t and
01%, 61y, 612, 01¢ to undergo the same linear substitutions as x,
¥, %, L.
If
x ¥y z t/—1

ox Oy 6z /-1

01ix &1y b1z Sit/—1
are regarded as the co-ordinates of three points P, P/, P’ in four-
dimensional space, we see that the Lorentz transformation is
simply a rotation of this space about a fixed origin. The only dis-
tinct invariants are therefore the six distances of the points P, 7,
P’ from one another and from the origin, or alternatively the two
expressions

X2+y2+22—2,  xdx+y dy+zdz—t bt

and the four expressions of the same form obtained by permuting
the three points P, P’, P in any manner.

What we are seeking, however, is invariant functions of the ten
variables (2); we must therefore find, among combinations of the
six invariants, those which depend only on these ten variables, i.e.
those which are homogeneous and of degree zero with respect to
0x, dy, 6z, &t and with respect to d1x, 81y, 81z, 6;2. This leaves
four distinct invariants, namely

t—Zxk t—Zxky 1 =285 5)
VIA-28)" (1-28)° [A-2Z8)1-8)]

Let us now consider how the components of the force are trans-
formed. We return to equations (11) of Section 1, which refer

Zx:—p2,
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not to the force X3, Y1, Z1 discussed here but to the force X, Y, Z

per unit volume. Putting
T = ZXE,

we see that these equations (11) may be written (with / = 1)

X = k(X+ ST.), T = k(T+ SX), } (6)
Yo — Y 2l =7

thus, X, Y, Z, T are transformed in the same manner as x, y, z, .
The invariants of the group will therefore be

ZX*-T?, J2Xx-Tt, ZXX6x—To, XX 6;x—Tot.

The quantities in which we are interested are not X, ¥, Z, but
X]_, Yl, Z]_, with

T1=EX1\E.
Evidently
Xl_Yl_Zl_ﬂ;}_
X e P A e

Thus the Lorentz transformation will act upon X, Y1, Z3, Ty
in the same way as upon X, ¥, Z, T, except that these expressions
will in addition be multiplied by

iR
0. kKd+E) o

Likewise, the transformation will act upon &, #, £, 1 in the same
way as upon 6x, 8y, dz, &¢, except that these expressions will in ;
addition be multiplied by the same factor,

o
&' T k(l1+Ee)”

Let us now regard X, ¥, Z, T4/ —1 as being the co-ordinates
of a fourth point Q; the invariants will then be functions of the
distances between the five points

O, P, P, P, Q;




178 SPECIAL RELATIVITY

and these functions must be homogeneous of degree zero, firstly
with respect to

XV 7T dy, 0z, /6t

(which variables can subsequently be replaced 'By X0 Y 71 Tr
&, m, £, 1), and secondly with respect to
= iy
61x7 51}’, 6125 L}/Jt ‘:’:\ N
(which variables can subsequently be replaced by &1, 71, &1, 1).
In this way we find, in addition to the four invariants (5), four

further and distinct invariants, namely

IX}-TF ZXx—Ty ZXE-T, - IXi-T,
=28 (1-28)° y/ [(A-22)(Q-22p]° “1—2F2
7 iy )

The last of these is always ZETO, according to the definition of 77.

Which are the conditions that must now be satisfied?

1. The left-hand side of equation (1), which defines the velocity
of propagation, must be a function of the four invariants (5).

It is obvious that a large number of hypotheses could be con-
structed. We shall consider only two of these.

(A) It may be that

Zxt—p=pr_p =,

whence 7 = +r; and, since 7 must be negative, ¢t = —r. This
means that the velocity of propagation is equal to that of light.
At first sight, it seems that this hypothesis should be rejected im-
mediately; for Laplace has shown that the propagation is either
instantaneous or much more rapid than that of light. But Laplace
was discussing the hypothesis of a finite velocity of propagation
alone, whereas here it is compounded with many others, and there
may happen to be some more or less complete mutual compensa-
tion between them, a situation of which many examples have
already appeared in the applications of the Lorentz transforma-
tion.
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(B) It may be that
t-—ZxEl = s
YETms % 5 o

The velocity of propagation is then much more rapid than that
of light, but in certain cases ¢ might be(ggg:éiiié} which, as we
have said, seems hardly acceptable. We shall therefore abide by
hypothesis (A). '

2. The four invariants (7) must be functions of the invari-
ants (5).

3. When both bodies are at absolute rest, X1, Y1, Z; must have
the values given by Newton’s law; when the bodies are at relative
rest, the values must be those given by equations (4).

In the case of absolute rest, the first two invariants (7) must
reduce to

ZXE, VX
or, by Newton’s law, to
1/rt, —1/r.
According to hypothesis (A), the second and third of the invariants
(5) become 25 ks P
—r—2x& —r—2Xxt;
VI-Z8) (1-28) .
that is, for absolute rest,
Pt

We may therefore assume, Jor example, that the first two in-
variants (5) reduce to

(A-28)r (11—
(r+2ZxE)t  r+Zx€; °

but other combinations are possible.
It is necessary to choos_e some combination, and a third equa-
tion is also needed in order to determine X3, ¥, Z;. In making

mfsp ot e
Sl
A g A1 S

per S rve .

e —
R St
— czn B __-f/,.‘.r—"f*’-dﬁ.‘_ -",j

AT T <Y

wLo, 128t
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the choice, we shall attempt to remain as close as possible to
Newton’s law. Let us then examine the result when the squares
of the velocities &, 1, etc., are neglected (and ¢ = —r). The four
jnvariants (5) then become
0, —r—2x&,
N
and the four invariants (7) become

X3, ZXx+&), ZX(6-9. O

- S L

In order to compare tlfds with Newton’s law, however, a fur-
ther transformation is necessary. In these equations, Xo+X,
Yo+, Zo+2z represent the co-ordinates of the attracting body at
the instant zo+?, and r = 4/Zx% in Newton’s law, we have to
consider the co-ordinates xo+ X1, YotJ1, zo+z1 of the attracting
body at the instant 2o, and the distance r1 = P

We may neglect the square of the time z occupied by the pro-
pagation, and therefore regard the motion as uniform; then

-—r—-Z'th 1!

x=xit&t, y=yitmt z=2a+ht
r(r—r1) = Zx&it;
or, since t = —71,
Y= xi—Er, y=y—mr, z=z—&r T= ri—ZxE1,
and the four invariants (5) become
0: '_r1+):x(51—5), —r, 1

A
0
—

and the four invariants (7)
X2, ZXalxi+(E—&)rl ZX1(E—£), O

In the secc;;id of these e:épressions I have written r1 in place of

r, since r is multiplied by £ —&, and the square of & is neglected.
Newton’s law gives, for these four invariants (7),

1 1 Zxi¢—&) le(«E—El)

e 3
ri

. 0
4° 2 2 >
n ry 81

2

V4 '_."-\‘

-
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If therefore we denote the second and third invariants (5) by
A and B, and the first three invariants (7) by M, N and P, New-
ton’s law will be obeyed, to within terms of the order of the
squares of the velocities, by putting

1 +4 A—B
M=T§;, N='—Bg’:= P=73—- (8)

This solution is not unique: if the fourth invariant (5) is de-
noted by C, then C—1 is of the order of &2, as is (4 — B)?. We may
therefore add to the right-hand side of each of the equations (8)
a term consisting of C —1 multiplied by any function of 4, B and
C, and a term consisting of (4— B)? also multiplied by any func-
tion of 4, B and C.

The solution (8) appears the simplest at first sight, but it cannot
be accepted. Since M, N and P are functions of X1, Y1, Z1 and
T, = ZX,&, these equations yield values of X3, Y1 and Z;; but
the resulting values may in some cases be imaginary.

In order to avoid this difficulty, we proceed differently, putting

Eea el
o ya=zg) /A28
by analogy with

k

1
k= o=y
as in the Lorentz substitution.
Then, with the condition —r = ¢, the invariants (5) become
0, A= —kor+2xt), B = —ly(r+2x&1),
C= kokl(l"E&Ei)-

Moreover, the following systems of quantities :

X, ¥, z, —r=1
: koX1, ko¥1, koZi, kol
kOE: k(ﬂ?s kOC-, ko

k&, ko, kit ki1

| oo
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are seen to undergo the same linear substitutions when the trans-
formations of the Lorentz group are applied to them. We there-

fore put . 1
o 1
X=X —ic—o-+§i3+§1 TC;?’

Kk
Y1 =y B mE P

( €)

I

® k1
VA ZE+Cﬁ+C1 = Vs

24 k]_
T =—rT€-‘;+ﬁ+ -

It is evident that, if «, B,y are invariants, X1, Y1, Z1, T1 willisa-
tisfy the fundamental condition, i.e. will undergo an appropnzjtte
linear substitution when the Lorentz transformations are applied
to them. :

If the equations (9) are compatible, we must have

EX1§—T1 = 0.

When X1, Y1, Z1, T1 21€ replaced by their values (9), the result is,
after multiplication by kg,
— Ae—B—Cy = 0. (10)

The desired conclusion is that the values of X1, Y1, Z1 should
remain in accordance with Newton’s law when the squares of t%le
velocities £, etc., and the products of the accelerations and the d}s-
tances are neglected in comparison with the square of the velocity
of light.

‘We can take
B3—=0, ¥ = —Aa/C.

To the approximation used,
ky=Fki=1 €=1 A =—r+Zx(E1—8)

B=—r, X= x1+E1t = x1—&1r.
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Then the first equation (9) becomes
X, = a(x— AEy).

But, if £ is neglected, 45, may be replaced by —rii1, or by
—r&;, whence
X1 = oc(x—i—Elr) = 0X1.

Newton’s law would give
X, =—x/3.

We must therefore take as the invariant « one which reduces to
— 1/ within the approximation adopted, that is, 1/B3. The
equations (9) then become

S ki A
X1 =5 5, BT
oy ks oA
Yo = vps = Tlps BsC?
i _g’fi_’?_ h (0
L R BEC
e T k]_ A
Ty = 3B "o BC

It is seen, first of all, that the corrected attraction consists of
two components, one parallel to the vector joining the positions
of the two bodies, and the other parallel to the velocity of the
attracting body.

When we speak of the position or the velocity of the attracting
body, we mean its position or velocity at the instant when the gra-
vitational wave leaves it; but the position or the velocity of the
attracted body means its position or velocity at the instant when
the gravitational wave reaches it, this wave being assumed to be
propagated with the velocity of light.

I believe that it would be premature to attempt to continue the

K—-STR 13
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discussion of these formulae, and I shall therefore confine myself
to making a few comments.

1. The solutions (11) are not unique; for the common factor
1/B3 may be replaced by

];_34- (C—1)fi(4, B, C)+(4—BYfs(4, B, C),

where f1 and f» are any functions of 4, B and C. Moreover, 8 need
not be taken as zero; any additional terms may be added to «, 8
and y which satisfy the condition (10) and are of the second order
n & for «, and of the first order in & for Sand y.

2. The first equation (11) may be written

k1

H=Be

[x(1 —Z&&1) + &1(r +2%8)], (117

and the quantity in the brackets may in turn be written
(x+7E1) +0E 1y — xn1) + L1z —xL1), (12)

so that the total force is divisible into three components corre-
sponding to the three parentheses in equation (12). The first com-
ponent is somewhat similar to the mechanical force due to the
electric field, the other two to the mechanical force due to the
magnetic field. By virtue of comment 1, I may replace 1/B° in
equations (11) by C/B?, so that X,, Y1, Z, are linear functions of
the velocity &, i, ¢ of the attracted body, C having been eliminated
from the denominator of (11’). This completes the analogy.

Putting then
ki(x+7rEy) = 4, ki(y+m) = p, ki(z+7rly) = », }

ki(niz—C1y) = X, ki(lix—&12) =y, kiy—xm) = v,
(13)
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with C eliminated from the denominator of (11) we obtain

v %Jjﬁ%’f_"'_, _ (14)
and also ‘
B2 = Xj2_XAe (15)

Thus A, w, v or /B3, u/B3, v/B®is a kind of electric field, while
A, u', v or A [B%, u'|B%, v'/B%is a kind of magnetic field.

3. The relativity postulate would compel us to use either the
solution (11) or the solution (14) or any one of the solutions ob-
tained therefrom by using comment 1. But the prime question is
whether these are compatible with astronomical observations. The
deviation from Newton’s law is of the order of £2, that is, 10,000
times less than if it had been of the order of &, as it would have been
with the velocity of propagation equal to that of light and the other
conditions unchanged. We may therefore hope that the deviation
will not be very great; but only a more extended investigation will
furnish the answer to this question.

Paris
July 1905
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