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INTRODUCTORY NOTE 

With the publication of the English translation of Les Méthodes nou¬ 

velles de la Mécanique céleste in 1992, The History of Modem Physics 

1800-1950 Series title changed to History of Modern Physics and Astron¬ 

omy, reflecting the inclusion of books on the history of astronomy. The 

History of Modern Physics and Astronomy Series is an evolution and 

continuation of the original series and incorporates the twelve volumes 

published in the original series. 

History of Modern Physics and Astronomy retains the original aim of 

bringing to modern readers a variety of important works related to the 

history of physics since 1800 that are not readily available elsewhere. In 

addition, works specifically about the history of astronomy are included 

both in relation to the internal development of astronomy and to the 

physics of the period in which they were written, emphasizing the close 

bonds between physics and astronomy. 

The books in the Series are all noteworthy additions to the literature of 

the history of physics and astronomy. They have been selected for their 

merit, distinction, and uniqueness. Each book in the Series is prefaced by 

an introductory essay by a scholar who places the work in its historical 

context, thus making it more valuable as a reference work. 

We believe that these books will be of interest not only to the advanced 

scholar in the history of physics and astronomy but also to a much 

broader, less specialized group of readers who may wish to understand 

major scientific disciplines that have become central forces in society and 

an integral part of our twentieth-century culture. Taken in its entirety, the 

Series will bring to the reader a comprehensive picture of these major 

disciplines not readily achieved in any one work. Taken individually, the 

works selected will surely be enjoyed and valued in themselves. 
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Preface to Part 2 of the 
French Edition 

The methods to be discussed in this second volume have been elaborated 

by numerous contemporary astronomers; however, the methods devel¬ 

oped by Gyldén, which range among the most perfect known, will be 

given the largest coverage. 

All these methods have one characteristic in common: The scientists 

who conceived these methods attempted to expand the stellar coordinates 

in series all of whose terms are periodic and to thus cause vanishing of the 

so-called secular terms, encountered in the older methods of successive 

approximations in which the time came out from under the sine and co¬ 

sine symbols. However, in return, these scientists did not concern them¬ 

selves with checking whether their series were convergent in the sense in 

which the mathematician defines this term. 

Thus despite the fact that the results derived in my first volume were 

established with the entire rigorousness to which mathematicians are ac¬ 

customed, the results to be discussed here are valid only within a certain 

approximation which is relatively greater the smaller the masses become. 

It is extremely difficult to measure exactly, in each individual case, the 

error involved; however, an upper limit, can be defined, albeit quite 

roughly. 

The terms of these series first decrease rapidly and then start increas¬ 

ing; however, since astronomers usually stop with the first terms of the 

series long before these terms have ceased to decrease, the approximation 

is sufficient for practical purposes. The divergence of these series is incon¬ 

venient only if they are intended for rigorously establishing certain results, 

such as, for example, the stability of the solar system. 

In Chap. 8 I attempt to explain the cause of this discrepancy between 

mathematician and astronomer, including the reason for the fact that 

some series called divergent by mathematicians may be of use to astron¬ 

omers and the manner in which the conventional rules of calculus may 

become applicable to these series. The somewhat protracted methods that 

lead up to this latter result have nevertheless the advantage of demonstrat¬ 

ing a way for determining an upper limit of the error; in all other respects, 

Chap. 8 can be combined with the discussion at the end of Chap. 7. 

In the following chapters, the simplest of the new methods, namely, 

those due to Newcomb and Lindstedt will be expounded. We will show a 
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way to overcome certain difficulties encountered in attempting to apply 

these methods to the most general case of the three-body problem. 

These difficulties mainly consist of two: First, so as to render the Lind- 

stedt method applicable, either in its original form or in the form modified 

by me, it is necessary that, in first approximation, the mean motions are 

not linked by any linear relation with integral coefficients. However, in 

the three-body problem, the mean motions that must be taken into consi¬ 

deration are not only those of two planets but also those of the perihelions 

and nodes. However, in first approximation, i.e., in the Keplerian motion, 

the perihelions and nodes are fixed; thus their mean motions are zero and 

the above-stipulated condition, i.e., the absence of any linear relation with 

integral coefficients, is not satisfied. After having explained a process by 

which the following approximations can be arranged to avoid this draw¬ 

back, a second difficulty will be discussed which is created as soon as the 

eccentricities become extremely small. It will be shown that this difficulty 

is artificial and that it can be avoided by starting, instead of from the 

circles to which the Keplerian ellipses are reduced as soon as the eccen¬ 

tricities become zero, from the orbits described by our planets in the case 

of periodic solutions of the first kind, investigated in Chap. 3. 

In the following parts, the first methods by Gyldén will be discussed. 

Based on principles which are not without analogy to those discussed 

here, they permit overcoming exactly the same obstacles; in addition, 

many detail difficulties are overcome by artifices that are as elegant as 

they are ingenious. 

A few sections will be devoted to integration processes applicable to 

certain differential equations which Gyldén has considered; specifically, 

one of these equations which seems of special interest and which numer¬ 

ous other mathematicians have also considered will be discussed in 
greater detail. 

In studying these methods, we will frequently deviate considerably 

from the mode of exposition by their authors. It would have been useless 

merely to repeat what they had done so excellently already. In addition, I 

have no great interest to arrange these methods in a form most convenient 

for numerical calculators; rather, an attempt will be made to explain the 

basic essence of these methods so as to facilitate a comparison. 

When the reader has come this far, he will be fully aware that there are 

always means for eliminating the so-called secular terms that had been 

more or less artificially introduced into the older calculation methods. 

However, calculators frequently encounter a much more serious obstacle, 

namely, the occurrence of small divisors as soon as the mean motions 

come close to being commensurable. The procedures discussed in Part 1 

of this volume then become inapplicable, and it will be necessary to use 

XXII 



either the Delaunay method or the Bohlin method which latter is closely 

correlated with the former and which will be covered in a full chapter. 

However, even this method is not yet perfect since it introduces, if not 

small divisors then at least large multipliers, which might render the ap¬ 

proximation insufficient in certain cases. This left one more step to be 

taken, which has been performed by the latest method of Gyldén, whose 

discussion will terminate this particular volume. Despite the fact that also 

these methods are not yet perfect in the eyes of a pure mathematician, they 

are the most perfected ones known to date. 

Review of Notations 

To save the reader the bother of having to refer frequently to the first 

volume, I shall briefly recall here the meaning of certain notations that I 

defined in Vol. 1, and which I will use in this volume. 

I first recall that body m2 is attracted to body m„ and body m3 is 

attracted to the center of mass of bodies m, and m2. I set (see no. 11 ) 

m, + m2 m,+w2 + m3 
such that p is a very small quantity and that ft and /3 ' are finite. 

The function F is the total energy of the system divided by //; it is 

developable in a series of powers of p. 

I now define the osculating elements of the first planet, that is of body 

m2 in its motion relative to body m,. 

I call ( see no. 8 ) the semimajor axis a, the eccentricity e, the inclination 

z, and I set 

L = Jâ, /3L = A, G = Vû( 1 — e2), 0 = G cos i. 

I call the mean anomaly /, the mean longitude A, the longitude of the 

node 6, and that of the perihelion g + 6, which I will also designate by co. 

I set (see no. 12) 

£ = V2/3{L — G) cos a), 7] — — y2/?(T — G) sin cb , 

p = \2fi{L — G) cos 0, q = — \J2/3(L — G) sin 6 . 

These are the meanings of the letters 

/?, L, A, G, 0, /, A, g, 0, cb, Ç, y, p, q, 

which refer to the movement of the first planet. The same letters carrying 

accents, have the same meaning in referring to the motion of 

the second planet, that is, for the relative motion of about the center of 

mass of m, and m2. 
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CHAPTER 8 

Formal Calculus 

Various Meanings of the Term “Convergence” 

118. Between mathematicians and astronomers some misunderstanding 

exists with respect to the meaning of the term “convergence.” Mathemati¬ 

cians who are mainly concerned with perfect rigorousness of the calcula¬ 

tion and frequently are indifferent to enormous length of some calculation 

which they consider useful, without actually thinking of ever performing 

it efficiently, stipulate that a series is convergent if the sum of the terms 

tends to a predetermined limit even if the first terms decrease very slowly. 

Conversely, astronomers are in the habit of saying that a series converges 

whenever the first twenty terms, for example, decrease rapidly even if the 

following terms might increase indefinitely. 

Thus to take a simple example, let us consider two series that have the 

following general term: 

1000" , 1-2-3•••« 
- and -. 
1-2-3-• 1000" 

Pure mathematicians would say that the first series converges and even 

that it converges rapidly since the millionth term is much smaller than the 

999 999th; however, they will consider the second series to be divergent 

since the general term is able to grow beyond all bounds. 

Conversely, astronomers will consider the first series to be divergent 

since the first thousand terms increase; they will call the second series 

convergent since the first thousand terms decrease and since this decrease 

is rapid at first. 

Both rules are legitimate; the first for theoretical research and the sec¬ 

ond for numerical applications. Both must prevail, but in two entirely 

separate domains of which the boundaries must be accurately defined. 

Astronomers do not always know these boundaries accurately but 

rarely exceed them; the approximation with which they are satisfied 

usually keeps them far on this side of the boundary. In addition, their 

instinct guides them and, if they are wrong, a check on the actual observa¬ 

tion promptly reveals their error. 

Nevertheless, it seems useful to bring some greater precision to this 

question, which will be attempted here despite the fact that its very nature 
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318 CELESTIAL MECHANICS 

makes this rather difficult. So as to avoid any confusion, let us say now, 

unless stated differently, that the term “convergence” will always be used 

here in the sense of the pure mathematician. 

Series Analogous to the Stirling Series 

119. The first example, which clearly shows the legitimacy of certain 

expansions, is the classic example of the Stirling series. Cauchy has dem¬ 

onstrated that the terms of this series first decrease and then increase so 

that the series diverges. However, if the series is terminated at the smallest 

term, the Eulerian function will be represented with an approximation 

that is better the greater the argument. 

Since then, numerous analogous facts have been demonstrated and I 

myself have studied earlier,1 an important class of series that exhibit the 

same properties as the Stirling formula. 

Let us cite still another example which has some interesting properties 

and which might be useful in what follows. 

Let w0 be a positive number smaller than unity. 

The series 

w 
<p(.w,fi) = y - 

1 + n/u 

converges for all values of w and of //, such that 

\w\<w0, /u>0. 

In addition, the convergence is absolute and uniform. 

On the other hand, we have 

(8.1) 

—-= Y wn{ - 1 )pnpnp . 
1 + n/u p 

One could thus be tempted to equate cp(w,/u ) to the double-entry series 

- 1 )pnpnp . 
n p 

However, this series does not converge absolutely. 

Arranging the terms in ascending powers of /i, we obtain 

A0 - A xn + A2 /i2 - A3 /Y + • • • , 

where 

(8.2) 

A0 = ^wn, Ax=^nw", A2 = ^ n2wn, A3~^ niwn, 
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Series (8.2), arranged in ascending powers of /n, diverges. Assuming that 

w is positive and real so as to fix our ideas, we obtain 

k w <Ak < 
A:! 

(1 — w)1 

It is obvious that the series 

^ ( — kwfi)k 

diverges and that this is a fortiori true for series (8.2). However, on con¬ 

sidering the series 

Y ( -fi)kk\ 

^ (1 - w)k ’ 

it will be found that, if /i/( 1 — w) is very small, the first terms decrease 

rapidly despite the fact that the following terms increase beyond all 

bounds. 

Does this series (8.2) approximately represent the function 

To answer this question, let us set 

<Pp{w,n) =A0-Axn + A2/i2 — ■■■ ±ApnP. 

We state that 

lim ——— = 0 for n = 0 . 

In fact, this yields 

^ i +<m 

It is easy to see that the series 

v np+lwn 

^ 1 + nn 

converges uniformly; thus, for jj, = 0, we have 

np+ 1wn 
lim Y-= y np+'wn = finite quantity 

^ 1 + np ^ 

and, consequently, 
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Calculation of the Series 

120. This leads to a relation of an entirely new nature which is able to 

exist between a function of x and fx, denoted by cp(x,p), and a divergent 

series arranged in powers of p 

/o + M/i + ^2fi + ‘ ‘ ‘ + HPfP + ' ‘ ‘ » ( 8.3 ) 
where the coefficients. . . can be functions of x only, independent of 

/u ( which would happen in the above example ), or else depending simulta¬ 

neously on x and p. 

Let us put 

<PP =/o + ttfi + + ‘ ‘ ‘ + H-PfP ■ 

If we have 

lim ——— = 0 for // = 0 , 
pp 

we state that series (8.3) asymptotically represents the function cp and 

write 

cp(x,p)=f0 + pfx +/x2f2 + ••• . (8.4) 

The relations of the form of Eq. (8.4) will be designated as asymptotic 

equalities. 

It is obvious that, if p is very small, the difference cp — cpp will also be 

very small and, despite the fact that series ( 8.4 ) is divergent, the sum of its 

p + 1 first terms will, very approximately, represent the function cp. 

Astronomers would say that this series is convergent and represents 

the function cp. 

Astronomers have always continued to look for series that formally 

satisfy the proposed differential equations, without much concerning 

themselves with the convergence of these series. This procedure, at first 

glance, seems entirely illegitimate but nevertheless will frequently lead to 

success. 

To explain this fact, it is necessary to study the question in more detail, 

and this I now propose to do. 

Let us introduce some new definitions. 

Let us consider a system of differential equations 

~ = Xi (i=l,2,...,n). (8.5) 
dt 

We assume that Xt is a uniform function of t, of x1; x2,. . ., x„, and of a 

parameter /x and that the series can be expanded in ascending powers ofp. 

Let us now consider n divergent series which will be written as follows: 
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—fo\ + M/l 1 + 0'f\2 + *“» 

$2 =/o 2 + M/l 2 + fSfl 2 + ‘ ‘ ‘ > 

'S'n =/o n +fi/ln + P^fl n + 

Let us suppose that the quantities/ * are known functions of t and // and, 

in addition, that these functions can be expanded in convergent series in 

ascending powers of p. 

Let cpp k be the sum of the p -f 1 first terms of the series Sk. We state 

that the series Sx, S2, . . . , S„ formally satisfy the differential equations 
(8.5) if, on substituting 

p 1 ’ <?>p2> •••> P1p n ’ 

for 

-*1> X2, • • • ) X/i > 

the difference dx,/dt — X, becomes divisible by pp + 

After having made this definition, we propose to establish the follow¬ 

ing. Let us consider a particular solution of Eqs. (8.5), namely, a solution 

which is such that 

*i = x2 = ■ •• = xn = 0 

for t = 0. 

Let 

xl = 9l(t,p), x2 = 6 2 (t,p), xn = Gn (t,p) . 

We will assume that the functions fik all vanish for t = 0. 

We state that the following asymptotic equalities will be obtained: 

9x{t,p)=Sx, 92(t,p)=S2, ..., 0n (t,p)=Sn . (8.6) 

In fact, let us put 

Xi=<ppi + pp+1£u x2 = cpp2 + pp+lÇ2, xn =cppn + pp+'Çn . 

Substituting these values of x into Eqs. (8.5), these equations become 

up +1 _ y d‘r- 

P dt ' dt 

After the substitution, X\ will become expandable in ascending powers of 

p, of 

VP+'i2, .... VP+lên, 

where the coefficients of the expansion are known functions of time. 

An exception to this exists only if the particular solution 

x, = 9l(t,0), x2 = d2(t, 0), x„ = 0„(t,O), p = 0 
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would pass through one of the singular points of the differential equation 

for one of the values of t to be considered here (as in Chap. 2, no. 27, we 

will denote by this the systems of values of xv x2, . . . , xn, t, and n for 

which the terms Xt cease being holomorphous functions). 

As demonstrated in no. 27, it is thus possible to obtain two positive 

numbers M and a such that 

X, - 
d<Ppi _M_ 

dt <1 -a(i*+fj,p+1it+--’ +pp+l§n) 
arg■ 

However, by hypothesis, the series Su S2, . .., Sn formally satisfy Eqs. 

(8.5). This means that, if we set 

ii = i2 = ---=in= o, 
whence 

=<Ppi> 

then the differences X, — dcppi/dt become divisible by /up+ Thus we 

have 

v dq> t s x(ap + £,x + + ' ' ’ + tn ) f0~i\ 

dt 1 + + ••• +/ip+1i„) 

If, for abbreviation, we denote by /j,p + 'Z the second term of the inequality 

(8.7) and if we put 

X, - 
dtp, P l 

dt 
= UP+XY; 

then Eqs. (8.5) become 

with the condition 

dJL 
dt 

= Y. (8.8) 

Yi<Z. 

Let us now consider the particular solution of Eqs. (8.8) which is such 
that 

i ! = & = ■■■ =L=o 

for t = 0. This solution can be written as follows: 

, _ 9i{t,^) ~cppi 

For demonstrating the asymptotic equalities (8.6), it is thus sufficient to 

establish that is finite. For this, in turn, it is sufficient to compare Eqs. 
(8.8) with the equations 
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d^_ 
dt 

= Z. (8.8a) 

So long as the solution of Eq. (8.8a) is finite, this will be also the case for 

the solution of Eq. (8.8). However, Eqs. (8.8a) are easy to integrate. 
Putting 

£l + ^2 + ‘ ‘ ‘ + — a > 

we obtain, for the particular solution under consideration, 

and 

n 

da _ Ma{ap + a) 

dt 1 — afx — a/ip + 1 

It is easy to integrate this latter equation and to find that a is finite as well 

as that a tends to a finite limit as soon as ]i tends to zero. 

This is then also true for the . Q.E.D. 

This theorem justifies the procedure used by astronomers, provided 

that n is sufficiently small. Possibly, this could have been established in a 

simpler form; however, the above demonstration yields a simple means for 

finding an upper bound for the error term. 

121. It now remains to see to what extent the conventional rules of 

calculus are applicable to the formal calculus: 

For this, let us consider two simultaneous equations 

d-l=Y 
dt dt 

(8.9) 

where X and Y are uniform functions of x, y, t, and //, which can be 

expanded in powers of ]i. 

Let us change variables by putting 

x = rf>\ (£,y), 

y=ip2(i>V) > 

where rpx and are functions of £, 77, t, and n- 
The differential equations then become 

di _ dr] (9, lOt 
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where 

X = — JT+ — Y', 
dÇ dr] 

Y=-^-X' + — Y', 
dË, dr] 

where A" and Y' can be expanded in ascending powers of //, unless (dx/ 

dÇ)(dy/dr]) — ( dx/drj) (dy/d£) is divisible by ]i which we do not assume 

here. 

After this, let 

S —f0 -f- ]if | + ]i2f2 + ■ ‘ ' > 

S' =/o +/i/l + 2 + ’" 

be two divergent series where f andf\ are functions of t and //' which can 

be expanded in convergent series in ascending powers of//'. 

Let us assume that these series S and S' formally satisfy Eqs. (8.10) 

when one substitutes these series for Ë, and y and sets //' = //. 

Let us now substitute, in the two equations 

x = Mi>V), y = M£,'7) > 

the series Sand S' for £ and rj and let us then expand 

^(S,S'), MS,S'), 

in ascending powers of //. Despite the fact that the series S’ and S' are 

assumed to be divergent, the expansion will be performed by the conven¬ 

tional rules of calculus. Below, we will show what we mean by this. 

Let Sp and S'p be the sum of the p + 1 first terms of S and S'. Let us 

assume that the p + 1 first terms of the expansion of xp{{S,S') and of 

^2(S,S") are to be calculated. 

For these p + 1 first terms, it is necessary to take the p + 1 first terms of 
the expansion of 

(Sp,S'p) and MSP,S'P) . 

This will yield two divergent series that can be written as follows: 

Ÿi (S,S ' ) = F0 + pFx + p2F2 + • • • , 

MS,S') =F'0 +]iF[ + ]i2F2 + ••• , ( • } 

and these series have the same form as the series S and S '. 

We state that these two series formally satisfy Eqs. (8.9) if they are 

substituted for x and y and if one then sets //'=//. 

In fact, if we put 

x = MSp,S'p), y = MSp,Sp) , 
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then the difference of the two sides of Eqs. (8.9) becomes divisible by 
Hp+ 1. 

On the other hand, denoting by 2p and 2p the sum of the p + 1 first 
terms of the series (8.11 ), the differences 

lp-^(Sp,S'p), 2'p -rf,2(Sp,S'p), 

will be divisible by /up+ 1. 

It is easy to conclude from this that, if we set 

* = 2p, y = 2’p, 

then the difference of the two sides of Eqs. (8.9) becomes divisible by 

PP+'- Q.E.D. 

Let now 

be a unique equation where A is a function of x, t, and //. 

By putting 

we obtain 

dx 

~dt 
=y. 

dy dX dX 
— —-1- y-. 
dt dt dx 

Let 

S =fo + yfii + + ' ' ' » 

be a divergent series that formally satisfies Eq. (8.12). 

Let us form the series 

(8.12) 

(8.13) 

s' =fo + yf I + y~f'i + ■■ ■ > 
obtained by differentiating each term with respect to t. 

We state that the two series S and S ' formally satisfy the two equations 

(8.12) and (8.13). 

In fact, let Sp and S p be the sum of the p + 1 first terms of S and of S 

this will yield 

X = X(x,t) , 

dX , dX 
—r+y — = Y{x,y,t). 
dt dx 

Let us put 
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We state that the difference 

Y(Sp,S'p,t) 

is divisible by + 1. 

By hypothesis, the difference 

U = X(Sp,t) 

dS’p 

dt 

dSj, 
dt 

is divisible by fip + 1 ; thus this must also be so for its derivative 

dU dS ' 
-ns,**--*. Q.E.D. 

Consequently, the conventional rules of calculus are applicable to the 

formal calculus. 

The most interesting question for what follows is to know whether the 

Jacobi theorems, discussed in nos. 3 and 4, are applicable to the formal 

calculus. 

This question must be answered in the affirmative; we will demonstrate 

this in no. 125 on a specific example, but the proof itself can be extended 

without change to the general case. 

122. Earlier (Ref. 1, p. 295), we demonstrated certain properties of 

asymptotic equalities: One can add two asymptotic equalities; one can 

also multiply two asymptotic equalities. 

Let now 

S =fo + fjfi + l^fz + 
be a divergent series where f are functions of t. 

Let 

<p(t,/n)=S 

be an asymptotic equality. 

Let us assume that/, = 0 so that, for /z = 0, we have 

S= 0, <p(t,0) = 0 . 

Now, let it be a function of z, holomorphic at z = 0. 

Let us substitute S forzinE’(z) and then expand F( S) in powersof/z by 

the conventional rules of calculus, as had been explained in the preceding 

number. This yields the asymptotic equality 

F[cp(t,iu)]=F(S) . 

It is unnecessary to reproduce the proof here. The reader may find it in the 

cited paper, but the proof is so easy that it can be done more rapidly by the 

reader himself. 
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Let now 

qp{t,n)=f0 + pfx + p2f2 + • • • , 

be an asymptotic equality where the terms/ depend on t and p. We will 

assume that this equality takes place uniformly. This means that the 
expression 

<P — <Pp 

where cpp denotes the sum of the p + 1 first terms of the series, tends 

uniformly to zero irrespective of the value of t, as soon as p tends to zero. 

This means that one can derive a number e independent of t, depending 

only on p and vanishing with p such that 

This will yield 

\<P~<PP\<Ppe- 

~<PP)dt <ppe{tx - t0) , 

which shows that one has the asymptotic equality 

+ ••• • 

Thus we may integrate an asymptotic equality. On the other hand, one 

does not generally have the right to differentiate such an equality. Never¬ 

theless, one case exists in which the above principles permit us to do so. 

Let <p(t,p) be a solution of a differential equation and let S be a series 

that formally satisfies this equation. 

Asymptotically, we then have 

<p(t,p)=S. 

Let S ' be the series obtained by differentiating each term of S. 

According to the preceding number, this series formally satisfies the 

differential equation that is satisfied by the derivative dcp /dt. 

This will yield the asymptotic equality 

dcp _s, 

dt 

The reader’s indulgence is asked for such a lengthy explanation of these 

simple points; however, it seemed important to define the nature of the 

misunderstanding mentioned above. In addition, before starting a study 

of the methods of successive approximations used in celestial mechanics, 

methods that are divergent from the viewpoint of the mathematician, we 

wish to explain why their use may be of service to astronomers. 
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Methods of Newcomb and 
Lindstedt 

Historical Background 

123. Lindstedt2 proposed a method of integration by successive approxi¬ 

mations of the equation 

+ n2x = fi<p(x,t) , (9.1) 
at 

where cp(x,t) is a function expanded in ascending powers of x whose 

coefficients are periodic functions of time t. 

He was even able to demonstrate that the method is applicable to the 

following equations: 

r + n\x = /LKp(x,y,t) , 
at 

d ~ y 
—TT + n\y = fiip(x,y,t) , 
dt~ 

which are more general than Eq. (9.1 ) and which reduce to a particular 

case of the equations of dynamics, provided that one has 

dcp _ dip 

dy dx 

Equation (9.1) is of extreme importance in celestial mechanics, since 

Gyldén has arrived at these equations several times during his excellent 

research. 

Lindstedt did not prove the convergence of the expansions performed 

in this manner; in fact, they actually are divergent. However, it has been 

shown in the preceding chapter that they might nevertheless be of interest 

and of considerable usefulness. 

However, another and more serious difficulty exists here. It is easy to 

see that the method is applicable in the first approximations but it is 

questionable whether it might still be valid in the next approximations. 

Lindstedt was unable to establish this rigorously and even harbored some 

doubts on this subject. These doubts had no basis in fact and his excellent 

328 
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method is still legitimate. I proved this first by using integral invariants3 

and, later, without using these invariants.4 The second of these proofs will 

be discussed in this chapter. This led to a modification of the Lindstedt 

method which is applicable directly to the most general case of the equa¬ 
tions of dynamics. 

Several special cases, however, are not covered by this, including the 

general case of the three-body problem. 

Because of its importance, the latter case attracted also the attention of 

Lindstedt. This astronomer5 has described a procedure for applying his 

method to this case. 

Unfortunately, the same difficulties as those mentioned above still re¬ 

main; these include not only the divergence of the expansions, which can 

be disregarded here for the reasons discussed in the preceding chapter, but 

even the very feasibility of the expansions and thus the legitimacy of the 

method itself. 

I believe that I have been able to erase these doubts; Chap. 11 will be 

devoted to this topic. 

Thus for explaining the manner of applying the Lindstedt method to 

the three-body problem, we will adopt a mode of presentation which will 

neither be that of its inventor, nor that suitable for calculation of the 

various terms of the series but rather that most suitable for demonstrating 

the legitimacy of the method. 

Lindstedt was preceded in his trend of work by Newcomb6 who was the 

first to derive series representing the motion of planets and containing 

only sines and cosines. His method, which will be discussed later in the 

text, is based on the variation of arbitrary constants. 

124. Despite the fact that, among the methods recently introduced to 

celestial mechanics, those by Lindstedt are chronologically not the first, I 

believe nevertheless that they constitute the most suitable basis for start¬ 

ing a discussion of these novel methods of successive approximations. 

Actually, it is difficult to separate the discussion from the Newcomb equa¬ 

tions which were first in chronological order; in addition, the Lindstedt 

methods are the least complicated of all and best adapted to the simplest 

cases. These methods only fail in the presence of very small divisors, in 

which case the more perfected methods by Gyldén must be used. My 

manner of discussing the Lindstedt theory will differ considerably from 

that given by this astronomer; in addition, I will apply the method to 

many more cases although the obtained series will be identical to his 

series, as will be shown below. 

In addition, his results will be supplemented on a large number of 

points, with an attempt to extend them to as many problems as possible. 
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Discussion of the Method 

125. Let us return to the equations of no. 13: 

dx, _ dF 

dt dy, 

dy, _ dF 

dt dx, 
(/ = 1,2, ...,«), 

(9.2) 

F= F0 + pFx + p2F2 + ■■■ . 

The problem consists here in formally satisfying Eqs. ( 9.2 ) by series of the 

following form: 

X,- = X° + jux) + p2x2 + • • • + pnx" + • • • , 

yt = y°i + w) + F2y2i + ••• +Fnyl+ ••• > 

where the quantities xf and yf themselves have the form 

xf = ^ A cos ht + ^ B sin ht + C, 

^ A ' cos ht + ^ 5 ' sin ht + C 't + D ', 

where A, B, C,A',B',C ', and D ' are independent coefficients of /u, and of 

the time t but can be functions of a certain number of constants of integra¬ 

tion; the terms h are coefficients depending on and expanded in powers 

of this parameter. 

When stating that series (9.3) formally satisfy Eqs. (9.2), we mean the 

following. 

In Eqs. (9.2), let us substitute series (9.3) terminated at the p + 1 

term, i.e., let us set 

X,. = x° + px) + p2x• + • • • + ppx 1, 

ys =y0i+Fy\+F2fi + ••• +Fpyï> 

I shall say that the series (9.3) formally satisfy Eqs. (9.2) if, after the 

substitution, the difference of the two sides of these equations becomes 

divisible by pp. 

For determining series (9.3), we will use a procedure totally different 

from that applied by Lindstedt himself. 

Thus let us attempt to derive a series of the form 

S = SQ pSl + p2S2 + ' ‘ ‘ + ppSp + • • ■ (9.4) 

whose coefficients Sk themselves are assumed to be series of the form 

sk = ak\y\ + ak 2^2 + ■ ■ ■ + ak nyn + <Pk > 

where ak, are constant coefficients while cpk is a periodic function of yx, 

y2,... ,yn, with period 2tt with respect to these n variables. 
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We will attempt to determine series (9.4) in such a manner as to for¬ 
mally satisfy the partial differential equation 

JdS dS 

\dyx dy2 

dS 

dy„ 
* yi>y2’ ,yn] = const. (9.5) 

Since the constant on the right-hand side (which is nothing else but the vis 

viva or kinetic energy constant) can depend on /a, we will put it equal to 

Q + iiCx -f /rC2 + • • • . 

Setting// = 0 in Eq. (9.5) and recalling that F0 does not depend on j>, we 
obtain 

dyx dy2 dyn 
= C0 

This equation can be satisfied by setting 

(9.6) 

So = x°yx + x°2 y2 + + x°nyn 

dS0 
= x 

dSn 
l > = x 

dS0 
2y = X„ 

dyx ‘ dy2 ' dyn 

where x° are constants that can be arbitrarily selected since the constant 
C0 itself is arbitrary. 

As in the preceding chapters, we will put 

dF 
n°= - 

dx°t 

By then equating the coefficients of similar powers of // in the two 

members of Eq. (9.4), a series of equations will be obtained that permits 

determining, by recurrence, Sx, S2,..., Sp, ... . 
These equations have the form 

.o dSp 

dyx 
+ n 

o dSp 

dy2 

n dSp 
+ ••• +n°H—*-=<t>p + Cp. (9.7) 

dyn 
Here, <t>p is an integral polynomial with respect to the quantities 

dSk 
—— (k — 1,2,1; / = 1,2,...,«) 
dy, 

while the coefficients of this polynomial are periodic functions of , x2, 

. . ., x°n and of y x,y2,. . . ,yn with period 2tt with respect to the^. 

We state that the function Sp can be derived from Eq. (9.7) in such a 

manner that dSp/dyx, dSp /dy2,. .., dSp/dyn are periodic, with period 2it 

with respect to y. 

Let us assume that this is true for the derivatives of Sx, S2,...,Sp_x 

with respect to y. 
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Then, will be a periodic function of yx, y2, .. ., yn so that we can 

write 

<t>p = A + '£Bcos(mly1 +m2y2+ ••• +mnyn) 

+ X csin(miy\ + • • • + mnyn). 

where the numbers m„ m2,. .., mn are integers whereas the terms A, B, 

and C are constant coefficients independent of y. 

Then, we can write 

Sp = apXyx+ap2y2 + ••• +apnyH 

B yx + m2y2 + ••• + m„y„) 

mxn°x + m2n2 + ■■■ + mnn°„ 

C cos(Wi yx + ••• + mnyn) 

mxn°x + ••• + mnn°n 

The terms ap x are constants that can be arbitrarily selected since they are 

subject only to the condition 

+«P2«2 + ••• + apnn°„ = A + Cp 

and since the condition Cp is arbitrary. 

This method will fail only if there exist integers m„ m2,. .., mn such 
that 

X min°‘ = 0 • 

We will assume that this is not the case. 

It should be mentioned that the functions Sp defined in this manner 

contain arbitrary constants; they depend first on 

then on 

v0 0 0 
A J , a2 , • • • > , 

then on 

and then on 

a\ 1 » 2> • • • > ai n ’ 

a2l> a2 2’ ■ • • > a2n > 

••• 9 * * * 9 * * * 9 •••> 

^p1’ &p2> • • • j ®p n > 

• • 9 • * 9 • * 9 
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We will retain here only n arbitrary constants. Consequently, we will 

continue to consider the terms x° as arbitrary, selecting the quantities aik 

in any, but some definite, manner. For example, it could be agreed to 

select the aik terms in such a manner that 

0 = C, - C2 

However, we prefer to assume that all aik are zero. The constants C„ C2, 

. . . ,Cp, ... are then not zero. In general, they depend, just as C0, on x°, 
x° x° A2, . . . , 

After this, let 

"Zp — So + i + + ■ ■ ■ + °Sp . 
Let us put 

±i 
dyt 

— xit 
dx? 

= W: . (9.8) 

If we do not change variables by using as new variables the quantities x° 

and Wj instead of x, and_y, [the new variables would be linked to the old 

variables by the relations (9.8) ], then the theorem in no. 4 shows that the 

equations will remain canonical and that we will haveR1 

dx° _ dF 

dt diUj 

dwt _ dF_ 

dt dx° 
(/ = 1,2, ...,«). 

Let us see now what will be the form of Twhen expressing it as a function 

of the new variables x° and w°. By hypothesis, the series S formally satis¬ 

fies Eq. (9.5). This reduces to stating that we will have 

FiX/Si ) = F 

— C0 + juC, +/iC2-i'"+ yPCp + + 'Op , 

where Op is a function of x°, of wt, and of [i which can be expanded in 

powers of//. As for the quantities C0, Cu . .., Cp, we have seen that they 

are functions of x°. 

We will then put 

dC0 dCx 2 dC2 
vp:~-— — a--—u -r- 

Jx° Jx° dx° 

Thus, for fi = 0, the term v f reduces to «°. 

This yields 

dw,- dx° d<P 

dt dWj 

A 
dCp p_E_ 
dX0: 

dt 
= VP: A 

JO 
l p 

Jx° 
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Neglecting all quantities of the order p,p + 1, these equations will furnish 

x° = const., Wi = v It + const. 

This result can be expressed by stating that the Jacobi theorem of no. 3 

is applicable to the formal calculus when using the notations given in 

Chap. 8. 

Let us put 

n, = 
dC0 

dx(! 

dC, 2 dC 
H-rz-V- 

dx(! dx° 
ad inf. 

This constitutes a series arranged in powers of/z, which may be divergent. 

However, this is immaterial here since we are using the viewpoint given in 

the preceding chapter, namely, the formal viewpoint. 

Let us then put 

Wi = + a>i , 
where the terms &>, are considered to be constants of integration. Let us 

then consider the equations 

dS 

dy, 
(9.9) 

From Eqs. (9.9), the quantities x, and yt can be derived in the form of 

series arranged in powers of /z, whose coefficients are functions of x° and 

of Wj. These series can be either convergent or divergent, but this is imma¬ 

terial. 

If, in these series, the terms wt are replaced by «, t + and if the terms 

x° are considered as constants, the series will formally satisfy Eqs. (9.2). 

Let Eq. (9.3 ) be the series. Let us now see what the form ofxf and ofyf 

will be. For /z = 0, the series S reduces to 

So = + *2^2 + • • • + x°nyn , 

from which it follows that 

Xi = x°t, yt = . 

Thus the first term of the expansion of x, is a constant and the first term of 

the expansion ofyt (i.e.,^°) reduces to 

Wi = «, t + Wj . 

If, instead of deriving the terms x, and from Eqs. (9.9), they had been 

derived from Eqs. (9.8), then thep + 1 first terms would have been the 

same since the difference S — 1p is of the order of p.p + 1. 

For determining the quantities 

X-, y) (/= 1,2,..., n\ £ = 0,1,2,... ,p) , 
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let us consider Eqs. (9.8) which will be written in the form 

= x? + 
dqp-s0) 

dy, 
y> = u>i + 

d(2.p-S0) 

dx° 
(9.8a) 

From Eqs. (9.8a), we can derive the quantitiesx, and_g, in series arranged 

in powers of // and convergent if // is sufficiently small. For this, it is 

sufficient to apply the theorem of no. 30 since 1p — S0 represents a com¬ 

pletely defined function and no longer is a simple formal expression. 

We have assumed that the quantities ak, are zero. It results from this 

that the Sk (k> 0) and thus also 1p — S0 are periodic functions, with 

period 2tt with respect to yt. 

Thus, if in Eqs. (9.8a) the term is changed into_y, + 2kiir and the 

term w, into wt + 2kiir (ku k2,..., kn being integers), then these equa¬ 

tions will not change. Consequently, the values of x, and of >>, — wit de¬ 

rived from these equations, are periodic, with period 2v with respect to w. 

Thus in the series (9.3), the quantities xf andy* are periodic functions, 

with period 2v with respect to wt. 

Various Forms of Series 

126. The existence of the series (9.9) having been demonstrated in this 

manner, it becomes possible to form these series without going over the 

auxiliary expression S. 

However, we will first demonstrate that it is possible to formally satisfy 

Eqs. (9.2) of the preceding number by an infinity of other series of the 

same form as the series (9.3). 

( i ) The function S of the preceding number is determined by Eq. (9.5) 

to within a constant or, expressed differently, since the quantities x°, x°, 

..., x° are considered constants, to within an arbitrary function of x°, x°, 

..., and x°. 

Thus if a function S satisfies Eq. (9.5), this will be true also for the 

function 

S' = S + R , 

where R is a function of x°, x°, ..., x° and /z that can be expanded in 

ascending powers of//. 

Let us now replace Eqs. (9.9) by the expressions 

dS^_dS_ w dS' _dS dR 

dyt dyi ’ ‘ dx°, dx° dx° 
(9.9a) 

It can be assumed that R is divisible by //; in that case, the quantities x, and 

yi can be derived from Eqs. (9.9a) in the form of series (9.3a) having the 

same configuration as series (9.3). 
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We then have 

x, =x° + fix'il +/z2*;2+ •••, 
(9.3a) 

yt = w/ +AL'1 + 

where x,,/c and y'f, just as the terms xkt and are periodic functions of w. 

A comparison of Eqs. (9.9a) and Eqs. (9.9) shows that series (9.3a) 

are obtained from series (9.3) on substituting there ic, by wt + dR /dx°. 

(ii) More generally, let 

co v co2, • • • , con 

be n functions of x°x, x°,. . . , x°n and /r that can be expanded in powers oi/x. 

If, in series (9.3), the terms wv w2, ■ ■., wn are changed into 

wl+fico1, w2+/xco2, ..., wn+/xcon, 

then these series will retain the same form. In fact, we have 

x, = x° + /x<pi(wk,fx) , 

yi = wi +nti>i(wk,/i), 
(9.3b) 

where cpt and can be expanded in powers of /i and are periodic with 

respect to w. 

On changing wt into wt + juwif we obtain 

xi =x° + n<Pi(wk + fmktp) , 
(9.3c) 

y, = Wi +/i[û)i + ipi(wk + iuok,n)] . 

It is obvious that <??, ( wk + /uok ,/r ) and <y, + ip, ( wk + /j,cok ,/x ) can still be 

expanded in powers of /1 and are periodic with respect to w. 

In addition, series (9.3c) formally satisfy Eqs. (9.2). In fact, series 

(9.3b) satisfy these equations if we set there 

w. =nit + cô, , 

irrespective of the values attributed to the integration constants cô,. 

However, the terms cot are functions of x° that are constants; thus they 

also are constants. Therefore, changing ic, into + fico{ reduces to re¬ 

placing the integration constants 75, by different constants co, + /xcOi 

which, according to the above remarks, will not prevent our series from 

still satisfying the differential equations (9.2). 

Thus series (9.3c) formally satisfy Eqs. (9.2). 

However, these cannot be derived from equations analogous to Eqs. 

(9.9) and (9.9a), unless 

H(coxdx°x + co2dx°2 + ••• +condx°n) 

is the exact differential of a function , x2,.. ., x°n which then is nothing 

else but the function R which we had considered above. 
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(iü) In series (9.3b), let us change 

y-° v® v0 A1 > X2> • • • » X„ 

into 

X, T fiVlt X2 + fM)2, • • •, x° [lVn , 

where vu v2,... ,vn are functions of x°, x°, .. . , x°n and ^i, which can be 
expanded in powers of fi. 

If the quantities x° are considered as constants, then the terms vt will 
also be constants. 

When we change the value of the integration constants in this manner, 

series (9.3b) will retain the same form and will still formally satisfy Eqs. 
(9.2). 

To recapitulate, let us write the series (9.3b) in the form 

xi =x^ +jU(Pi(wk,X°k,fl) , 

o (9.3d) 
yi = wi + /M > 

by thus proving that x, — x° andy, — wt depend not only on wk and on n 

but also on x°. 

Let then 

^2> • • • > > ^1> t>2> • • • » Vn 

be 2n functions of x° and of /z, which can be expanded in powers of/z. 

Let us form the series 

x, = x° + /z[u,- +q>t{wk + fuok,x°k +juvk,ju)] , ^ 

y, = wt +//[«,- + +/ucok,x°k +JUVk,jU)]. 

These series formally satisfy Eqs. (9.2) no matter what the functions 

and Vi might be. 

In addition, since the functions 

<Pi ( wk ,x°k ,/u ) and ipt ( wk ,x°k ,/z ) , 

are periodic with respect to w, this will be true also for the functions 

Vi + (Pi ( wk + fU0k pc° + /uvk ,/z ) and (ot + ( wk + puak ,x°k + /ivk ,/z ) . 

A second remark should be made here. 

Let us put 

v, +<Pi(Wk +/LUOk,X°k + /ZUfe,/Z) =<p'i(Wk,X°k,/J,) , 

C0i + t/>i(wk +/ucok,x°k +nvk4i) = M(wkj?kji) . 

The functions <pit i/jj, qp\, and ifr’i are periodic functions of w; we will 

consider the mean values of these periodic functions and denote them, 

respectively, by 
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,/>°(x°,//), tf(x0k,/u), <p',0(x0ktlu), ^,,0(x°,//) . 

After this, we propose to demonstrate the following. 

Let 0, and ?/, (/= 1, 2,...,«) be 2« entirely arbitrary functions ofx°, 
x°,..., x° and //, subject solely to being expandable in powers of /u. 

We state that, no matter what the functions and 77, might be, it is 
always possible to choose the functions y, and /y, in such a manner that 

<p !°=ei> 

In fact, for this it is sufficient to define the quantities v, and co, by the 
equations 

Vi + <P°(x°k +f*vk,fi) = 0i(xok,/u) , 

oii + tf(x°k +nvk,fx) = Vi(x°k,^) ■ 

However, it is always possible to derive, from these equations, the quanti¬ 
ties y, and <y, in the form of series arranged in powers of // whose coeffi¬ 
cients are functions of x°k. 

Writing series (9.3e) in the form 

x, = x° 4- nx) + //2x? + • • • , 

yt = Wi +ny) +n2fi + , 

the quantities xf and yf will be periodic functions of w. According to the 
above remark, it is always possible to arrange matters such that the mean 
values of these periodic functions xf and will be any desired functions of 

Direct Calculation of the Series 

127. Let us now pass to a direct calculation of series (9.3e). For this, let 
us assume that, for example, in dF/dyt which is a function ofx,,j>,, and//, 
these variables are replaced by their expansions 

x°i + /uxj + ju2xf + • • • , 

w, + fiy] + yry] + • ■ •, 

so that this dF/dyt will become a function of x°, xf, wt, y-, and //. This 
function will be periodic with respect to wt and can be expanded in powers 
of//, xf, and.yf (if k > 1 ). The function will depend on x° in any manner. 

Let us then write 

dF 

dyt 
+ pX) + //2Xf + ••• + /z**f + (9.10) 

where Xf are functions of w,, xf, y-, and x° periodic with respect to wt. 

Similarly, we have 
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dF 
- —= 7?+/UyJ+/x2r?+ ••• +/ukY*+ •••, (9.1D 

dx, 

where T f are functions of the same form as the quantities X f. 

Recalling that dF0/dy, is zero and that dFJdx, does not depend onj, , 

it is easy to conclude that X f depends only 

V-0 v-1 v- k — 1 
on xj 9 on xi 9 ... 9 Xj » 

on w,, on y), . .., y-~l . 

Conversely, Y * depends on the same quantities and, in addition, on xf but 

is independent of_yf. Aside from this, X° is zero and Y° reduces to «°. 

On the other hand, we will assume that 

w, = n,t + cd, , 

from which it follows that 

dw, 

We now assume that n, can be expanded in powers of p, so that we can 

write 

n, = n° + pn\ + fi2*1) + * • ’ • (9.12) 

Our differential equations are then written as 

dx, dF ,, 
X"* —— = — > X"* 

k dwk dy, k 

In fact, we have 

dxL _ dx, dwk 

dt dwk dt 

dy, 

dwL 

dF 

dx, 

dx, 

dwk 

(9.13) 

In Eqs. (9.13), let us replace dF /dy,, — dF /dx,, and nk by their expan¬ 

sions (9.10), (9.11), and (9.12) and let us then equate the like powers of 

On putting, for abbreviation, 

k= n q = p- 1 dxP: q 

X X — 

k— 1 9=1 

= -Z? 

k = n q = p — 1 

X £ »! 
k=1 9=1 

dwk 

dyprq 

dwp 
= - Tp, 

(if p> 1) 

(if p> 1) 

Z)=0. 

T) = 0. 

On equating the coefficients of pp (p > 1 ), we obtain 
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dx p 

k dwk k 

£n^=yf+7’f-X«S 
k dwL k 

dx° 

dwk 

dy°j 

dwk 

Equating the terms independent of /a, it simply follows that 

£«5\— = o, Xn° — Z. * J,., Z. dw = «?> 

(9.14) 

which are equations that, as we know already, can be satisfied by setting 

x° = const., y°i — wt . 

Then, Eqs. (9.14) reduce to 

dx p- dv p 
Yn°k—^ = Xp + Z1, ^ n°k —— = Y? + T? — n? . (9.15) 

dwk dwk 

Let us now see how one can use Eqs. (9.15) for determining, by recur¬ 

rence, the functions 

xpt and y?, 

in such a manner that these functions will be periodic with respect to w 

and that their mean values will be any desired functions of x°k. 

We have seen in the two preceding numbers that this determination is 

entirely possible. 

Let us assume that we have calculated 

xj, xf, ..., xf~\ yj, yf, ..., ypi~\ (9.16) 

and that we wish to calculate xp and y? by means of Eqs. (9.15). 

Since X f and Z f depend only on the variables (9.16), the second term 

of the first equation of system (9.15) is a known function of w, periodic 

with respect to these variables. 

Let 

Xf + Zf = cos(mlwl 4- m2w2 + • • • + mnwn 4- h) 

be this function from which, by integrating Eq. (9.15), we obtain 

= X 
A sin(m1u;1 + m2w2 + • • • + mnwn + h) 

mxti°x + m2n2 + 
+ Kp 

+ mnn"n 

Thus x f is a periodic function of w; the only exception to this occurs in two 

cases: if the quantities «° satisfy a linear relation with integral coefficients 

*? = 0, 
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(but we have assumed the opposite) or else if the periodic function 

Xp + Zf has a mean value differing from zero. It is not easy to demon¬ 

strate directly that this is not the case; however, since we know in advance 

that * f must be a periodic function of w, we can be certain that the mean 

value of X ? + Zp is zero. This is the reason for the fact that we have 

started discussing the Lindstedt method based on the considerations of 

the two preceding numbers, instead of immediately applying the calcula¬ 
tion of the present number. 

As to the constant K f, this can be arbitrarily equated to any desired 

function ofx°, according to what we have shown in the preceding num¬ 
ber. 

Then, the quantity y p remains to be calculated by means of the second 

equation of system (9.15). It will be demonstrated that, as in the case of 

x f, the quantity y f is obtained in the form of a periodic function of w, 

under the condition that the mean portion of 

be zero. However, the constant n? has remained arbitrary and it is obvious 

that it can be always selected in such a manner as to cancel this mean- 
square value. 

Thus there is no limit in the calculation of the various terms of series 
(9.3e). 

This leaves many arbitrary quantities, which a skilled calculator could 

easily use for abbreviating his computations. In fact, it is possible to arbi¬ 

trarily select the mean values of x f and y f. 

Among the possible choices, we should mention the following without, 

however, recommending them specifically. The constants Kp can be se¬ 

lected such that 

This method is applicable each time that one can choose the quantities «° 

in such a manner that no linear relation with integral coefficients exists 

between them, and thus each time that one can arbitrarily choose the 

ratios of these n quantities. 

This happens, for example, in the specific case of the three-body prob¬ 

lem defined in no. 9. In this case, we actually have 

+ x2 ’ 

whence 

n ,o n ,o - 1 
X 

.3 
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It is obvious that we can select xx in such a manner that the ratio n°x/n2 

will have any desired value. 

This also happens with the following equation which is introduced 

when applying the Gyldén methods and which had been particularly stud¬ 

ied by Lindstedt: 

+n2y = p<p'(y,x) , (9.17) 
ax 

where op ' is a function expanded in powers of y and periodic in x. 

Let us mention first that p ' must always be considered as the derivative, 

with respect to >>, of a function p of the same form. Then, as demonstrated 

in no. 2, we can replace the above equation by the expressions 

- F= y + — p<p(y,x) +p , 

dx _ dF _ J dy _ dF _ dp _ dF 

dt dp dt dq dt dx 

da dF -, , 
— = — = ~n y + pep (y,x) . 
dt dy 

Let us then put 

np2 
y—p sin^j, q = np cosy,, -^- = x„ p = x2, x = y2, 

after which our equations will become 

— F = nxx + x2 — pep 
2x, . 
— sin y ij>21, 
n 

dxx _ dF^ dx2 _ dF dyx _ dF dy2 _ dF 

dt dyx ’ dt dy2 ’ dt dxx ’ dt dx2 

The canonical form of the equations will not be altered, in view of the 
statements in no. 6. 

Setting p = 0, we have here 

F0 = — nxx — x2, 

whence 

dF 0 no _^u=l dFr, 
- — — tt-i ,l2 
dxx dx2 

Thus, if n is irrational, then no linear relation with integral coefficients 

exists between n°x and n2, and the method becomes applicable. 

The method is also applicable to the general case of the three-body 

problem if the three bodies move in a common plane and attract each 

other in accordance with any law other than the Newtonian law; however, 
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the method is no longer applicable (unless considerable modifications, to 

be discussed below, are made) as soon as the law of universal gravitation is 
Newton’s law of gravitation. 

Actually, in this case ( and returning to the notations given in no. 125), 

F0 no longer contains x3 so that n°3 is zero. From this it follows that 

between the quantities a linear relation with integral coefficients exists, 
namely, 

n\= 0. 

The direct calculation, as discussed in this number, closely resembles the 

original Lindstedt method. It offers a considerable advantage over the 

indirect procedures discussed in the two preceding numbers since it di¬ 

rectly yields the values of x, and_y, as a function of w and thus of the time 

and consequently can be used for calculation of the ephemerides. How¬ 

ever, these indirect procedures were necessary in view of the fact that, 

without them, it would have been impossible to prove the legitimacy of the 

direct calculation (which can be achieved only if the mean value of 

Xp + Zp, is zero) or, at least, it would have been impossible to do so 

without making use of the integral invariants which we will discuss in a 

later chapter. 

From still another viewpoint, knowing these indirect procedures will 

be of some use. We have shown in the Introduction that it is sometimes 

advantageous to use an integral or an invariant relation (to use the lan¬ 

guage of nos. 1 and 19 ) instead of a solution. In addition, the calculation of 

the function S may serve as verification in the direct calculation. 

128. The above-defined constant K pt can be chosen such that 

[ Ypt + Tp], i.e., the mean value of Ypt + Tpif becomes zero and that, 

consequently, 

nPi = 0, n, = n°, . 

In fact, we have 

d2Fn 
■xp - 

d 2F0 
XP 

d2F, 

dx.dx 
^xpn + Up, 

dxtdx i dx,dx2 

where £/? depends only on xf and y, (/ = 1, 2, ..., n\ k = 0, 1, 2, . 

p — 1 ). Equating the mean values, we obtain 

[r?+r?]= -X d2F0 

dxtdxk 
KPk + [U? + T?] . 

The functions C/f and Tp are completely known. Thus this is true also for 

[ jjp _|_ t?] so that it is sufficient, for canceling the terms n ?, to choose 

the constants Kpk in such a manner as to satisfy the n linear equations 
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d2F0 

dxtdxx 
K1 + d2F0 

dxtdx 
■K{ + + -j—r—Kpn = [ + Tf] . (9.18) 

✓V v* rl v* dx,dx 

To make this possible,R2 it is necessary and sufficient that the Hessian of 

E0be not zero. However, it is exactly zero in the case of Eq. (9.17), i.e., in 

the specific case always used by Lindstedt. This is the reason for the fact 

that this astronomer had not been aware of the possibility of setting 

«, = • 

This Hessian is again zero in the specific case of the three-body problem 

defined in no. 9; however, we have demonstrated in no. 43 that this diffi¬ 

culty can be overcome by a simple artifice. 

Comparison with the Newcomb Method 

129. To arrive at series of the same form as those discussed in this 

chapter, Newcomb used the variational method of arbitrary constants. To 

demonstrate that the result could not differ from that obtained by us in the 

preceding numbers, we will present this method in the following form. 

Let us return to the partial differential equation 

= const, (9.19) 

which is Eq. (9.5) of no. 125. 

Let S ' be a function of y,, y2, ■. ., yn and of n constants x°, x°,..., x°n 

approximately satisfying Eq. (9.19), such that we will obtain 

F = = <Po(*?) + ecp^x^y,) , 

where <p0 depends only on the constants and where e is very small. 

Then, we will have an approximate solution of the canonical equations 

by setting 

dS' 

dyt 
= *;> 

dxt__dF_ dyj_ 

dt dyt ’ dt 

dS' 

dx° 
■yi ntt + co i, «. = 

d(p0 

dx°t 

(9.20) 

(9.21) 

and by regarding the terms x° and co, as arbitrary constants. 

Let us now assume that the approximation is to be continued further by 

applying the Lagrangian method. In that case, the quantities and <ÿ, are 

no longer considered constants but new unknown functions. According to 
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the theorem of no. 4, we must derive the new equations in the following 

manner. Let us replace the terms by their values as a function of x° and 

ofy° derived from Eqs. (9.21 ); this yields 

furnishing the canonical equations 

dA_=d± dfi_d± 

dt dfi ' dt dxf 

As variables, we usedy° instead ofôJ, (which comes to the same) so as to 

better demonstrate the canonical form of the equations. 

An integration of Eqs. (9.22) can be reduced to that of the partial 
differential equation 

^°) = const. (9.23) 

Let S " be a function of.y° and of n new constants xj satisfying this equa¬ 
tion. If we put 

dS" 

dy°i 
= X; 

dS" 

dx) 
= y; (9.24) 

we will satisfy Eqs. (9.22) by equating xj to constants and y) to linear 

functions of time. 

If S " is only an approximate integral of Eq. (9.23), we will thus have 

only approximate solutions of Eqs. (9.22). 

This constitutes the variational method of constants; however, this is 

not entirely the method used by us in no. 125. Retaining Eq. (9.19), after 

having derived its approximate solution, we will attempt to search for a 

still closer solution. Let S be the solution which will depend on and on 

n constants xj. If we then put 

dS’" 

dy, 
= */. 

dS" 

dx' 
■=y; (9.25) 

the terms xj will be constants and the quantities^,1 will be linear functions 

of time, being exact if S’" is an exact solution of Eq. (9.19) and being 

approximate if S'" is only an approximate solution. Is it possible to select 

S'" in such a manner that Eqs. (9.25) become equivalent to Eqs. (9.21) 

and (9.24)? Equations (9.21) and (9.24) can be written as follows: 

dS' = £ x,dy, + £, 

ds- = ^x°‘dy°, + 'Ly\dx), 
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and Eqs. (9.25): 

dS"' = X x‘dy‘ + S yl‘dx' ■ 

Consequently, it is sufficient to use 

S"' = S' + S" -£x°y°. 

The method given in no. 125 thus does not differ basically from the New¬ 

comb method and has no other advantage over the latter but that of avoid¬ 

ing excessive changes of variables. 

It should be added that we have selected the constants of integration in 

a specific manner so as to retain the canonical form of the equations. 

Newcomb has not restricted himself to this, which is the general habit of 

astronomers in applying the Lagrangean method. The equations in which 

the Lagrangeans occur thus assume an apparently much more complex 

form. However, this difference is not essential. 



CHAPTER 10 

Application to the Study of 
Secular Variations 

Discussion of the Question 

130. The principles discussed in the preceding chapter can be applied to 

the study of certain equations frequently used by astronomers. 

Let 

dXi__dF_ dy^_ dF 

dt dy, dt dXj 

be our canonical equations and let 

F= F0 + fiF i +h2F2 + 

(10.1) 

Let us now assume that our conjugate variables x,- and y, are the Kepler- 

ian variables of no. 11, that F0 depends solely on /3L and y3 'L ', i.e., on the 

two major axes, and that—neglecting fi2F2 and the following terms—■fiFl 

will represent the perturbing function. 

Then Tj can be expanded in sines and cosines of multiples of the two 

mean anomalies / and / '.We will denote by R the mean value of this 

periodic function of / and of / '. 

Frequently, for studying the secular variations of the elements of two 

planets, the periodic terms in Fj were neglected, thus reducing this func¬ 

tion to its mean value R. In that case, our equations become 

_ dFo ^ d-R_ . &t_= (10.la) 
dt dyt dy, dt dx, dx, 

However, is it really certain that, in operating in this manner, exactly the 

coefficients of the secular terms of x, and yt are obtained, namely, the 

coefficients of terms whose period increases infinitely when the masses 

tend to zero? This question must obviously be answered in the negative. 

However, the approximation is generally sufficiently large and astron¬ 

omers, with complete justification, have always been content with this. 

This is the reason for the interest centered on a study of these equations 

(10.1a). 

347 
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Since F0 and R do not depend on / and / we immediately have 

dU3L) _ d(0'L') _n 

dt dt 

such that L and L ' can be considered as constants. Therefore, we will be 

content to consider the four pairs of conjugate variables 

0G, 0®, 0'G', 0'®', 

g, 0, g', O', 

(notations of no. 11) which, for the time being, will be called 

*■2» v3» *•4 > 

y i. y» y3> y4 ■ 
Then, F0 depends on none of these eight variables and Eqs. (10.1a) be¬ 

come 

dxt _ dR 

p dt dyt 

dy, _ dR 

p dt dx. 
(/= 1,2,3,4) . (10.1b) 

The function R depends only on our eight variables xt and y,• since it is 

independent of / and of / ' and since L and L ' will be considered constants 

from here on. Equations ( 10.1b) thus have the canonical form. 

After x, andj>, have been determined by Eqs. ( 10. lb), the quantities / 

and / ' will be calculated from the equations 

dl dR dl' dR 
— = — u-, —= — p-, 
dt 0dL dt 0'dL' 

which can be integrated by simple quadrature, since / and / ' do not enter 

the right-hand side. 

The founders of celestial mechanics have made use of these equations 

by reducing R to its first terms, i.e., to terms of the second order with 

respect to the eccentricities and inclinations. The equations are then linear 

and have constant coefficients. Since then, LeVerrier and Cellérier have 

considered the fourth-order terms and have found that they do not alter 

the stability. 

However, the principles of the preceding chapter, as demonstrated be¬ 

low, permit generalizing this result and demonstrating that the result is 

still valid (naturally, from the viewpoint of formal calculus) no matter 

how far the approximation is continued. 

New Change of Variables 

131 . If the variables ( 1.29) of no. 12 are used, then R can be expanded in 

powers of £, £ ', rj, T]',p,p', q, and qas we have seen, there are no terms of 

odd degree with respect to these quantities 
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£ ê'> V’ vP. p\ q, g' -R3 (10.2) 

Thus we can write 

R{Ç,Ç',Tl,Tl',p,p',q,q') = R() + R2 + R4 + ••• , 

where comprises all terms of the £ th degree with respect to the quanti¬ 

ties ( 10.2). It is now a question of integrating the canonical equations 

dË, _ dR dij _ dR 

dt dy ’ dt dË, 

However, we still have a change of variables to perform so as to bring our 

equations into the most convenient form. 

Let us first assume that the terms of an order higher than the second are 

neglected with respect to the quantities (10.2) and that one writes 

R — R0 T R2. 

Here, R0 is a constant while R2 is a homogeneous polynomial and of the 

second degree with respect to the variables (10.2). Thus if the canonical 
equations 

dË, _ dR2 dË,' _ dR2 dp _ dR2 dp' _ dR2 

dt dr\ dt dy' dt dq dt dq' 

dy _ dR2 dy' _ dR2 dq _ dR2 dq' _ dR2 

dt dÇ ’ dt dË, ' dt dp ’ dt dp' 

(10.3) 

are formed, these equations will be linear with respect to the variables 

(10.2). 

Let us assume that instead of expanding R in powers of the variables 

( 10.2) we will expand it in powers of the eccentricities and inclinations, 

thus leading to the series 

R=R%+R%+R*+ 

where R * represents the ensemble of the terms of degree k with respect to 

the eccentricities and inclinations. 

In accordance with our statements in no. 12, the variables (10.2) can 

be expanded in powers of the eccentricities and inclinations, such that, by 

terminating each of these series at the first term, we obtain 

Ë, = y[Ae cos To, i' = VÂV cos To', 

y = —ylÂesincô, y' = —■JX'e' sinST, (10 4) 

p = yjXi cos 6, p = VX7/' cos 0 ', 

q = — JKi sin 0, q' — — VÂ7/' sin 0 ' 

(for abbreviation, we have set A —/3L,A' = /3'L ', as was done in no. 12). 
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From this, it follows that 

*o = *o* 

and that, for obtaining R J, it is sufficient to substitute, in R2, the variables 

( 10.2) by their approximate value ( 10.4). 

Inversely, R2 will be obtained on replacing, in R f, the quantities 

e cos Tô, é cos To', e sin To, e sin To', i cos 0, Ï cos 0 ', i sin 6, Ï sin 6 ' 

by 

j £' -v - v' p p' -g > - d 

Va ’ VÂ7’ VÂ ’ Vâ’vâ’ Va7’ Va’ Va7 

However, the expansion of R f is well known; in fact, R £ is nothing else 

but the ensemble of the secular terms of the perturbing function which are 

of degree two with respect to the eccentricities and inclinations. 

From this, we can draw two conclusions: 

( i ) The linear equations (10.3) can be derived, through a simple change of 

variables, from equations (A) and (C) of Laplace’s celestial mechanics,7 

which are useful for calculating the secular variations of the eccentricities 

and perihelions and of the inclinations and nodes. 

(ii) The function R2 is of a particular form and can be written as 

R2 = Rii§£') +Rï(y,v')+Rï(P,p')+Rï(q,<l') ■ 

It is thus the sum of the four quadratic forms, where the first depends 

solely on £ and Ç ', the second is formed with 77 and 77' as is the first with Ë, 

and £ ', while the third depends solely onp andp, and the fourth is formed 

with q and q' as is the third with p and p'. 

After this, we will perform a linear change of variables, arranging mat¬ 

ters so that the canonical form of the equations remains unchanged. 

For this, let us put 

V — + ^(ctj cos <p + <j2 sin cp) + £ '( — cr1 sin cp + a2 cos <p) 

4-p(cr2 cos q> ' + a4 sin qp ') +p'( — a3 sin p ' + a4 cos cp ') , 

where p and cp ' are two angles depending on A and A'. 

Let us next put 

dV , dV 
rj =-= gx cos p + (t2 sin p, rj —-= — ax sin p + a2 cos p, 

d£ dÇ' 

dV , , . , , dV , 
q = —— = cr3 cos p + a4 sin p , q =-= — a3 sin p + a4 cos p . 

dp dp' 

This furnishes relations that will define the new variables cr, as a function 

of the old variables. 
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Let us next introduce four new variables r,, r2, r3, r4 defined by the 
relations 

dV 

whence 

£ = Tj cos qp + t2 sin qp, Ç ' — — r3 sin qp + r2 cos <77, 

P = t3 cos <p ' + t4 sin q> ', p' = — r3 sin qp ' + r4 cos <77 

According to the theorem in no. 4, the canonical form of the equations will 

not be altered if the old variables 

£ i', P, p', 

V» 77> 

are replaced by the new variables 

7” 1) 7"2, 7"3, 7*4 > 

<^1» <^2» ^3» ^4- 

It remains to demonstrate the manner of selecting the angles cp and qp ' as a 

function of A and A'. 

The angle cp will be selected in such a manner that the quadratic form 

R 2 (£,£ ') = R 2 (Ti cos <77 + r2 sin qp, — r3 sin qp + r2 cos <77) 

is reduced to a sum of two squares 

TjTi + A2T 2 . 

Similarly, we will have 

2 (77,77') = i? 2 (ai cos + <^2 sin qp, — (Tj sin <77 + <r2 cos <7?) 

= /l1a-^ T A.2<J 2 . 

The angle qp ' is chosen in the same manner, such that 

R iip,p') = A3t\ + A4t \ , 

R liqtf) =A3a23 + A4cr 4 ; 

yielding 

R2=Ax{cr \ +t\) +A2{o22 + t2) + A3(aj +rj) +A4(cr24 +r4) . 

Let us note that Au A2, A3, A4 depend on A and A'. 

The relation between the variables Ç, rj, a, and r, which can be written 

£ = tj cos qp + t2 sin qp, 

£' = — t1 sin qp + r2 cos qp , 

77 = <7j cos qp + <r2 sin <77, 

77' — — ctj sin <77 -f <j2 cos <77, 

(10.5) 
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is an orthogonal linear substitution. Due to this fact, as explained in no. 5, 

the canonical form of these equations is retained. Thus the problem re¬ 

duces to searching for the angles cp and q> ', i.e., to the choice of the orthog¬ 

onal substitution (10.5); however, this reduces again to an integration of 

the Laplace equations (A) and (C) mentioned above. The numerical 

calculation may thus be extremely protracted, but it has already been 

performed with respect to the solar system. 

Similar results are obtained in the case in which, instead of three bo¬ 

dies, n + 1 bodies are considered. 

The function R2 will be the sum of four quadratic forms; however, each 

of these four forms, instead of depending solely on two variables, will 

contain n variables. 

We will then have n variables analogous to Ë,, n variables analogous to 

77, n variables analogous top, and n variables analogous to q. All this again 

reduces to determining an orthogonal linear substitution which, when 

applied to the variables Ë,, transforms the first of these four quadratic 

forms into a sum of n squares. 

Let us return, however, to the three-body problem. 

Let us make a last change of variables, by putting 

A = yjïpi cos (ot, ai = yjlp'i sin a,, 

which, according to no. 6, does not change the canonical form of the 
equations. 

Then, R can be expanded in powers of yfp^ and is periodic with respect 
to cop, in addition, we have 

R2 = 2 A j px + 2 A2 p2 + 2 A3 pi 4- 2 A4 p4 , 

i.e., R2 does not depend on 6>, . 

Application of the Method of Chap. 9 

132. After these various changes of variables, our equations will assume 

the following form: 

dpi dR dcoi dR 
-= —p-, -= a-. 
dt dcot dt dpi 

(10.6) 

To apply the methods of the preceding chapter to these equations, it is 

necessary to have R expandable in ascending powers of a very small pa¬ 

rameter. For this, we can no longer make use of p since all terms on the 

right-hand side are of the same degree (of degree 1) with respect to p. 
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Fortunately, the quantities pt are of the order of the square of the eccen¬ 

tricities, and the inclinations themselves are very small. 

To return to the case treated in the preceding chapter, we then only 
have to put 

Pi = ePi . 

where e is a very small constant and the quantities p' are finite. This yields 

dp'i _ p dR dcûi ^ dR 

dt e dcùi ’ dt e dp\ ’ ( 10.6a) 

R = R0 + R2 + R4 + ■ ■ ■ . 

Here, R 2p will be homogeneous and of degree p with respect to pt, so that, 

on replacing pt with ep\, we obtain 

R — Ro + ^R 2 -\- c2R 4 + ■ ' ■ > 

where R 2p is obtained on replacing pt by p\ in R 2p. 

Therefore, since R0 is reduced to a constant, our equations will become 

dp'i dR î 
= -P 

dt 

dco, 

da>: 
pe 

dR 4 

dcot 
pe2 

dR 6 

da>i 

= P 
dR 2 dR\ , .dR’, 

+ pe-Ype 

(10.7) 

+ 
dt dp\ dp't ' dp] 

It can be seen that the equations have retained the canonical form. Then, 

the function F reduces to 

p (R 2 + CR 4 ~Y ^R 6 + ' ‘ ' ) • 

It is obvious that this has been expanded in powers of e. The function is 

periodic with respect to the variables of the second series <y, . Finally, the 

first term R 2 does not depend on these variables <y, . Thus, we have the 

conditions under which the results of the preceding chapter are 

applicable. 

The only hypothesis that we have to make is that no linear relation with 

integral coefficients exist between the four constants Au A2, A3, A4. The 

probability for this relation to exist is zero; nevertheless, one might ask 

whether there is a simple relation of this form that is sufficiently close to 

being satisfied that the series only converge extremely slowly. It is known 

that Le Verrier has discussed this particular question but he was obliged to 

leave it open with respect to the minor planets since their masses are 

relatively unknown and since the coefficients A depend on these masses. 

It is obvious that all the above statement apply without change to the 

case of more than three bodies. 

Thus it is possible to formally satisfy the equations that define the 
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secular variations by trigonometric series of the form derived by New¬ 

comb and Lindstedt. Then, e cos co, e sin To, i cos 6, and i sin 9 are ex¬ 

pressed by series whose terms are periodic with respect to t. This result 

might have been considered by Laplace or by Lagrange as completely 

establishing the stability of the solar system. We are somewhat more 

painstaking today, since the convergence of the expansions has not been 

proved; the result is no less important for that. 

Finally, let us note that in the case in which three bodies are involved 

and in which these bodies move in one plane, our canonical equations 

( 10.7 ) can be reduced to the case of only one degree of freedom; thus they 

can be integrated by simple quadrature. 

There is no need to mention specifically that an integration of Eqs. 

(10.7) is equivalent to an integration of the partial differential equation 

R , co,) = const., 
\dco, 7 

where T is an unknown function while coi are independent variables, and 

whose left-hand side is the function R where p{ has been replaced by 

dT/dco,.R4 
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Application to the Three-Body 
Problem 

Difficulty of the Problem 

133. In the case of the three-body problem, a special difficulty arises 

which renders an application of the methods of Chap. 9 even more com¬ 
plex. 

In fact, F0 no longer depends on the six variables of the first series 

PL, P'L pG, P'G', p®, 0'©', 

but only on two of these, namely, 

pL and P'L'. 

Among the quantities which we denoted by 

there are thus four that are zero, namely, 

dF0 dF0 dF0 dF0 

dp G ’ dp'G' dp®’ dp'®' 

The condition necessary for having the conclusions of the chapter remain 

valid, namely, that no linear relation with integral coefficients exist 

between the terms «°, is thus not satisfied. 

This difficulty does not arise, at least not if the three bodies move in one 

and the same plane, with any other law of attraction than the Newtonian 

law. Actually, these equations 

dF0_ dF0 _dF0 _ dF0 _ ^ 

dG ~ dG' ~ d®~ d®' 

have an obvious significance. They mean that, in the Keplerian motion, 

the perihelions and the nodes are fixed. In fact, we have the following 

equations: 

dg _ dF dd dF 

~dt~ ~ pdG ’ ~dt~ ~ P'dG' ' 

In the Keplerian motion, Fis reduced to F0 while g and 0 are constants. 

355 
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However, in the case of the two-body problem and with a law different 

from the Newtonian law, the nodes are still fixed but the perihelions no 

longer are fixed. Therefore, if the motion takes place in a plane and if the 

nodes can be disregarded, the method of Chap. 9 is applicable without 

modification. 

Extension of the Method of Chap. 9 

to Certain Singular Cases 

134. Let us first examine the case in which F0 does not contain all vari¬ 

ables xx, x2,. ■ ■, xn. 

To fix our ideas, let us assume that there are three degrees of freedom 

and that F0 contains two of the variables of the first series, xx and x2, but 

does not contain the third, x3. 

This yields 

n%= 0. 

We still assume 

F=F0 + nFx + h2F2 + • • • . 

Here, Fx is a function of xx, x2, x3, yx, y2, y3, periodic with respect toyx,y2, 

and y3. 

For the moment, let us consider Fx as a function ofyx and y2 only. This 

is a periodic function of these two variables. We will denote by R the mean 

value of this periodic function, which also depends on xx, x2, x3, andj>3. 

Let us first consider the case in which R depends only on xx, x2, and x3 

but is independent of y3. 

Let us search for a function 

S — S0 fiSx + l-i'2S2 + ■ ■ ■ , 

having the same form as the function S considered in no. 125 and formally 
satisfying the equation 

(11.1) 

with C being a constant which can be written in the form 

C — C0 + /j,Cx + fi2C2 + ■ • • , 

where C0, Cx, C2, ... are arbitrary constants. 

Let us first put 
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A, _ o 

dyx 

dSo 

dy2 
= 

The constants and x2 will be connected by the relation 

= C0. 

However, since the constant C0 is arbitrary, and x2 will also be arbi¬ 
trary. 

We will then put 

dF0 

dx°x 

This will yield 

= — n. dFp 

dx2 
= — K 

S0 = x°xyx + x2y2 + [S0] , 

where [S0] is an arbitrary function of j>3 which remains to be determined. 

On equating the coefficients of/i in Eq. ( 11.1 ), we obtain, as in no. 125, 

„o dSi t ^o dSx _ r (jo ^o d [Sq] .^ /-11 n 
n\ , F n2 , —f\\xnxi> : yyi>yii^3 I Cj . (11.2) 

dy i dy2 \ dy3 J 

No matter what the arbitrary function [S^] might be, the right-hand side 

of Eq. ( 11.2) will be a periodic function of yx and y2, so that the mean- 

square value of this function will be 

* [Sol R j, x2, 
dy3 

y% ) cx. 

We postulate that the function Sj has the following form: 

ai i-Vi + a\2^2 + a\ 3^3 + periodic function ofj>j, y2, and_y3 

To make this possible, it is necessary and sufficient, as indicated in no. 

125, that the mean value of the right-hand side of Eq. ( 11.2) reduces to a 

constant which will be denoted by C [ — Cx. Then, for determining the 

arbitrary function [S'q], we will have the equation 

R(x°x,x°2,^^-,y^ = C[ . (11.3) 

We had assumed above that R did not depend on j>3; thus for satisfying Eq. 

( 11.3 ), it is sufficient to take 

[S0] =x°, 

where x3 is a constant which can still be considered as arbitrary since the 

constant C [ is arbitrary itself. This will yield 

S0 = x°xyx + x\y2 + x°3y3. 
On equating, in Eq. ( 11.2), the mean values of the two sides, we obtain 

n°xax x + n°2al2 = C\ - C, . 
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Since Cx is arbitrary, we will set C, = C\ which will allow us to set, as in 

no. 125, 

«11 =«12 =0. 

Then, Eq. ( 11.2) permits determining Sx to within an arbitrary function 

of_y3. 

After this, let us imagine that the functions 

*5o> Sit S2, ■ ■ ■, Sp_ 2 , 

have been completely determined and that Sp _ , had been calculated to 

within an arbitrary function of y3, we assume that the completion of the 

determination of Sp _ x and the calculation of Sp to within an arbitrary 

function of j>3 are proposed. 

On equating the coefficients of [ip on the two sides of Eq. (11.1), we 

obtain 

n o 
l 

dS^ 

dy>\ 

dFx dSp „ i 

dx3 dy3 
+ <*>d-Cd (11.4) 

where <ï>p is a function which depends only on y and on the derivatives of 

Sq, Sx, S2, ..., Sp _ 2 as well as on dSp _ , /dyx and on dSp _ , /dy2. The 

functionsS0, Sx, S2,..., Sp_2 are known. We also know Sp_ x to within 

an arbitrary function of y3; consequently, we know dSp_x/dyx and 

dSp _ j /dy2. Thus <Pp can be considered as being a known function of y, 

and this function will be periodic. 

Since we have a periodic function U of y x,y2, and j>3, we will designate 

by [ U] the mean value of U considered, for the moment, as being solely a 

function of_y, andj>2- It results from this that [ U] is also a function of.y3. 

It can be demonstrated, as done above, that the mean value of the right- 

hand side of Eq. ( 11.4) must reduce to a constant C'p — Cp from which it 

follows that 

dFx dSp_ 

dx°3 dy3 
+ [%]=C'P’ 

dFx d[Sp-,]1 1 ' dFx d{Sp_ j - [5p_j])' 

[dx°3 U
) 

1
_

 

I O
 m

 

•3 
_

i 

+ [*P]=C'P 

Since [5 x ] does not depend on^,,^, we obtain 

dFx d[Sp_x] ] i 

"a 1 \dF'\ 
dR d[Sp x] 

-
1

 

cn 

O
 m 

•3 dy3 . dx 3 dx °3 dy3 

whence 

dR rf[S,i] 
[%] 

' dFx d(Sp_x - [5,p_1])' 

. dx°3 dy3 

(11.5) 

dx3 dy3 
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Knowing Sp_x to within an arbitrary function of y3, we also know 

V.-[*,-.]• 
Thus the second member of Eq. (11.5) is fully known. On the other hand, 

R is a known function ofx,, x2, and x3 where these variables are replaced 

by the known constants x°x, x2, and x°3. Thus dR /dx°3 is known, and 

d [5'p_, ]/dy3 can be derived from Eq. (11.5) while [Sp_ x ] can be ob¬ 

tained by integration. 

So that [Sp_ , ] be a periodic function of y3, it is necessary that the 

mean value of the right-hand side of Eq. ( 11.5) be zero; one can always 

make use of the arbitrary constant C'p to have this be the case. 

This completes the determination of Sp _ x. Equation ( 11.4) will then 

permit determining Sp to within an arbitrary function of y3. So that the 

value of Sp, derived from Eq. ( 11.4), be periodic in and_y2> it is neces¬ 
sary that the mean value of the right-hand side be zero. However, this 

mean value is Cp — Cp so that, since the constant Cp remains arbitrary, 
we can set 

C — C 

Thus it is always possible to determine the functions Sp by recurrence. 

The conclusions of no. 125 consequently remain valid. The only difference 

is that the expansion of n3 in powers of ^, instead of starting with a com¬ 

pletely known term, will start with a term in fi. 

Let us now assume that there are four degrees of freedom and eight 

variables xl,x2, x3, x4; yx, y2, y3, y4, and that F0 depends only on xx and x2 

while R depends on xx, x2, x3, x4. 

The same conclusions are applicable, provided that 

(a) no linear relation with integral coefficients exists between dF0/dx°x 

and dFç/dx2 (i.e., between n°x and «° ); 

(b) no linear relation with integral coefficients exists between dR /dx3 

and dR /dx4. 

In fact, the equation analogous to Eq. (11.5) and used for determining 

[S'p_ , ] will then be written 

dR d[Sp_x] | dR </[$,-,] 

dx°3 dy3 dx4 dy4 

= (known periodic function ofj^ and_y4 

whose mean value can be made zero) . ( 11.5a) 

So that [S' , ] can be derived from this as a periodic function ofy3 and_y4, 

it is necessary and sufficient that no linear relation with integral coeffi¬ 

cients exist between dR /dx°3 and dR /dx4. 



360 CELESTIAL MECHANICS 

135. Up to now, we assumed that R depends only on the variables of 

the first series x,, x2, x3, x4 (assuming, as at the end of the preceding 

number, that four degrees of freedom exist and that F0 depends only onxj 

and x2 ). 

Let us now suppose that R depends not only onx1( x2, x3, x4 but also on 

y3 and y4. 

If we replace Xj and x2 by the constants and Ë,2 while replacing x3 and 

x4 by dT/dy3 and dT/dy4, and if we equate R to a constant C \, we will 

obtain the following equation: 

= (11.6) 

which defines a function T of the two variables y3 and y4. 

Let us assume that we have found a function Tsatisfying this equation. 

In addition, let us assume that this function depends also on the two 

constants and Ë,2 as well as on two new integration constants denoted by 

£3 and |4. 

Then, the function 

u—êiy\ + êiyi + t 
will satisfy the equation 

R(dU dU dU dU 

\dyx dy2 dy3 dy4 

In addition, the relations 

» y* y a = c ;. 

X, = U= 1,2, 3,4) 

will define a change of variables, where the old variables are x, and y, 
while the new variables are and 77, . 

According to the statements in no. 4, this change of variables will not 
alter the canonical form of the equations. 

It is immediately obvious that 

*1—ii> x2 — £2, 

and, consequently, that F0 after the change of variables will depend only 
on and 

If it is assumed (which we will do) that the function U is such that x3, 

*4, -Vi — Vu y>2 — V2’ y3 — V3 (or ^3), y4 — V4 (or ^4) are functions of 
and of 77,, periodic with respect to 77,, then the function F—after change of 

variables—will be periodic with respect to 77,. 

We have called R the mean value of Fu considered as a periodic func¬ 

tion of yx and y2. We now state that, after the change of variables, we 
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consider Fx as a periodic function of 77, and rj2 with its mean value still 
being R. 

By definition, we have J~2n f'ln 

F\ dyx dy2 , 
0 Jo 

and we propose to demonstrate that 

r2 n /+2ir 

4irR = .F, dVi dy2 . 
Jo Jo 

In fact, we have 

J J J J V dy j dy2 dy2 dyj J 

However, in the relations 

dyx dy2 dy2 dy 

dU dU 
a ~r> yt 

dy, ~dit 
(i = 3,4), 

yx and y 2» Vi and V2 do not enter. This shows that, if the new variables are 
expressed as a function of the old variables, then Çx, Ç2, £3, g4, rj3, and 774 

will be independent of both yx and>>2. 

Thus if, in T, we replace £3 and £4 by their values as a function of xx, x2, 

x3, x4, y3, and y4, we will have 

0 d2r _ d2r _Q 

dyx dy2 ’ d£idyx dg,dy2 

whence 

dyx j | d2T _ ^ dyx __ d2T _Q 

dyx dÇxdyx ’ dy2 d£2dyx 

and, similarly, 

dy 2 = o dy2. = x 
dyx ’ dy2 

Consequently, we have 

J J F\ dy 1 dy2 = J J F, dyx dy2 

In addition, the quantity C J which must be a constant can depend only on 

the integration constants, i.e., on such that R will depend only [because 

of Eq. (11.6)] on gx, Ç2, Ç3, and g4. 

This reduces to the case treated in the preceding number so that we 

must conclude that the canonical equations 

di, dF dVi dF 
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can be formally satisfied by series of the form: 

£=£? + ^? + ---+/^+-" 

Vi = w, + + • ' ' + ‘ . 

Wj = nj + wit «, = n°i + //«,• + • • • + npnpi + • • • , 

where the terms Ë, ° are constants while Ë, f and 77* are periodic functions of 

w depending, in addition, on n integration constants £ °. In addition, wt 

are n other constants of integration and the quantities 77? still depend on 

the constants Ç °. 

On returning to the original variables, it can be demonstrated that the 

canonical equations 

dx, _ dF dyt _ dF 

dt dy, ’ dt dxi 

can be formally satisfied by series of the form 

X,. = x°i + fix] + • • • + /ZPX? + • • • , 

yi = eiwi +fi+py\ + •••+MPyP+ ■■■ ; 

where xf and yf are periodic functions of w. 

As regards the coefficient e,, it can be equal to either zero or to one. In 

any case, it is always equal to one for / = 1 or 2; it is equal to one or zero for 

/ = 3 depending on whether j>3 — or y3 is periodic with respect to 77,. 

Similarly, the coefficient is equal to one or zero for i = 4 depending on 

whether y4 — tj4 or y4 is periodic with respect to 77,. 

All this reduces to an integration of the partial differential equation 

( 11.6 ) or, what comes to the same thing, to an integration of the canonical 

equations: 

dx, _ dR dy, _ dR 

dt dy, dt dx, 

Application to the Three-Body Problem 

136. Let us apply the preceding statements to the three-body problem. 

We have brought the equations of this problem to the form 

d*L=dF< dyL=_dL (U7) 

dt dy, dt dxt 

with 

F=F0+fxFl, 
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where// is a very small parameter andpFx is the perturbing function. Our 
variables are those of no. 11 : 

A = pL, A' — P'L ', pG, p®, P'G', p'®', 

I, r, g, e, g', 0', 
or else those of no. 12: 

(11.8) 

(11.9) 
a, a', i, p, p1, 

A, À ', 77, 77', q, q', 

where F0 depends only on A and A' while Fx depends on 12 variables but is 
periodic with respect to / and /'. Thus if one considers Fx as a periodic 
function of / and / ' and if R is designated as the mean value of this function, 
then R will be nothing else but the function which had been designated as 
such in the preceding chapter. This function depends on 10 variables, 
namely, on the 12 variables of Eq. (11.8) with the exception of / and / ' or 
else on the 12 variables of Eq. (11.9) with the exception of A and A '. If the 
variables of Eq. (11.8) are adopted, the function will be periodic with 
respect to g, g', 6, and 0 

Consequently, the method of nos. 134 and 135 will be applicable to Eqs. 
(11.7) and will permit its formal integration, provided that it is possible to 
integrate the equations 

dxl _ dR dyl __ dR 

dyt ’ 
(11.10) 

dt dyt dt 

where the variables x, and y, are the last four pairs of conjugate variables 
( 11.8 ) or the last four pairs of conjugate variables (11.9) and where A and 
A' are considered constants. 

However, Eqs. ( 11.10) are exactly those that we were able to formally 
integrate in the preceding chapter. Thus it is easy to show that the Lind- 
stedt method can be applied to the general case of the three-body problem. 

Application of this method, which I have just briefly discussed, will be 
the object of the following numbers. 

Change of Variables 

137. We will make a change of variables analogous to those performed in 

no. 131. 

For this, let us put 

(A =pL, A' = P'L') , 

V= AAX + A'A[ + £(cr, cos cp + a2 sin (p)+£(— ax sin cp + a2 cos cp) 

+ /?((73 cos cp + cr4 sin <p') +p'( — cr?, sin cp ' + a4 cos cp') , 

where <p and cp ' are the angles defined in no. 131. 
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Then, as in that number, we will set 

. dV dV 
A =-, 77 =- 

dA d£ 

showing that the canonical form of the equations is not altered if the old 

variables 

A, A', i, r> P, p 
A, A 7], 

are replaced by the new variables 
v'> q, q'> 

>
 

>
 

t2> u 

A |, 1 , <7|, <r2> ^3» a4 

The variables r, and <7, have already been determined as a function of I-, rj, 
p, q, and A in the preceding chapter. 

It remains to determine the form of the relation linking the new vari¬ 

ables A, and A [ with A and A 

We obtain 

A — Aj + ip, A ' = A [ + xp', 

where xp and xp' are quadratic forms of a and of r whose coefficients depend 

on A and A' and which are written as 

*P = 37- (02^1 - 0-,r2) + (<V3 - <t3t4) » 
d A d A 

,, d<p dop' 
V = ~T7T (a2Ti - <T\T2) + -p— (V4I-3 ~ cr3r4) , 

aA dA 

where cp and cp ' are the angles denoted the same way in no. 131. 

Reasoning as in no. 135, this shows that any function periodic in A and 

A ', after change in variables, will still be periodic in A x and A [ and that the 

mean values will be the same in both cases. 

From this, several conclusions can be drawn as to the form of the 
function F. 

The function F depends in an arbitrary manner on A and A'; however, 

it is periodic in Ax and A [. In addition, the function can be expanded in 

powers of a and r. 

It should be added here that this function must not change when one 

changes A, and A [ into Ax + ir and A \ +tt and when a and r change sign 

at the same time. To ascertain this, it is sufficient to refer to our statements 
in no. 12 and to note that, when 

Ax, At, cfj, 7',- 
change into 

Ax + v, A [ + 77, - a,-, - T„ 
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the quantities A and A ' will also change into A + it and A ' + v and that 
the variables etc. will change sign. 

Finally, we will make a last change of variables by putting, as in no. 
131, 

Ti = yftyi cos <o„ ai = sin 6), , 

which, in virtue of the remark made in no. 6, will not alter the canonical 
form. 

Then, F can be expanded in powers of yielding 

R2 — 2Axpx + 2 A2p2 + 2 A3p3 2 A4p4 . 

Case of Plane Orbits 

138. After this change of variables, the equations of motion assume the 
following form. 

The two series of conjugate variables are 

A, A', pi, 

A„ L [, a>i, 

and we have 

F=F0 + pF\+ p2F2 + ■ • • , 

where F0 depends only on A and A', while Fu F2,. . ., which are periodic 

with respect to A, and A \, can be expanded in powers ofR5 

cos oiiyjpi, sin atjpi . 

In addition, these functions will not change on increasing AVA[, and <y, 

by the same amount. Thus, these functions depend only on the differences 

Ai — o)j, A \ — cûj, (ok — <y, . 

If, in R, the term/?, is replaced by dT/dco^ and if R is equated to a constant, 

while considering A and A' as given constants, we obtain a partial differ¬ 

ential equation of the form 

According to what we have seen in nos. 134 and P5, it is sufficient to 

know how to integrate this equation in order to be able to form series 

expandable in ascending powers ofp and formally satisfying the equations 

of motion 
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dA dF dA! _ dF dp, _ dF 

dt ~ dAx ’ dt dA[ ’ dt dco, 

dAx _ _ dF_ dA ; dF dcox _ dF 

dt dA dt dA' ’ dt dpt 

There exists a specific case in which the integration of Eq. 

relatively easy, namely, the case in which we investigate the 

only three bodies moving in the same plane. 

In this case, the number of quantities /?, reduces to two so that, consid¬ 

ering A and A! as constants, R will depend only on the four variables px, 
p2, cox, and co2. Further: We have demonstrated above that F depended 

only on the differences Ax — cot, A [ — coif cok — cOj. Thus R will depend 

only on the three variables px,p2, and cox — co2 so that Eq. (11.11) can be 

written as 

(11.12) 

(11.11) is 

motion of 

R 
/ dT dT 

,cox-co2 
\ dcox dco2 

If we put co j — co2 — cp and if we use cox and cp as new variables, then the 

equation is transformed into 

dT dT 
R 

( dT 

\ dcox 
+ ■ ,cp^j = C. 

dcp dcp 

If we give an arbitrary constant value to dT /dcox which will be denoted by 

h, then the equation will contain only dT/dcp and cp. From this, dT/dcp can 

be derived as a function of cp, of the constant C, and of h, yielding 

dT 

dcp 
= f{cp, C, h) , 

whence 

T = hcox + J /dcp . 

Let us see what form this function T will have. 

It should be noted that R can be expanded in powers of dT/dcox and of 

dT/dco2, that the zero-degree term reduces to a constant denoted by H, 
and that the first-degree terms reduce to 

2Ax-^-+2A2-^~. 
dcox dco2 

We will next put (introducing two new integration constants fl, and Cl2 
instead of C and h ) 

C = H + 2AxClx + 2A2Q2 . 

h == flj -)- Çl2. 
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For determining dT/da>x and dT/dco2, we will then have two simulta¬ 

neous equations 

R — H = AXSAX + AM2 , 

dT dT 
+ — 1 T H | . 

dcox dco 2 

The functional determinant of the two first terms with respect to dT/da) x 
and dT/dco2 reduces, for dT/dcox = dT/dco2 — 0, to Ax 
determinant is not zero. 

A-,. Thus this 

Consequently, in accordance with the theorem in no. 30, dT/dcox and 

dT / da>2 can be derived from these equations in the form of series arranged 

in ascending powers of 11. The terms of zero degree will be zero while the 

terms of first degree will be reduced, respectively, to flj and H2; the terms 

of higher degree will have periodic functions of cox — co2 as coefficients. 

The function U of no. 135 can then be written as 

AAX + A'A\ + T, 

yielding 

T — Vxcox + V2co2 T T', 

where Vx and V2 are two constants depending on H, and H2, while T' is a 

periodic function of cox and co2. 

Let us now make the change in variables defined in no. 4 by taking as 

new variables of the first series 

A, A', Vx, and V2 

connected with the old variables A, A', Ax, A \ ,pt, and <y, by the relations 

A = 
dU 

A' = 
dU dU dT 

dA, dA\ dcOj dcOj 

The conjugate variables, which will be denoted by 

A2, A2, vx, and v2, 

are then defined by the equations 

(11.13) 

i2 = ^=21+i^ 
~ dA dA 

A 2 dJL = A'x+«^ 
' dA' 

dU 

dA 

dT 
(11.14) 

dV, dV; 

We will suppose that in T, which depended on the constants A, A', IT,, and 

n2, these constants have been replaced as functions of A, A', Vx, and V2. It 
is this sense that dT /dA, dT /dA!, dT /dVt must be understood. 

So as to make the conclusions of no. 135 applicable, it is necessary that 

the old variables 
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A, A', Ax, A [, pt, 

as well as the variables 

co, — vt , 

be uniform functions of the new variables 

A, A', A2, A 2, Vi Vi 

and that these functions be periodic with respect to vx and v2. 

Let us first search for the expressions of cox and co2 as functions of the 

new variables; for this, we have the following two equations: 

v,- = 
dT 

— co i + 
dT' dT 

— CO 2 T" 
dT' 

(11.15) 
dVx dV, dV2 dV2 

First, we have to ask whether the values of cox and of co2, derived from 

these equations, will be uniform functions of the new variables. Were they 

to cease to be such, it would be necessary that the functional determinant 

of the right-hand sides with respect to cox and co2 would vanish, i.e., that 
one would have 

d( dT dT\ 

\dVx * dV2) _ 1 | d2T' | d2T' 

d{cox,co2) dVxdcox dV2dco2 

| rf27" d*r d^r d^r Q 

dVxdcox dV2dco2 dV2dcox dVxdco2 

For abbreviation, we will write this equation in the form: 

1 +/=0. 

We note first that px and p2, in the applications, will be very small quanti¬ 
ties, of the order of the squares of the eccentricities. 

These quantities p, are connected with ft, by the following relations: 

dT 

P‘ da, ' 

However, dT/dcox can be expanded in ascending powers of ft,.. This ex¬ 

pansion contains no completely known term, and the terms of first degree 
reduce to ft,. 

From this, based on the theorem of no. 30, we can derive 

fx^Px-iPiAi Vl2 = f2(px,p2) , 

where/! and/2 are series that can be expanded in powers ofpx and p2 and 
whose coefficients depend otherwise in any manner on 

A, A', cox, and co2 . 
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The terms of zero degree will be zero and those of first degree will reduce, 
respectively, to px and to p2. 

From this it follows that fl, and fi2, just like px and p2, will be of the 
order of the squares of the eccentricities. 

According to the definition of Vx and V2, these quantities can be ex¬ 

panded in powers of il, and fl2, since the coefficients of the expansion 

depend in an arbitrary manner on A and A'. These series will contain no 

zero-degree terms and the first-degree terms will reduce, respectively, to 
fl, and fl2. 

From this it follows that 

(a) The quantities Vx and V2 are of the order of the squares of the eccen¬ 
tricities. 

(b) The terms fl, and fl2 can be inversely expanded in powers of Vx and 
V2, yielding 

nx = vx + cpx{vx,v2), n2=v2 + <p2(vx,v2), 
where qpx and cp2 contain only terms of the second degree, at least with 

respect to Vx and V2. 
(c) The quantity T' can be expanded in ascending powers of Vx and V2 
and then will contain only terms of the second degree, at least with respect 

to these two quantities. 

( d ) Since the expansion of dT'/dVx and of dT Vd V2 in ascending powers 

of Vx and V2 starts with first-degree terms, these two derivatives are of the 

same order of magnitude as the squares of the eccentricities. 

( e ) This is exactly the same for the second derivatives d2T'/dVkdcoi and, 

consequently, for J. Since J is very small, 1 + / cannot be zero. 

Consequently, we must conclude that cox and co2 and thus also cox — vx, 
co2 — v2 are uniform functions of the new variables. 

It should be added that vx — cox, v2 — co2 are periodic functions of vx and 

of v2. If, in effect, we increase vx and cox by 2Kxtt, and v2 and co2 by 2K2tt 
(with Kx and K2 being integers), then Eqs. (11.15) will still be satisfied 

since T' is periodic in a>x and co2 and since vx — cox, v2 — co2 do not change. 

Substituting these values of co x and co2 into Eqs. (11.13) and ( 11.14 ), it 

will be found that the old variables 

A, A, Ax, A j, pi 

are uniform functions of the new variables, periodic with respect to vt. 

Thus we now have conditions under which the results of no. 135 be¬ 

come applicable. 

Let us express the function Fby means of the new variables. Let us note 

first that F0 remains expressed as a function of only A and A'. In addition, 

F is periodic with respect to the variables of the second series A2, A 2, vx, 

and v2- 
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The mean value of Fx, considered as a periodic function of A2 and A 2, 
reduces to R. On the other hand, by virtue of Eq. ( 11.11 ), R reduces to the 

constant C or else to 

H -\- 2A j if j -T 2A2(l2 > 

or to 

H+2A1V1 + 2A2F2 + 2A1<p1(V1,V2) + 2A2cp2{V1,V2) . 

Thus R depends only on A, A', Vx, and V2 and does not depend on the 

variables of the second series. 

This returns us to the case studied in no. 134. 

We now state that F does not change when À2, A 2, vx, and v2 are in¬ 

creased by the same amount. In fact, we know already that F does not 

change when Ax, A [, cox, and co2 are increased by the same amount and 

that T' depends only on the difference cox — co2. 

ThenEqs. (11.14) and (11.15) demonstrate that, as soon as Ax, A \,cox, 
and co2 are increased by the same amount e, the quantities A2, A 2,vx, and v2 
will also increase by the same amount e. Thus when these four new vari¬ 

ables increase by e, the quantity F does not change. 

The manner in which F depends on Vx and on V2 is rather complex 

since F, before the change of variables, contained the radicals and dp2. 

Let 

F(A,A', A2, A 2,V1,V2,v1,v2) 

what becomes of the function F after change of variables. Next, the equa¬ 
tion 

dS dS 

dA2 ’ dA ' 
A2, A 

, dS_ dS_ 

dvx ’ dv2 
,v 

— C0 + C, n + C2 n + • • • 

must be integrated. 

We will formally satisfy this equation by setting 

S — So + + " ■ 

and 

(11.16) 

S0 = K0A2 + h'QA’2 + V°v1+V°2v2, 

where A0, A0, V°, and V2 must be our four constants of integration. For 

this, as demonstrated above, it is only necessary to apply the method given 
in no. 134. 
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Study of a Particular Integral 

139. A remarkable particular integral is obtained by assuming that the 

two last constants V°x and V2 are zero. 

For this, it is sufficient to set, in Eq. (11.16) 

dS=dS_ 

dvx dv2 

It then happens that the left-hand side of this equation depends neither on 
vx nor on v2. 

In fact, before the last change of variables made by us, F had been 
expandable in powers of 

yfpi cos (Oi and sin cot , 

and, otherwise, depended only on the other variables 

A, A', A, and A \ . 

Thus if we set 

Pi =P2 = 0> 

then F will depend only on A, A', Ax, and A [. 

If, on the other hand, we set 

vx = v2 = o, 
then T ' which can be expanded in ascending powers of V and which con¬ 

tains only terms of the second degree at least with respect to these quanti¬ 

ties will vanish, which is true also for its first-order derivatives. Similarly, 

fl | and fl2 will vanish, resulting in 

dT n , dT' A 
Pi = —— = ii, + —— = 0 , 

dcOi 

dT 

dû): 

A2=Ax + — = Ax + — = Ax . 
2 1 dA dA 

In the same way 

A ' = a ;. 

From this it results that px and p2 vanish and that, on the other hand, A2 
and A 2 reduce to A, and A [. We state that this means that F depends only 

on the four variables 

A, A, A2, and A 2 . 

dS _ dS 

dvx dv2 

Thus we can set 
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The left-hand side of Eq. (11.16) contains only A2, A2, dS/dA2, and 

dS /dA2. 

This equation is then easy to integrate. To do this, it is only necessary to 

apply the procedures given in no. 125. However, there is more to be said 

here. 

The integral is no longer purely formal, and the series expanded in 

powers of /1, at which one arrives, is convergent. 

In fact, F depends only on the difference A2 — A'2 since we have shown 

that F cannot change when A2, A 2,vx, and v2 increase by the same amount 

and that here F has ceased to depend on vl and v2. 

From this, it follows that the two equations 

f(— 
\dA2 

dS 

dA Ô 
, A2, A 2 0 C, 

dS | dS 

dA2 dA 2 

(where C and C are any two constants) are compatible. From this we 

derive dS /dA2 and dS /dA 2 and thus also S in the form of series developed 

in powers of ji. 

The resulting integral depends on two arbitrary constants C and C '. 

However, these two constants can be expressed by means of two of the 

four originally chosen constants, namely, by A0 and A'0, since the two 

other constants V(\ and V2 are, by hypothesis, zero. 

We will denote this particular integral of Eq. (11.16) by 

I (A2, A 2,A0,Aô ) ■ (11.17) 

If the constants C and C are properly chosen (cf. no. 125), then 1 will 
have the following form: 

A0A2 + AqA2 + periodic function of A2 — A 2 . 

A discussion of this particular integral 1 does not lead, in contrast to what 

one would be tempted to believe, to simple particular solutions of the 
three-body problem. 

Form of the Expansions 

140. Since the existence of the function A has been thus demonstrated, the 

following result can be derived, reasoning as in no. 125. 

The following series exist: 
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A = A0 + fiAi + fi2A2 + • • • , 

A' = AÔ + fi A; + ft2 A'2 + • • • , 

E,.= E° + //E,1+/z2E2+---, 

A2 = u>, + fiy\ + /u2y) + ••• , (11.18) 

/l ^ = w2 + fiy\ + n2y\ + • • • , 

Vi = w3 + ny\ + n2yl + ■■■ , 

v2 = w4+ /iy\ + fi2f4 + • • • , 

arranged in powers of fi and formally satisfying the equations of the three- 
body problem. 

Here, A0, A(, , and V°t are constants. We have 

wt = ntt + wt . 

The quantities Ak, A'k, Af, andy* are periodic functions of w which, in 

addition, depend on the constants A0, Aô, A°. 

On the other hand, the quantities (which also depend on the con¬ 

stants A0, Aq , V°t) can be expanded in ascending powers of /i, such that we 
obtain 

«, = n°i + fin) + fi2n f + • • • . 

The point to which we would like to draw specific attention is the fact that 
we have 

n°3=n°4= 0, 

»?*0, n°2^ 0. 

The coefficients of the above series could have been calculated in a more 

rapid manner and without passing through the entire sequence of change 

of variables if I had not first set out to establish simply and rigorously the 

very feasibility of the expansion. 

However, there is more to this: The original variables A, A', A — cou 
A ' — co2, Ç, Ç 7], 7)' can be expanded in series of the same form, i.e., in 

series whose terms are periodic functions of colf co2, <u3, and co4. To con¬ 

vince oneself of this, it is sufficient to replace, in the expressions of the 

original variables as a function of the new variables, these new variables by 

their expressions (11.18). It would then be of advantage to calculate di¬ 

rectly the coefficients of the expansions of the original variables without 

going over the new variables which have served for proving the feasibility 

of this expansion. 

We will not discuss further the procedures that permit a direct calcula¬ 

tion of these coefficients. The statement made in no. 127 is sufficient for 
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understanding the basic principle; in addition, we will return to this point 

in Chap. 14. 

Let us here only give a means for avoiding the last change of variables, 

namely, that by which one passes from and from cot to Vi and to t>,. In 

cases in which this change cannot be avoided, this will represent the most 

intractable portion of the calculation. 

For this it is sufficient to make a suitable grouping of the terms, which 

is possible if the eccentricities are small. 

In Fx, two types of terms can be distinguished: 

(a) Those of degree 0, 1, 2, or 3 with respect to the eccentricities and 

inclinations; 

( b ) those of degree 4 at least with respect to the eccentricities and inclina¬ 

tions. 

The terms of the second kind are much smaller than those of the first. 

Let F\ be the ensemble of terms of the first kind, and let eF " be the 

ensemble of the terms of the second kind. It can be assumed that e is a very 

small constant and that F " is finite, so that we can write 

F = F0 + pF[ + peF" + p2F2 + • • • . 

Nothing will now prevent our combining the terms peF" with the terms 

p2F2 since pe is much smaller than /a; or else to attempt an expansion in 
powers of fi and of e. 

Then we retain the variables 

A, A', ylj, A [, pif a>i . 

The mean value of F [ will reduce to 

H + 2A \ P\ -\- 2.A2 p2 + 2A3 p3 + 2A4 p4 

(cf. no. 131) and, consequently, is independent of the variables of the 

second series. However, the last change of variables had no other reason 

but to render R independent of the variables of the second series. Conse¬ 
quently, this has now become unnecessary. 

General Case of the Three-Body Problem 

14T. Let us now pass to the case of the three-body problem in space. The 

number of variables and /?, will then be equal to four and Eq. ( 11.6) 
will be written as 

r(- dT dT dT dT 

\dcox dco2 dcoj da)4 
,û)l,C02,C0j,(04 1 — C . (11.19) 
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This equation can no longer be integrated by the procedure used in no. 

138. Actually, one does not even know the means of integrating it exactly, 

but a simple formal integration method can be developed which will be 
sufficient from the viewpoint used here. 

The quantities 

dT 

dco~Pi 

are of the order of the squares of the eccentricities. Thus if we put 

T — n'T" , 

where ju' is a constant of the order of the square of the eccentricities, then 

the derivatives dT"/dco, will be finite. 

The function R can be expanded in ascending powers of dT /dco 
yielding 

R = R0 + R2 + R4 + ■ ■ ■ , 

where Rk represents the ensemble of terms of the degree k /2 with respect 

to pi ( with R0, R2, R4, . . . not differing from the quantities denoted by the 

same symbols in no. 131 ). If Rk ( T) is used for denoting what becomes of 

Rk after replacing /?, by dT /dco,, then Eq. (11.19) can be written as 

R0(T) +R2(T) +R4(T) + ••• =C 

or else 

R0(T") + p'R2(T") + p'2R4(T") + =C. 

Here, R0 depends only on A and on A' and, since for the moment we 

consider these quantities to be constants, R0 will also be a constant. 

If we then put 

C = R0 +/z C , 

Eq. (11.19) will become 

R2(T") + p'R4(T") + p'2R6(T") + ••• =C'. (11.20) 

This leads us to integrating a partial differential equation whose first term 

depends on the derivatives dT"/dcoand is otherwise periodic with re¬ 

spect to the independent variables cot. The left-hand side depends on a 

parameter p and, as soon as this parameter vanishes, reduces to 

« = 4 " 

R2{T")= X ^.-T—• 
,■ = i dcoi 

For p' = 0, the first term thus no longer depends on cot but only on the 

derivatives dT"/dco,. 

This leads to conditions under which the analysis of no. 125 is applica¬ 

ble, so that we can conclude that there exists a series 
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T5+f*’T?+fi'2TZ+-- - , 

expanded in powers offi', and which, when substituted for T', will formal¬ 

ly satisfy Eq. ( 11.20); this series is such that the derivatives 

dT”k 

da)j 

are periodic with respect to <y,. 

We will then put 

Tq — ftJ toj -|-ft^ <y2 T ft3 co2 -(- d^ct)4 , 

where ft], ft£, ft3, ft^. are our four integration constants. The constant C ' 

must satisfy the equation 

c'= £42 A,n;. 
i= 1 

It is easy to prove that T % is an integral polynomial of the degree k + 1 

with respect to the four constants fl'. 

From this follows that 

T = n’T" 

is presented in the form of a series expanded in ascending integral powers 

of the four quantities 

//'n;, //n', , 

which, for abbreviation, will be denoted by 

H j, H3J H4. 

This series, expanded in powers of the four constants fl, which are of 

the order of the squares of the eccentricities, formally satisfies Eq. 
(11.19). 

As in no. 138, let us put 

U=AA1 + A'Â'l + T, 

T = EjûJj ~\- V2^2 T -(- F4co4 -)- T , 

where T ' is periodic with respect to co, and Vt represent constants that can 
be expanded in ascending powers of ft,. 

The quantities ft, are inversely expandable in powers of Vt. It is also 

possible to expand T in powers of Vt, and the resultant series will still 
formally satisfy Eq. (11.19). 

We will now make a change of variables, similar to that performed in 
no. 138 [Eqs. (11.13), (11.14), and (11.15)]. 
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For this, we put 

dT dT 

P‘ do, ’ - dV, 
, A 2 = AX + ÉL 

dA 

On replacing the old variables 

A, A', Pi. 

K A\, COt 

by the new variables 

A, A', Vi, 

A2, A2, ^i 

A 2 — A J -(- 
dT 

dV ' 

nothing will change in the canonical form of the equations. 

As in no. 138, we can demonstrate the following: 

(i) The quantities Vi are of the order of the square of the eccentricities. 

( ii ) The quantities pif Ax — A2, A [ — A '2, co, — u, are periodic functions 
of vt. 
( iii ) The function Fean be expanded with respect to ascending powers of 

p, of Vt, and of yfpi since the terms pt are themselves expandable in as¬ 

cending powers of Vt. 
(iv) The function Fis a periodic function of vt, A2, and A ’2. 
(v) The mean value of F, considered as a periodic function of the two 

variables A2 and A 2, is equal to R and depends only on A, A', and on Vt. 

This brings us to conditions under which the analysis of no. 135 is 

applicable. 

Thus let 

F(A,A',F,, A2, A 2,Vi) 

be the form of the function F after change of variables. One could find a 

series expandable in powers of p that formally satisfies the equation 

JdS dS dS 

\dA2 ’ dA 2 ’dvi 
, A2, A 2 ,Vj ) — C0 + pCx + p2C2 + • • • 

and depends on six constants which will be denoted by A0, K'0, V°x, V2, 
v° v° 
Y 3> ' 4- 

This will lead to exactly the same conclusions as those drawn in nos. 

138 and 140. 
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Application to Orbits 

Discussion of the Difficulties Involved 

142. Cases are in existence in which the application of the methods dis¬ 

cussed in the preceding chapter may lead to certain difficulties: These are 

mainly the cases in which the eccentricities are very small. Below, we will 

discuss the manner in which these difficulties can be ascertained. 

We believe that a simple example, much simpler than the three-body 

problem, would be most suitable for understanding these difficulties. 

Consequently, let 

F = A + p^fCi cos(o + A) + pACl. 

Here, p is a very small parameter, A is a constant, and A, Cl, A, and co are 

two pairs of conjugate variables. 

Let us next consider the canonical equations 

dA _ dF 

dt dA 

dA _ dF_ 

dt dA 

These equations are easy to integrate completely, as will be shown below. 

However, we first will demonstrate their analogy with the equations of the 
three-body problem. 

In no. 137 we demonstrated that, after several changes of variables, the 

equations of this problem can be brought to a canonical form, with the 
conjugate variables being 

A, A', pn 

A i, A ; , CL>i. 

In addition, F can be expanded in powers of 

yfp] cos C0i, ^p~i sin co, , and p , 

which are periodic in A1 and A [. Finally, F0 depends only on A and A'. 

The function F, defined at the beginning of this number, is completely 

analogous to this. The variable A plays the role of A and A'; the variable fl 

plays that of/?( ;/l plays that ofAl and A [ ; co that oicot. It is clear that Fean 
be expanded in powers of 

dco dF 

dt 

dCl 

dCl 

dF 
(12.1) 

dt dco 

378 
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/ü cos co, yfù sin co , 

and that, for p = 0, it reduces to A. 

The analogy is thus obvious. Let us assume that the method of the 

preceding chapters is to be applied to this equation, i.e., that an attempt is 
to be made to integrate the partial differential equation 

dS 

dA 
+ p cos(û> + A) 

jdS 

dco 

dS AdS 
= C, (12.2) 

where C is a constant of integration. It is now a question to find a solution 

for Eq. (12.2) which can be expanded in powers of p such that dS /dA and 
dS /dco will be periodic in A and in co. 

For this, let us put 

co + A = cp . 

Equation (12.2), with the new variables A and qp, becomes 

dS 

dA 
+ p cos cp V dS dS _ 

— + (1 + pA)— = C. 
dcp dcp 

Let A be a constant of integration and let us put 

1 + pcA = B, C — A = VB . 

Our equation will be satisfied by setting 

dS _ ^ dS _ 2pc2 cos2 cp + AB2V +2p cos cp yip,2 cos2 cp + AB 2 V 

~dA~ ’ ~d^~ ÂF2 ' 

The function S, defined in this manner, readily satisfies all data of the 

problem, under condition that the radical 

y/p2 cos2 cp + 4B 2 V 

can be expanded in powers of p. This expansion is entirely possible pro¬ 

vided that 

p2<AB2\V 

The series will be highly convergent if p2 is very small not only in an 

absolute manner but also with respect to V. 

If we wish to continue the comparison with the three-body problem, we 

will see that ^represents a quantity analogous to that denoted by fl, in the 

preceding chapter. Let us consider this quantity as being of the order of 

the square of the eccentricities. 

If both p and V are very small, one could be tempted to expand A in 

powers of p and V. Such an expansion is impossible since the radical 

p2 cos2 cp 

V 
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can be expanded only in powers of fi (since B depends on fi) and in 

powers of 
2 

F 

Consequently, if Fis sufficiently small to be comparable to /j. , the method 

of the preceding chapter stops being applicable. 

143. It is obvious that a similar difficulty exists for the three-body 

problem. 

Let us resume the problem in the formulation given in the preceding 

chapter. Our conjugate variables are 

The function S, which formally satisfies our partial differential equa¬ 

tion 

F = const. 

and which has been defined in the preceding chapter, depends on the 

constants A0, AÔ, and F°. In general, these latter constants F°, in the 

applications of very small quantities, will be of the order of the square of 

the eccentricities. Then, we can put 

F° = , 

where e is a constant of the order of the eccentricities while W° are finite 

constants. Considering, for the moment, the quantities W° as given, S will 

depend on three arbitrary constants 

A0, Aq, and e. 

It is now a question whether 5 can be expanded in powers of ^ and e. 

If this were the case, the solution discussed in the preceding chapter 

would always be satisfactory no matter how small e might be, i.e., no 

matter how small the eccentricities were. 

However, this is not so, as will be demonstrated below and as the exam¬ 

ple in the preceding number would let us predict. The quantity S can be 

expanded only in powers of ju/e and of e. It follows that the method is no 

longer applicable if fi/e is not very small. Consequently, the method is 

inapplicable, even if the masses are very small, as soon as the eccentricities 

are of the same order as the masses. 

Let us return to our equation 
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which, for short, we will write as 

F(S) = C. (12.3) 

It has been demonstrated in no. 139 that this equation admits of a 
particular solution which will be denoted by I. This yields 

where C' is a constant. 

F(Z) = C', 

Putting now 

S='L + e2s, 

we obtain 

E(2 + 625)=C. (12.4) 

The first term of Eq. (12.4) can be expanded in powers of e; I say, in 

powers of e, not in powers of e2: Indeed, F contains terms of odd degree 

with respect to y[p~t. But, the terms pit which are related to 

» r dS 2 ds 
--= e--, 

dvi dv( 

by the equations 

dT 

dco, 
V = 

dT 

dV: 

given in nos. 138 and 141, can be expanded in powers of Vit and thus also 

in powers of e2. Consequently, the terms ^ and thus also Fean be ex¬ 

panded in powers of e. We note, in addition, that s will be finite if e is of the 

order of the eccentricities. 

In fact, if e vanishes, S will reduce to 1. However, this particular solu¬ 

tion 1, as shown above, corresponds to the case in which the terms V° are 

zero. In the applications, the terms V° are not zero but represent very 

small quantities of the order of the square of the eccentricities. Conse¬ 

quently, the difference S — 1 will be of the order of the square of the 

eccentricities, i.e., of the order of e2. 

For abbreviation, let us set 

FiZ + ^s) -F(Z) , 

which, by deducting Eq. ( 12.3) from Eq. ( 12.4), will yield 

F*(s)=K, (12.5) 

where F is a new constant equal to (C — C')/^2. 

The quantity F * can be expanded in ascending powers of p, such that 

F* — F* + pF* + p2F* + ' ' ' • 



382 CELESTIAL MECHANICS 

In addition, F* is periodic in A2 and A^jwe will call R * the mean value of 

F f. 

Since 2 can be expanded in powers of fi, so that 

2 = 20 + + F ^2 T ' ' ’ > 

then F0(1 + Fs) can also be expanded such that 

F0(2 + Fs) = <t>0(Fs) +F&1 (<*) + • 
It is then obvious that 

Oote2*) = F0(20 + Fs) » 
d<P() d2x 

Fd — dÀ2 
dA2 

+ 
c?d>0 d2x 

ds dA 2 

dA 2 

We thus will have 

FF*=Foao + Fs) -F0(20) , 

FF* = FX(20 + Fs) -Fx(20) +<*>l(e2s) -®x(0) . 

Here, F0 depends only on dS /dA2 and on dS /dA 2. On substituting 

2 + Fs for S, the function F0 can be expanded in powers of 

e2_ds_ ^ ds 

dA2 dA 2 

from which it follows that 

«hoCe2^) - 4>o(0), OjCe2^) — 0^0) 

are divisible by F and do not depend on ds/dvx. From this, it follows first 

that F J can be expanded in positive and ascending powers of F. 

On the other hand, since the expansion of Fx contains terms of the first 

degree in yjp^, the quantity Fx (20 + Fs) is expandable not in powers of F 
but in powers of e. The expansion of the difference 

Fx(20 + Fs) -Fx(20) 

will start with a term in e. 

This leads to the following consequence: Ff can be expanded in as¬ 

cending powers of e but the expansion will start with a term in 1/e. 

Let us note now that Ff is a function periodic in A2 and A 2 and let us 
attempt to determine its mean value R *. 

The mean value of Fx (S), by definition, is R (5) : On replacing there S 
by + Fs, this mean value will not change and will be written as 
R(20 + Fs). This is due to the fact that 

d2Q d20 d20 

dA2 ’ dA 2 dvt 
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reduce, respectively, to 

Aq> A0, 0, 

and do not depend on A2 and on A '2. If, conversely, these derivatives 

would depend periodically on A2 and A '2, then the mean value could be 
modified by the substitution. 

On the other hand, the mean value 

[«Me2*) — <t>, (0) ] =e2H 

depends neither on u, nor on ds/dv{ since <!>, (e2^) itself did not depend 

thereon. In addition, this value can be expanded in positive and ascending 
powers of e2. 

Similarly, R(10 + ^s) can be expanded in positive and ascending 

powers of e2 since the original expansion of R in powers of ^ (unlike 

what happens for the expansion of Fi ) contains no terms of odd degree 

and, specifically, no terms of first degree. This leads to 

^R * = R{10 + és) — R(l0) + êH, 

such that R * can be expanded in positive and ascending powers of e2. 

Thus if we expand s in ascending powers of /r, such that 

5 = s0 + /ZS, + iu2s2 + • • • 

we will have, for determining sp, recurrence formulas furnished by the 

methods discussed in the preceding chapters. 

Since sp (p > 0) is a periodic function of A2 and A 2, we can write 

where s'p is a periodic function of mean value zero, while s" is independent 

of A2 and A 2. 

We then can write 

(12.6) 

Here, xpp must depend on 

• • , Sp- 2 > 

and 0p on 

*o> 5i > S2 > ■ • ■ > Sp_i, 

c" c" ?" , 
■>1 > ^2 > • • • > JP— 1 
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The symbol S represents a summation performed either over the various 

pairs of conjugate variables Vt and vit or over the two pairs of conjugate 

variables A and A2, A' and A '2. 

The two sides of relations (12.6) can be expanded in ascending powers 

of e. However, the first terms contain only positive powers whereas the 

second terms contain negative powers. Before replacing, in xfjp and 0p, the 

derivatives of sq and of sq(q <p) calculated previously by recurrence, the 

expansions of these two functions already contained terms in 1/e since the 

expansion of F* contained such terms, as demonstrated above. This 

means that the expansion of sp in ascending powers of e must start with a 

negative power of e. If, in xpp and 6p, the derivatives of s'q and s" are 

replaced by their series in powers of e, calculated previously, then xpp and 

dp can be expanded in ascending powers of e; however, now the series, 

instead of starting with a term in 1/e, will start with a term in l/en where 

« is a positive integer. 

The exponent of 1/e, in the first term of the expansion of sp, will thus 
increase with p. 

This means that, if the eccentricities are very small, it might happen 

that extremely large terms will appear in sp. This constitutes a difficulty 

which, as demonstrated above, is due simply to the presence of terms in 

1/e in F*; and these terms in 1/e are simply due to the fact that F con¬ 

tains terms of the first degree with respect to or with respect to 77, 
and 77'. 

Let us see now whether this difficulty, whose nature can be understood 

in light of the example in the preceding number, might not be entirely 

artificial and whether a certain detour might permit overcoming it. 

Solution of the Difficulty 

144. To understand how the above difficulty can be overcome, let us 
return to the specific example in no. 142. 

Putting 

V2H cos co = x, ^20, sin co = y , 

our canonical equations will become 

~ = ~jr(y cos A + xsinA), —=\, 
dt V2 dt 

= ~r sin A — pAy, — - cos A + pAx . 
dt V2 dt ^2 

(12.7) 
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The system of equations obviously is easy to integrate, since the two latter 
equations are linear and, if we note that dt = dA, directly yield 

* = a cos A + P cos(/cAA) — ysin(juAA) , 

y= — a sin A + P sini/uAA) + y cos(fiAA) , (12.8) 

where 

V2( 1 + (J.A ) 

and where P and y are two arbitrary constants. 

After this, it is only necessary to effect a quadrature in order to obtain 

A, which is easy to perform. In fact, we have 

A = <5 + Pa cos( 1 +/jA)A + ya sin( 1 + juA)A , 

where S is a new constant of integration. 

A remarkable particular solution corresponds to the case in which p 
and y are zero. This yields 

x = acosA, y= — «sin A, (12.9) 

whence 

A = (5. 

If one wishes to continue the comparison with the three-body problem, it 

could be said that this particular solution (12.9) is the analog of the 

periodic solution of the first kind, defined in Chap. 3. 

Equations (12.8) lead to 

(x — a cos/l)2 + (y + a sin A)2 = P2 — y2. 

If x andy, for the moment, are considered coordinates of a point in a plane, 

we will have the equation of a circle with the point 

x — a cos A, y = — a sin A , 

as center, which would correspond to the periodic solution (12.9). This 

point is close to the origin, since /1 and thus a are small. Nevertheless, it 

does differ from the origin; if P and y are also small, the radius of the circle 

will be small and the origin may become highly eccentric with respect to 

this circle. In fact, it may even move outside of the circle. 

If we go to polar coordinates 

yj2Cl and co, 

the equation of the circle will become 

2 Cl — 2«V 2Ü cos (co A) = P ^ y* — « . 

Let us compare this equation with that readily derived from Eq. (12.2): 
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/x cos cp + (1 +fiA)— = c- A= V(l + /xA) 
A/ d<P dcp 

from which, in no. 142, we derived the value of dS /dcp. Let us recall that 

cp = co + A, 
dcp do) 

We will see that the two equations are identical, provided that 

2V = /32 + f a 

from which it follows that the constant (/?2 + y2 — a2)/2 is nothing else 

but the term denoted above by V and considered as being of the order of 

the square of the eccentricities. The radius of the circle, which is 

V/?2 + y2, thus is of the order of the eccentricities; if this were of the order 

of a, i.e., of /x, then the origin would move outside of the circle. 

Thus it can be stated that the difficulty encountered in no. 142 is due to 

the fact that we had used polar coordinates there and that we had poorly 

selected the origin. This origin must be placed at the center of the circle, 

i.e., at the point that corresponds to the periodic solution. 

We are thus led to change the origin, by putting 

x' = x — a cos A, ÿ = y + a sin A . 

To retain the canonical form of the equations, it is then necessary to adopt 
a new variable A' such that 

A' = A — a(x' cos A — ÿ sin A ) . 

Then, our conjugate variables will become 

A', x', 

A, ÿ. 

The function F which, by hypothesis, was equal to 

A + fiyfïï cos (co + A) + /xACl 

will then become, as a function of the new variables, 

A ■ + e±lx*+ÿi-)+l!â*+3L. 
2 2 a/2 

The two last terms are constants and play no role at all since they can be 
made to go into the constant C. 

Our differential equations then become 

dx' 

dt 
- FAÿ, 

dA' 

dt 
= 0, 

dy 

dt 
juAx', 
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while the corresponding partial differential equation will read 

= const. 
dS pA 

~dÀ+~T 
m+y« Vdy'J 

Returning now to polar coordinates, by putting 

V2il' cos (o' = x', V20' sin co' = y', 

we obtain 

F — A' -f pA£V + const, 

so that the partial differential equation reduces to 

dS .dS 
-)- llA- - const. 
dA dco' 

Because of the simplicity of the example used here, the integration of 

the equation transformed in this manner is immediate. However, the im¬ 

portant point here was to show that the terms, that would be analogous to 

the term in \dS/dco in Eq. ( 12.2) have vanished. This had been exactly 

the term that caused all the difficulty. 

145. Let us now attempt to apply the same method to the three-body 

problem, first for the two-dimensional case. 

We used first the following variables 

and then 

and next 

and then 

a, a', i, r, 
A, A rj, T]', 

(12.10) 

A, A , (fi, 

A i, A j, Tj, 

A, A, Pi, 

A\, A |, cOj, 

A, A', Vt. 

Ajt A 2, Vj. 

(12.11) 

(12.12) 

(12.13) 

Let us continue our comparison and, for the moment, consider only the 

two last pairs of conjugate variables, disregarding the two first pairs, i.e., 

A and A' and their conjugates. 

We can then state that the variables (12.10) and ( 12.11 ) are analogous 

to rectangular coordinates while the variables (12.12) and (12.13) are 

analogous to polar coordinates. 
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The difficulty mentioned in no. 143, as has been shown, is due to the 
presence of terms of degree \ with respect to Vt, which are themselves due 

to terms of the first degree with respect to ^ and terms of the first degree 
in g, g ', 77,77'. 

If the function F does not contain such terms, this difficulty will not 
arise. 

However, since the difficulty is entirely similar to that mentioned in no. 
142 and has been overcome in no. 144, it seems that one could possibly 
succeed with the same means, i.e., with a transformation analogous to a 
change in origin. In that case, the variables g, g ', 77,77' must be replaced by 
others which vanish for the periodic solutions of the first kind investigated 
in no. 40, since these solutions are analogous to the periodic solution 
(12.12) of the preceding number. 

Let us then study the periodic solutions of no. 40. It has been shown 
that, for these periodic solutions of the first kind, 

A, A', g cos A — 77 sin A, g sin A + 77 cos/4, 

g ' cosA ' — 77' sinA ', g ' sin/t ' + 77' cos/l ' ^ ^ 

represent periodic functions of time and that this also is the case for 
sin(/l — A '), cos (/l — A'). 

It is also possible to consider the variables ( 12.14) as periodic functions 
of A — A' and of two arbitrary constants, which I will call by A, and AJ. 

Thus let 

A — A, A '=A\ g = B, g' = B', 77 = C, 77 ' = C' 

be the equations of these periodic solutions. Here, A,A',B,B',C, and C ', 
will be functions of A, A ', A,, and A[, which are periodic with respect to A 
and A '. Below, we give the form of these functions. The quantities A and A ' 
depend only on A — A ', so that we have 

B=TcosA+ U sin A, B ' = T cos A ' + U'sinA', 

C= — T sin A + U cos A, C = — T' sin A ' + U' cos A ', 

where T, U, T', and U' depend only on A — A '. 

From this, the following identity is readily derived: 

dB dC _ dB dC = _ T dT _ dU 

dA dA' dA' dA d(A-A') d(A-A')’ 

and, by symmetry, 

(12.15) 

dB' dC' dB' dC' 
- - T'- 

dT' 
— U'- 

dU' 
dA dA' dA' dA d(A-A') d(A-A') 
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After this, let us form an auxiliary function 

S ~ ~ i\C — Ç , C -f ?jB + tj'B ' + ii'fj i J rj', 

where S0 is a function of A, A ', A1; A; which will be determined below. 
Then, A is a function of 

If we next put 

dS 

dX^ 

dS 

= Alt 

dA 
— A» 

dS 

dA[ 

dS 

dA' 

A, A', V. v'> 
Ad a;, iv a- 

— A ; 
dS 

V v 
dS 

di\ 
— Vi > 

= A', 
dS _ 

i, 
dS _ 

= ir, 
dr\ dr\' 

variables, we use 

A„ a;, iu a, 

A i, a;, Vu Vi, 

(12.16) 

instead of 

a, a', i, i\ 

A, A ', 7], 7]', 

then the canonical form of the equations will not be altered. This then 
yields 

. dS0 tdC t, dC' , dB , dB ' 

M ~i'M' ~^^T+V^I + V~dT’ 

A'= 
dS0 

dA' 

t dC c., dC' dB , dB ' 

dA' b dA' dA' ' dA' 

Vi = V -C, 7][ =7]' - C , 

i = ii + B, i'=H+B'. 

Setting 

ii = i i = Vi = V'x = 0 - 

the terms Ë„ Ë, ', r], and 7)' will reduce, respectively, to B, B ', C, and C '. We 

wish to have A and A' also reduce toT and^4 '. This involves the conditions 

dSp =A_C— C— 
dA dA dA ’ 

dS0 _A, c dB C'dB ' 

dA' dA' dA' ' 
(12.17) 

These two equations are compatible and determine S0 provided that the 

resultant values for the derivatives of S0 satisfy the integrability condition 
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d (dSQ\ d I 
dA' \dAJ dA ’ <dA'J 

However, this equation is written as follows: 

dA dA' dC dB ^ dC dB 

~dT ~ dA dA' dA + dA dA ' 

dC' dB' dC' dB ' _ Q 

dA' dA + dA dA' 

Making allowance for Eqs. (12.15) and noting that A, T, and U depend 

only on A — A ', we obtain 

dA 

dA' 
*L+T*L+u*L+r*l+u'W 
dA dA dA dA dA 

0, 

which means that, as a periodic solution, we must have 

A + A'~ 
T2+U2+ T'2+ U'2 

2 
const. , 

i.e., 

A +A'- i2+i,2 + v2 + v'2 

2 
= const. 

However, this condition is nothing else but the equation of areas and thus 

is satisfied. 

The function S0, defined by Eqs. (12.17), thus exists. Its derivatives 

dS0/dA and dS'0/dA ' are periodic in A and A '. The mean values of these 

two periodic functions depend solely on the two constants Al and A(. 

Since, until now, we have made no assumptions with respect to the selec¬ 

tion of these two constants, they can be chosen in such a manner that the 

mean values will exactly be A! and AJ. 

This will furnish 

S0 — AjA + A[A ' + function periodic in A and A '. 

The function S can be expanded in ascending powers of /i and, for /u = 0, 
reduces to 

Aj/l + A[A ' + ^77 + £ [ r/'. 

To perform the transformation, let us attempt to express the old vari¬ 

ables as a function of the new variables, making use of Eqs. (12.16). We 
primarily have 

V = V i + C, rj' = Tj [+C, 

ê = ii +B, i'=£[+B', 
after which we obtain the two first equations of system (12.16): 

(12.18) 
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, _ dS . , dS 
'n — > 4 ,-. 

dAx dA[ 

In these two equations, we will substitute y and y' by their values [Eq. 
(12.18)] so that they can be written in the form of 

A\ — A A [ = A ' fxi/j', 

where ip and xp' are functions of /z, A, A £lt Ç[, yx, y[, A„ A; 0f the 
following form: 

(i) They can be expanded in powers of/z. 

(ii) They are periodic in A and A 
(iii) They are linear in Ç ], yx, y[. 

By applying the principles of Chap. 2, of which we have made such 

frequent use, we can then derive from these equations 

A = Ax-\-flipx, A — A [ fiip[ , 

where xpx and xp[ are functions of Av A„ £lf yx and of the same primed 
symbols which are 

(a) expandable in powers of^yx, Ë, [, y[ ; 

(b) periodic in A, and A [. 

Let us substitute, in Eqs. (12.18), these values of A and A '. This will 

furnish the terms £ and 77 as a function of the new variables. We note that g 
and 77, expressed in this manner, can be expanded in powers of y,, gx, and 

77,, and are periodic in A x and A [.In addition, for n = 0, the terms Ç and 77 

reduce to and yx. 

If, in the two equations 

A 
dS 

dA ’ 
A' 

dS 

dA ’ 

the terms A, g, and 77 are replaced by their expressions as a function of the 

new variables, then we will have A and A' expressed as functions oïKx,Ax, 
, and 77 j which are periodic in A, and A [ and can be expanded in powers 

of/z, I'j, and 77,, reducing to Ax and A] for ju = 0. 

What will now happen to F when the new variables are adopted? It is 

obvious that Twill be expandable in powers of7/, and 77^ and will be 

periodic in Ax and A [. 

Let 

F= F0 +fiFx + h2F2 + ■ • • 

be the expansion of Tin powers of fi, when the old variables are used; in 

addition, let, similarly, 

T = To + 11F ] + /z2T2 + ’ ’ ' 

be the expansion of Twhen the new variables are used. 
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First of all, it is obvious that, to obtain F'0, it is sufficient to replace A 

and A' in F0 by A, and A[. 

Next, let us calculate F \. 

Let F" be the result obtained on replacing, in Fx, each old variable by 

the corresponding new variable, i.e., A by A,, A by Ax, Ë, by £v etc. 

Let 

A = Aj + /wA2 + ' ’ ' > 

A' = AJ 4- //A2 -F " ' ’ 

be the expansions of A and A' in powers of //. It is clear that 

dF'0 dF'0 

F'=F'+ltA’ + 7ï 
a; . 

Next, let us calculate A2. It is easy to find 

A . tdC dC' , dB , 

Thus to obtain A2, it is necessary, in the expression 

dB' 

dA 

-ii 
dC 

fidA 
-i 

dC' dB , dB' 

fid A fid A /udA 

to set fi = 0 and, consequently, A = Au A ' = A [. Consequently, A2 (and 

this is the same for A2 ) is a periodic function oiAj^ and a linear function of 

and t/j, with its mean value (with respect to Ax and A [ ) depending 

neither on £x nor on rjl. 

Thus F [ will be periodic in A x and A [. Let R ' be its mean value and let 

R " be that of F ". The quantity R " will be obtained by replacing, in R, each 

old variable by the corresponding new variable; then R ' will differ from R " 
only by a quantity independent of ^ and of t}x. 

In Chap. 10, the importance of the equations 

dè, _ dR drj _ dR 

dt dri ’ dt dê, 

for studying the secular variations of the elements has been demonstrated. 

After the change of variables performed above, these will be replaced by 
the following: 

di± = dR^ drjj_ _ _ dR " 

dt dyx ’ dt dë,x 

However, according to the above statements, the two systems of equa¬ 

tions are identical and the second differs from the first only by the fact that 
the symbols have subscripts. 
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Up to now, it seems that the transformation made here has produced 

no changes in the form of our equations; I can at last discuss the advan¬ 
tages of this procedure. 

Let us first look at the fate of the equations of our periodic solutions of 

the first kind, using the new variables. Because of the choice of our auxil¬ 
iary function S, these equations can be written 

êi — Vi — £ J = V\ — 0> Aj = const.; AJ = const. 

Finally, A, and A J will be given functions of time, of two new constants 

A, and AJ, and of two new arbitrary constants. 

This might be of some interest despite the fact that we do not require 

this for our particular purpose, namely, to define the manner in which A j 

and A J depend on these two constants to be denoted here by a and /3. We 
will have 

A, — a + ç>{t -f /3,A,A[ ), A [ — a + <p'(t + P,AX,A\ ) , 

where q> and cp ' are two functions of t + /?, A,, AJ which, when t + (A 
increases by a certain constant y depending on A, and AJ, will themselves 

increase by a certain constant Ô (the same for both ç> and <p ') which also 

depends on A! and AJ. The first of these two constants y is the period of 

the periodic solution considered while the second Ô is the angle through 

which the three-body system rotates during one period. 

Of all this, we will retain only one point: 

If êu Vv ê \ > an(I V\ are zero at the origin of time, the solution will be 
periodic of the first kind and these four variables rjv £ J, and rj\ will 

always remain zero. 

Now, we have the following differential equations: 

d$1=dF_ _ dF 

dt dry ’ dt drj[ 

drjl _ dF drj[ _ dF 

dt dë,x dt dÇ\ 

Consequently, it is necessary that the four derivatives 

dF dF dF dF 

dè, i’ dË, j’ drjx ’ drj[ 

vanish together as soon as the four variables 

iu i'i> Vv V\ 

also vanish together, i.e., as soon asF’contains no terms of first degree with 

respect to these four variables. 
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Thus the expression of F as a function of the new variables has the same 

form as the expression of F as a function of the old variables. The only 

difference lies in the fact that there are no terms of first degree with respect 

t° ii, Vi’ê'i’Vi whereas first-degree terms did exist with respect to the 
corresponding old variables £, 77, Ë, and 77'. However, it was exactly the 

first-degree terms that created the entire difficulty; this means that the 

difficulty has disappeared together with these terms. 

Exactly the same happens if, instead of the three-body problem in two- 

dimensional form, one treats the three-body problem in three-dimension¬ 
al form. 

If, in fact, one selects the following as variables 

^I* £>\t êi’ p> p > 

A» A’i> Vu y[> q, q', 
Twill contain no term of the first degree with respect to rjup, and <?.R6 



CHAPTER 13 

Divergence of the Lindstedt 

Series 

146. In Chap. 9, we have found that the canonical equations 

d*i_ _ dF_ dyl _ dF 

dt dyt dt dxi ’ 

can be formally satisfied by series of the form 

= x° + fix] + ii2x\ + • • • , 

y I = w, + fiy] + fi2y\ + • • • , 

where xf and y? are periodic functions of the quantities 

wi=nit + 7oi (/= 1,2,... ,n) 

and are represented by series of the sines and cosines of multiples of w, in 

such a manner that we have 

x-(ovy-) =A0 + A cos(mlwl + m2w2 + ••• + rnnwn + h) . (13.3) 

The mean value A0 of these periodic functions can be selected arbitrarily. 

It is now a matter of determining whether these series are convergent. 

However, the question is subdivided; one can actually ask 

(a) whether the partial series (13.3) are convergent and whether the 

convergence is absolute and uniform; 

(b) assuming that they do not converge absolutely, whether the terms can 

be arranged in a manner to obtain semiconvergent series; 

(c) assuming that series (13.3) are convergent, whether series (13.2) will 

converge and whether this convergence will be uniform. 

(13.1) 

(13.2) 

Discussion of Series (13.3) 

147. Let us recall the manner in which we obtained series (13.3). We 

arrived at equations of the form 

dx^ y n°—— = y B costm^i + m2w2 + • • • + mnwn + h) 
dwp ^ 

395 
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[Eqs. (9.13) of no. 127] from which we derived 

■f-2 
B sin(m,u)] + m2w2 + • • * + mnwn + h) 

mxn°x + m2n2 + • • • + mn n°h 
+ A0, (13.4) 

where A0 is an arbitrary constant. 

Does series (13.4) converge absolutely and uniformly? If this were the 

case, the sum of this series would have to remain finite for all values of 

time. However, it has been demonstrated previously8 that the sum of the 

terms of a similar series cannot remain constantly below half of any one of 

its coefficients. 

Thus, so as to have series (13.4) converge uniformly, it is necessary 

that the absolute value of the coefficient 

_B_ 

mxn°x + m2n2 + • • • + mnti°n 

be limited.R7 

To be specific, let us assume only two degrees of freedom, and let 

n° = n, n2 = — 1. Then series (13.4) becomes 

Ao + X 
Bmimi sin(m1u;1 + m2w2 + hm^ ) 

mxn — m2 

and the absolute value of the coefficients 

B mxm2 
(13.5) 

mxn — m2 

must be limited. 

First of all, it is obvious that this cannot take place for the rational 
values of n, unless Bm were zero each time that 

m2 
—- = n 
m, 

This brings us to the case in which n is irrational and specifically to a 

consideration of those of the divisors mxn — m2 that correspond to the 
successive convergents of n. 

We state first that, irrespective of the sequence of the numbers Bm m^, 

an irrational number n can be obtained (as close as desired to a given 

number) which will be such that the absolute value of the coefficients 
( 13.5) will not be limited. 

In fact, let 
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be the successive convergents of n. 

Let 

^l> A2, • • • > Ap, . . . , 

be an arbitrary sequence of indefinitely increasing positive numbers. We 

state that the number n can always be chosen in such a manner that 

BPpaP 

"Pp ~ aP 
>v (13.6) 

In fact, according to the definition of the convergents, we have 

an = ar + aPaP l > Pp+ l —PP-\ + Ppa pup+ i > 

where ap+l is a positive integer which can be arbitrarily selected without 

changing anything in the first p convergents. 

On the other hand, we have 

nPP ~ ap 
_J_ 

+ PpaP+\ 

Thus we can select the integer ap+l in such a manner that the absolute 

value of n(3p — ap will be as small as desired and, consequently, in such a 

manner as to satisfy the inequality (13.6) no matter what the numbers 

B[3p ap and Ap might be. 

Since the numbers Ap are subject only to be indefinitely increasing, it is 

possible to make an arbitrary selection of the first q of these numbers 

(irrespective of q) and thus also of the first q convergents. Thus the num¬ 

ber n may be as close as possible as desired to any given number. 

However, it is also frequently possible to find a number n such that the 

series (13.4) will be convergent. Let us suppose that the series 

X B^m2 costm^! + m2w2 + h) 

converges in such a manner (as it ordinarily happens) that the following 

expression is obtained for all values of m, and of m2: 

\Bmim2\<Ka^/3^, (13.7) 

where K is any positive number while a and 13 are two positive numbers 

smaller than unity. 

Let us take n — yjp/q with p and q being two relatively prime integers 

such that pq will not be a perfect square. This yields 
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1 mxn + m2 (mxn + m2)q 

mxn — m2 m\n — m2 pmi — qm\ 

whence 

<q(\mx\n + \m2\) , 

Bm m2 sin(m,io, + m2w2 + h) 

mxn — m2 
<Kq(\ml\n + \m2\)alm,l/3|m21, 

which proves that series (13.4) converges. 

However, it is obviously possible to select the integers p and q in such a 

manner that 4p7q = n will be as close as desired to any given number. 

This leads to the following result which will be formulated by extend¬ 

ing it directly to the general case. 

Let K be an arbitrary positive number and let a x, a2, ■ ■ ., an be positive 

numbers smaller than unity. 

We assume that an inequality analogous to Eq. (13.7) exists and that 

we can write 

which is what ordinarily happens. 

In this case, the numbers 

«° n° n° 

can be selected in such a manner 

(a) that they will be as close as desired to n given numbers and that, at the 

same time, series (13.4) does not converge uniformly; 

(b) they can equally be chosen in such a manner that they will be as close 

as possible to the same n given numbers and that series (13.4) does con¬ 

verge uniformly. 

One can easily grasp the importance of this remark. In fact, the obser¬ 

vations, no matter what their accuracy might be, can define the mean 

motions only with a certain approximation. Therefore, one can remaining 

within the bounds of this approximation, always arrange matters such 

that series (13.4) will converge. 

From another viewpoint, one could ask whether series (13.4) can be 

made to converge for values of the integration constants x:° comprised 

within a certain interval (it will be recalled that the terms depend on 

x°i) ■ According to what has been stated above, this will be possible only if 
the series 

X cos(m1iu1 + ••• + mnwn + h) 

contained only a limited number of terms, i.e., if in the function 
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F=F0 + nFi + //2F2 + 

each of the functions Fx, F2, . . . would contain only a finite number of 

terms in its expansion in sines and cosines of multiples of y. 

This will not be so in general, and the function Fx—for example—will 

be a series with an infinity of terms. However, in practical application, the 

calculation can be arranged such as to obtain the case in which the func¬ 

tions F, have only a finite number of terms. In fact, since the series F, is 

convergent, all terms, except for a finite number of them, will be extremely 

small. Thus it would be of no interest to take these into consideration 

already in the first approximation. 

Thus the accepted procedure will be: In the series Fx, all terms, except 

for a certain finite number, can be considered of the same order of magni¬ 

tude as //; however, there are some terms of the same order as //2 and 

others, even smaller, that will be of the same order as //3, etc. In the other 

series F2, F3, terms of these various orders of magnitude will also be en¬ 

countered. 

Thus we can write, in general, 

Fj — Fi0 + Fn + Fi2 + • • • + Fik + • • • , 

where Fik represent those terms of F, that can be considered as being of the 

same order of magnitude as //*. These terms are finite in number. This 

manner of decomposing F, obviously admits of a high degree of arbitrari¬ 

ness. 

Let now //' be a quantity of the same order of magnitude as// and let us 

put 

Fik=n'k<Pik. 

All terms of <!>,*. will be finite, so that we can write 

F= 

Because of this artifice, F now depends on two parameters, and 4>//c 

contains only a finite number of terms. Since the two parameters// and//' 

are of the same order of magnitude, we will set// = A/n', yielding 

F= £//'*<!>,, 

where <!>fc contains only a finite number of terms. 

This artifice, which has been discussed here at some length but whose 

application can be performed quite rapidly, shows that in practical use one 

can always assume to have returned to the case in which each of the 

functions F, contains only a finite number of terms. 
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Discussion of Series (13.2) 

148. Since the question of the convergence of series (13.13) has thus been 

settled, it becomes necessary to test whether series (13.2) converge. 

This question again must be subdivided. 

Series (13.2) actually depend on fi and on the integration constants x°. 

Consequently, one can ask 

(a) whether series (13.2) converge uniformly for all values of pi and x° 

comprised within a certain interval; 

(b) whether series (13.2) converge uniformly for sufficiently small values 

of p. when assigning properly chosen values to x°. 

The first question must be answered in the negative. 

Indeed, let us assume that series (13.2) converge uniformly and let us 

write them in the form 

x,- =x° + /u<pi(wk,x°k,n) , 

yi = wi+pifti(wk,x°k,[i) , (13.8) 

where cpt and are functions that can be expanded in ascending powers 

ofp, periodic with respect to w, and further depend in an arbitrary manner 

on x°. 

Let us solve Eqs. (13.8) with respect to x° and w(. From these equa¬ 

tions, the quantities x° and w, can be derived in the form of series arranged 

in powers of p whose coefficients depend on x, and yt. 

It is easy to verify this. Actually, to prove that the theorem of no. 30 is 

applicable, it is only necessary to note that, for p = 0, the equations re¬ 
duce to 

x° = x,-, wi=yi 

and that the functional determinant of the left-hand sides is equal to one. 

Otherwise, it is only necessary to apply the generalized Lagrange formula. 

This will yield 

x° = xf + pq>ï(yk,xk,p) , (13.9) 

wt =yt + Pl>i{yk, xk,p) , (13.10) 

where cp ' and tf>' are functions that can be expanded in powers of p, being 

uniform with respect to x and y and periodic with respect to y. 

Equations (13.9) thus define n uniform integrals of our differential 
equations. 

From another angle, we have put 

wt = ntt + 75, 

and the coefficients n, defined in this manner depend on ji and on x°. If 
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these quantities are able to vary within certain limits, one could manipu¬ 

late them in such a manner that the coefficients n, became mutually com¬ 
mensurable. 

In this case, one can find a number T such that the «, T become multi¬ 

ples of 2n. Consequently, assigning these particular values of fi and x°, 
Eqs. (13.8) will represent a periodic solution with period T. The existence 

of n uniform integrals would force us to conclude that n + 1 of the charac¬ 

teristic exponents relative to this periodic solution are zero. 

However, there is more to this. 

By hypothesis, series (13.8) must satisfy the differential Eqs. (13.1). 

We have demonstrated that, on assigning certain particular values to n 

integration constants x°k, series (13.8) will represent a periodic solution of 

these equations. In order to determine this solution, we will also assign 

certain particular values to the n integration constants œk. 

Let 

x, =f(t), yt =//(*) (13-11) 

be the resultant periodic solution. Let us put 

xt=f+ii, yi=fi' + Vi 

and form the variational equations of Eqs. (13.1) (see no. 53). Since series 

(13.8) must satisfy the differential equations no matter what the con¬ 

stants x°k and cok might be, we will obtain 2n particular solutions linearly 

independent of our variational equations, by setting 

_ da): dnD dcpt 
it - eik + ^ X ~^ 

dwn dx°k 

dn, dip, dnp 
Vi = —7 1 + ¥ X ~1— + ^ 

dx°k dwp dxk 

dx°k 

dxpi 

dx(i 

ii =p 
d<Pi 

Vi — €ik 
dip, 

dwi dwk uujk 

eik = 1, if i = k and 0 if i*>k 

(i,k = 1,2,...,«). 

In the functions 

lfL ÉÏL, it, it, (B.12) 
dwp ’ dx°k dwp dx°k 

the constants x°k and wk must be replaced by the values corresponding to 

the periodic solution (13.11); the functions (13.12) will thus become 

periodic in t. 



402 CELESTIAL MECHANICS 

From this it follows that the In characteristic exponents are zero. How¬ 

ever, it is known that this is not usually the case. 

Thus, in general, series ( 13.2) will not converge uniformly when/r and 

x° vary in a certain interval.R8 Q.E.D. 

149 . This leaves the second question to be treated. Actually, one could 

ask whether these series might not converge for small values of/u if certain 

properly chosen values are attributed to 

Here again, we must differentiate two cases. 

In general, the quantities nt depend not only on x° but also on // and can 

be expanded in powers of fi. 

We have seen, furthermore, that the mean values of the functions 

and xfti can be arbitrarily selected. In addition, we have seen that these 

mean values can be selected in such a manner that we will have 

«/ = »?, 

»<=«?="■= ="■= 0 , 

i.e., that the no longer depend on /n. 

Consequently, we can distinguish the case in which the quantities «, 

depend on n and the case in which the /?, do not depend on /n. 

Let us first assume that the quantities n, depend on // and, at the same 

time, that there are only two degrees of freedom. 

Then, let 

«! = /I® +jun\ + ii2n\ + •••, w1 — nxt + 7oi, 

n2 — ni +Hn\ + + ' ' ') w2 = n2t + co2. 

On the other hand, xv x2, yx, and y2 should be expandable in powers 

of // in such a manner that xv x2, — wx, y2 — w2 will be periodic in wl 
and w2. 

This should take place for sufficiently small values of //. However, 

among the values of ^ below a certain limit, it is always possible to find 

values such that the ratio nx/n2 becomes rational, since this ratio is a 
continuous function of /u. 

If the ratio n,/n2 is rational, then series (13.2) will represent a periodic 

solution of Eqs. ( 13.1 ), irrespective of the two integration constants 73, 
and <y2.R9 

If series (13.2) were to converge, then a double infinity of periodic 

solutions of Eqs. ( 13.1 ) would correspond to this rational value of nx/n2. 

However, it has been demonstrated in no. 42 that this cannot take place 
except in highly peculiar cases. 

Therefore, it seems permissible to conclude that series (13.2) do not 
converge. 
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Nevertheless, the above reasoning is not sufficient for establishing this 
point with complete rigorousness. 

In fact, what we have demonstrated in no. 42 is that for all values of // 

below a certain limit there cannot be a double infinity of periodic solu¬ 

tions, and it will be sufficient here that this double infinity exists for a 

determined value of //, differing from zero and generally very small. 

Thus we would have an infinity of periodic solutions for // = 0 and for 

// — yU0 whereas we would only have a finite number (not considering as 

distinct the solutions that can be derived from each other by changing t 
into t + h ) for values of // between zero and fi0. 

It is rather unlikely that this would be so, which in itself is already 

sufficient to render the convergence of series (13.2) highly improbable. 

However, there is more: It would be of interest to determine the conver¬ 

gence of the series (13.2) only if such convergence would take place for an 

infinity of value systems of the constants x°, in such a manner that it would 

be always possible to single out one of these systems that differs as little as 

desired from a given arbitrary value system of these same constants. How¬ 

ever, if a case of this type would occur, an infinity of values of /t would 

exist for which the periodic solutions (corresponding to a given rational 

value of the ratio nx/n2) have an infinite number. 

It would also be possible to find an infinity of similar values of // in each 

interval no matter how small, provided that it be sufficiently close to zero. 

The characteristic exponents would have to be zero for all these values of 

yU (see no. 54); since these exponents are continuous functions of// (see 

no. 74) they should be identically zero. 

It has been shown that this is generally not the case so that one must 

conclude that the convergence of series (13.2), assuming that it takes 

place for certain value systems of x°, cannot take place for an infinity of 

these systems. 

This is one more reason to consider a convergence of series (13.2) 

improbable in all cases, since the values of x° for which this convergence 

would take place cannot be distinguished from all others. 

Finally, it would be of interest to determine the events that would occur 

if the mean values of the functions <px and xfjt were selected in such a 

manner that 

In this case, the quantities «, no longer depend on // but only on x°. 

Might it not happen that series (13.2) converge when assigning certain 

properly chosen values to x° ? 
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For simplification, let us assume that there are two degrees of freedom. 

Could then the series, for example, converge when x° and x° are selected 

in such a manner that the ratio n l/n2 becomes irrational while its square, 

on the other hand, becomes rational (or when the ratio nl/n2 is subjected 

to another condition analogous to the one I have more or less guessed 

here)? 

The reasoning in this chapter does not permit the definite statement 

that this event will never occur. All we can say now is that it is highly 

improbable. R1° 

Comparison with the Old Methods 

150. Let us add one more thought here: In the absence of means of 

ensuring convergence of the series, what is the best choice for the mean 

values of x? and y? ? I believe that it is advisable to select these mean values 

in such a manner that xf and y? (starting from x] and y) ) vanish for t = 0, 

in such a manner that x° represent the initial values of x,- and the initial 

values of yt. 

If, next, we consider the resultant series 

X,. = x° + txx) + n2x] + • • • , 

yt = +(*y) +p2yf+ , ( 13.13) 

it will be found that the terms x f, wt, and y ? depend on [i. If these quanti¬ 

ties are expanded in powers of n and if the right-hand sides of Eqs. (13.13) 

are arranged is ascending powers of /1, we will obtain the expansion in 

powers of of that of the particular solution of our differential equations 

which admits x° and To, as the initial values of x, and yt. 

It is known that this series converges for sufficiently small values of t. 

Let 

x,=*?+^;+/i2£?+-.-, 
yt = n°it + 70i +/*77,! + + ••• . (13.14) 

Here £ f and rj f are not periodic functions of time but no longer depend on 

H- In addition, these functions vanish for t — 0, as will the quantities 

xPi and rf. 

From the manner in which we have derived series ( 13.14) from series 

( 13.13 ) it is possible to draw a few consequences with respect to the form 
of series (13.14). 

Thus to obtain g J it is sufficient to set/i = 0 in the expression of xj. Let 

us recall how x,1 depends on xj is a periodic function of the quantities 
which we had denoted by 
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Wi, w2, wn 

and, in addition, we have 

Wi = flit -f 75i . 

Here, is a constant of integration and nt depends on yu. Thus if we set 

// = 0, reduces to «°, since we have 

«,• = »? + + yU2«? + • • • . 

Consequently, ic, reduces to + S>, and x) remains a periodic function 
of the quantities n°t + 75,. 

Therefore, £ ) contains no secular terms. 

To obtain g f, it is sufficient to set n = 0 in 

dx) 

dfi 

Reasoning as above, it can be demonstrated that, by setting n = 0 in x2, 
no secular term is introduced there. On the other hand, we have 

or, for 

dx) _ dnk dx) 

d/i ^ d[i dwk 

dx) dx) 
L = t^n) 

d/i ^ dwk 

This shows that the expression of dx)/dju contains secular terms but a 

distinction still must be made: The expression “mixed secular terms” is to 
denote terms of the form 

tp sin at or tp cos at, 

while “pure secular terms” will be terms of the form tp. 

We then can write 

1 dx) 
V nk—— = A0 + YAa sin at A- V Ba cos at. 
^ dwk ^ 

Actually, the left-hand side is a periodic function of w and, for fi = 0, we 

have Wi = + 75,. If A0 is zero, the expression g f will contain no pure 

secular terms but might contain mixed secular terms. If^0 is not zero, the 

expression Ë,2 will contain pure secular terms. 

A case exists in which A0 is definitely zero, which is the case in which 

none of the quantities «° is zero and in which no linear relation with 

integral coefficients exists between the n° terms (case of no. 125). In fact, 

we then have 
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5> 
dx) 

dw k 

and 
dx) l 

dw k J 

0, 

denoting by [ U] the mean value of a mean function of a periodic function 

U of wu w2, ■ ■ ■, wn. 

Below, we give still another case in which A0 is zero. 

We assume that 

no2=n°4 = -"=non=0, 

and that, on the other hand, the ratio of «° to n°2 is incommensurable. Let 
us put 

x) = £ Csinf/njiUj + m2w2 + • • • + mnwn + h) , 

where m„ m2,..., mn are integers while C and h are any constants. 

This then is the form of the expansion of x), since this function is 
periodic with respect to the w. 

From this it follows that 

dxJ 
X nk~j “ = £ CScos(/ni“,i + mi^2 + • • • + mnwn + h) , 

dwk 

where 

s='2,n1kmk • 

For n — 0, we obtain 

_ , dx) _ 
X nk~J— = Y CS cos (at + P) , 

dv)k ^ 

where 

a W]/?! + fn2n2> P — W[<ü] + fn2co2 + ■ * ■ -f- mncon + h . 

According to the hypotheses made above, a can be zero only if 
m i = m2 = 0. Hence 

A0 = ^ CS cos /3, 

where the summation extends over all terms with m, = m2 = 0. 

Now, let 

Fi = 'ZDcos(mlyl-\- m2y2+ ••• + mnyn + k) , 

where D and k are functions of xu x2,..., xn. This necessarily must be the 

form of the functions Fx which is periodic with respect to y. 



CHAPTER 13 § 150 407 

Let D0 and k0 be what becomes of D and k when replacing there x by 
jc° Then let 

F° = X^oCOs {mlwl + m2w2+ ••• + mnwn + k0), 

which will be the form ofE, after replacing there x, by;c° and yt by wt. The 

function x} will be defined by the equation 

V rr° ^ - dF°l 
awk dwt 

whence 

A) m, 
+ m2n2 

cos(mlwl + m2w2+ ■ • ■ + mnwn + k0) , 

from which it follows that 

0 i o’ * mxn\ + m2«2 

If / = 1 or 2, C will vanish for m x = m2 = 0 and A0 becomes zero. Thus 

£ i and Ç 2 contain mixed secular terms but no pure secular terms. 

Contrariwise, the expressions 

êl, il .... 
may contain pure secular terms. 

Let us apply this to the three-body problem. 

Let us return to the series in no. 140. 

The quantities «° are zero, with the exception of «° and n2. 

Let us expand the quantities A and Vt in ascending powers of /z. This 

yields 

A = A0 + /zAJ -T /z2A[ + • ■ ■ , 

A = Aq -T fiA\ + ^A\ + ■ • ■ , 

vt = v° + Juv;'+lu2v;2+---, 
where A, and V'k are functions of t, independent of /z and vanishing 

with t. 

According to the above considerations, the quantities A,1 contain no 

secular terms. This represents the Lagrange theorem on the invariance of 

the major axes, neglecting the squares of the masses. 

The quantities A2 will contain mixed secular terms but no pure secular 

term; this is Poisson’s theorem on the invariance of the major axes, when 

one neglects the cubes of the masses. 
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The quantities V-1 contain no secular terms, but the quantities V'2 will 

contain secular terms, both of the pure and mixed type. 

Let us return to the case in which the quantities n° all differ from zero 

and are not interconnected by any linear relation with integral coeffi¬ 

cients. One then has 

3 dx2 1 

t<=x> + *:+-2 

d2 x 

d/i1 
for jU = 0 . 

One can see that as above, x 3 furnishes no secular term and that dx2/d/i 
furnishes no pure secular term. On the other hand, we have 

d2x) 

dfi2 

d2wk 

d/u2 + 2 
d2x) dwk dwh 

dwkdwh d^i dfx 

The right-hand side can be written as follows: 

dx} , _ d 2x) , , 
n2-b t2 V-nknh . 

dwk ^ dwkdwh 

Thus we again have mixed secular terms but no pure secular terms, 

since the mean value of the derivatives dx)/dwk, d 2x\/dwkdwh is always 

zero. 

Obviously, the same reasoning will apply to the following terms of the 

series, i.e., to the Ç f. 

Thus in the particular case of the three-body problem, defined in no. 9, 

the major axis remains invariant in the sense of Poisson, no matter how far 

the approximation is continued. 

Similarly, with any law of attraction other than Newton’s, the expan¬ 

sions of quantities corresponding to the major axes will contain no purely 

secular terms no matter how far the approximation is carried. Thus these 

quantities are invariant in Poisson’s sense. 

The Lindstedt method is thus connected with the famous theorems by 
Lagrange and Poisson. 

The idea of the possibility of this connection is due to Tisserand. 

These considerations lead to a final remark: 

It could seem that the series developed in the preceding chapters yield 

no conclusions, since they are all divergent. 

Let us consider the expansion of arcsin u and let us write 

arcsin u = u + A + A2u5 + • • • , 

from which we can derive 

/it = sin fit + A j sin3 /j,t + A2 sin5 /it + • • • . 
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Since the powers sin3 /at, sin5 /it are easy to expand in sines of multiples of 

fit, it would seem that the expansion—at least formally—of the function 

/it in a trigonometric series could be derived from this. 

Obviously, it will be the same for /u2t2, for /nt sin at, ..., and for all 

terms that might be encountered in series (13.14). 

Consequently, stating that the functions represented by these series 

( 13.14) can be expanded in purely trigonometric series, whenever a pure¬ 

ly formal expansion is involved, seems to affirm nothing and to give no 

information with respect to the form of these series (13.14). 

However, one would be mistaken in this. If an attempt were made to 

use the rough artifice which we applied to the function fit (I would not 

dare to say that this has never been done before) to reduce the expansions 

( 13.14) to a purely trigonometric form, an infinity of different arguments 

would be introduced. What we have learned from the theorems of the 

preceding chapters is that the formal expansions are possible with a limit¬ 

ed number of arguments. This could not have been predicted and allows 

numerous conclusions as to the coefficients of series (13.14) or as to the 

coefficients of other analogous series encountered in the three-body prob¬ 

lem.*11 



CHAPTER 14 

Direct Calculation of the Series 

Generalities 

151. It might be of some interest to return to the results obtained in the 

three preceding chapters and to define their significance. Above all, we 

intend to demonstrate a method for directly calculating the coefficients of 

the expansions which we have learned to form in an indirect manner and 

of which we have thus proved the existence. Once this existence has been 

established, the calculation of these coefficients can be done in a more 

rapid manner without being restricted by the numerous changes of vari¬ 

ables which had been necessary before. 

Let us start by considering the particular case of the equations in no. 

134. 

In no. 134 we showed, using procedures analogous to those in no. 125 

but somewhat modified, that one can formally satisfy our canonical equa¬ 

tions by setting 

Xt = X° + fix) + fl2xj + • • • , 

yt =ft+w\ +n2fi + ••• » 

where xf and are periodic functions of quantities that will be denoted by 

w, except for y° which must reduce to wt. The terms x° are arbitrary 

constants on which the other functions x* and depend, and we have 

Wj = rijt + û>f, 
where <ÿ, is a constant of integration while «, is a constant depending on 

and on which can be expanded in powers of /z. 

Using the procedures in no. 126, it is possible to assign an infinity of 

forms to the series, in such a manner that the mean values of the periodic 

functions xf and yf will be any desired arbitrary functions of x°t. 

Let us note that, after as well as before the transformation of these 

series by the methods used in no. 126, the expression ^xidyi (considered 

as a function of wt while the terms are considered constants) must be an 
exact differential. 

Let, again, 

F = F0 + fiFi + h2F2 + ■■■ . 

410 
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Let us assume that 2n pairwise conjugate variables exist and that the 

variables of the first series are of two kinds. Those of the first kind will be 

denoted by x, and those of the second kind, by x'. 

The variables of the second series conjugate to the x,- will be denoted by 

y,-, and those that are conjugates of x' will be designated y', such that our 
canonical equations will read 

dx, _ dF 

dt dy, ’ 

dy, _ dF 

dt dxt ’ 

It is assumed that F0 depends on x, but not on yif y\, or x', that F is 

periodic with respect toj>, and with respect to_y', and that, if R denotes the 

mean portion of Fl (considering, for the moment, Fl as a periodic function 

only ofy, but not of y\ ), then R will not depend on y' but only on x, and x'. 

In sum, these are the same hypotheses as those in no. 134. 

We have shown that Eqs. ( 14.1 ) can be formally satisfied by series of 

the following form: 

x,. = x? + Fx) + ‘ ' ' . 

x'i = X'° + px\x + p2x'2 + • • • , 

y I = W. + py) + p2y] + ■ • • , 

y] = w't + fiy't1 + ffy'i2 + 

where xf, x 'k, yk, y\k are periodic functions of and of w\ and, in addition, 

depend on the constants x° and x'° whose mean values can be arbitrarily 

selected functions of these constants; this can be demonstrated by using a 

method of reasoning as in no. 126. In addition, we have 

Wj - nd + Züf, w'i = n't 4- cô-, 

where Si, and To' are constants of integration, while n, and n’ can be 

expanded in powers of p such that 

= *; = s/**»;* 

with 

0, n'° = 0. 

Since the possibility of such an expansion has been established in no. 

134, we will now directly calculate the coefficients. 

For this, we will assume that, in Eqs. ( 14.1 ), series ( 14.2) have been 

substituted and that, consequently, our variables no longer are considered 

dx' 

~dt 

dyj_ 

dt 

dF 

dy\ 

dF 

dx’ 

(14.1) 
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as being expressed directly as a function of time but rather as being depen¬ 

dent on time over the intermediary of w and w'. Then equations ( 14.1 ) 

will become 

■p- + l 
dwk k 

dxt 

dw’k 

dF 

dy, 

After substituting the expansions (14.2), we will also obtain 

(14.3) 

dF _ ,,kvk 
-r~ - 2,^ A <’ 
dy, 

dF 

dxt 

k 
i 9 

which are equations analogous to Eqs. (9.10) and (9.11) in no. 127; 

similarly, 

dy' dx. 

The quantities X f, Yk,X'k, Y’k will be functions of wt,xk, yk, x°, and of 

the same primed quantities. These functions will be periodic with respect 

to w and w’. 

As in no. 127, let us see on what variables all these quantities depend. 

Since 

dFo = dFo = dF,= 

dyt dx\ dy' 

it is obvious that Xk,X'k, Y'k depend solely on 

x° x1 'A'l > 9 

ft* Yi> yt 
k- 1 

and on the same primed quantities, whereas Yk will depend, in addition, 

on xf but not on x,k, yk, and y'k. 

Let us next consider the expression 

X 
k 

nk 
dx, 

dwk 

Let us there substitute the term x, by its expansion ( 14.2) and the terms 

nk by their expansion in powers of [x. This expression can then be expand¬ 

ed in powers of //; in order to use notations analogous to those given in no. 

127, we will write its expansion in the following form: 

X «k 
dx, 

dwk 

dy, 

dwk 

X' F Pfl°k 

l'FPn°k 

dx 1 

dwk 

dypj 

dwk 

+ ^FPnpk 

+ 2>M 

dx° 

dwk 

dy°i 

dwk 

Zfpz ?, 

(14.4) 

^FPTp. 
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We will agree that the sign 2 expresses a summation extending over all 
values of k and over all values ofp from zero to infinity, and that the sign 
2' expresses a summation extending over all values of k and over all values 
ofp from one to infinity. 

It should be recalled here that = w^y'0 = w’; in addition, two other 
equations of the same form can be added to Eqs. ( 14.4), where the sym¬ 
bols xit yt, x 1, y 1, y°, Z ?, and T1 are replaced by the same primed 
symbols. 

In the same manner, we write 

I 
dx, 

dw'k 2> 
pn'] 
nk 

dxp~x 

dw'r. 

dx° 

dwl 
It* ’U‘ (14.5) 

We will agree that the summation 2 extends over all values ofp, from 
one to infinity, while the summation 2' extends over all values ofp from 
two to infinity; to Eq. (14.5) we will add three more equations of the same 
form in which the symbols 

X x p ^ -A 1 y A, up 

will be, respectively, replaced by 

y» ypi *. A, vp, 

or by 

x' x ,p ~ 1 ^ i y x'° U,p ■A' i y '-'ii 

or else by 

y], y\p~\ v'°, v,p. j i y i * 

This will yield a series of equations analogous to Eqs. (9.15) of no. 127, 
which we will write, noting that and x'° are constants and thatj>° and y,'0 

reduce to and w', 
)— i dx ? 

---= X? + Z?+ Up, 
k dwl 

dx p- 
X«°*7- + 2n k dwk k uujk 

dvp dv p ~x 
y no + y n’kx —— =Ypi + Tpi + Vpi—npi, 
r dwk k dwk 

dx,p dx,p~x 
y n°k ——=x'ip+z'p+ u',p 

k dwk k dwk 

(14.6) 

dwk ~ic 

V o dy ''P , v 2 
dy? >— 1 

lk f k j , 
dwk k dwk 

-- Y'ip+T'ip + V\p-n\ 'P 

For p = 0, the left-hand side of each of the equations of system ( 14.6) 
must be eliminated, as must be the second term on the left-hand side for 
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p = 1. To demonstrate this, it is sufficient to recall the conventional mean¬ 

ing attributed to the signs 2 and 2' in Eqs. ( 14.4) and ( 14.5). 

Now, let U be any periodic function of wt and w'. Let us agree to 

represent, by [ U], the mean value of U which, for the moment, is consid¬ 

ered as a periodic function of w( only. From this definition, it follows that 

dU] d[U] 

dw'i dw\ 

Then we will represent, by [ [ C/] ], the mean value of U considered as a 

periodic function of both wt and w'. This is a constant independent of w 

and w’, whereas [ U] is independent of w but is still a periodic function of 

w’. Next, let us take the mean values of the two sides of Eqs. ( 14.6 ), so that 

d \xp~'} 
Y. - pTf + Zf+t/f], din, 

d \yp~ *1 X< l,', 1 =[r?+Tf+Ff]-nf, 
dwt 

d \ x 'P — ^ 1 
Xn'«—T-~= [X'f + Z’f+U'f], 

dw'k 

d Ty ,p-'1 
X n'kx —1J = [ Y'p + T\p + U'p\ - n\ 

dwV 
'P 

(14.7) 

The left-hand sides must be eliminated for p = 1. 

Let us see how Eqs. ( 14.6) and ( 14.7) will permit calculation of the 
coefficients of the expansion (14.2). 

In Eqs. ( 14.6), let us first putp = 0. This yields (since 

Z°, U°, ..., are zero 

and since the first members must be omitted as stipulated above) 

0 = 0, r° = *°, y;° = n;°. 

These equations furnish the values of «°, which are already known, and 

they indicate that the quantities n'° are zero since the quantities F'° are 
zero. 

Let us now consider Eqs. (14.7) by settingp = 1; this yields (noting 
that Z), U),. . . are zero) 

[x}] = [x;']=o, 

[Y)]=n], [r;1] (R8) 

To interpret these equations, it is useful to define the form of the quan¬ 

tities [Z*],.... To obtain Xj, X' \ and Y'1, it is necessary to consider 
the derivatives 
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dF\ dF\ _dF\ 

dy, ’ dy'i ’ dx\ 

and to replace there the terms jc„ x', y„ y' by x°, x'°, w,, w'. 

Let Ff be the result of this substitution in Fu so that 

Xi = 
dF* 

dw, 

, dF* Y ' 1 _ 1 / , > 
dw, 

[F*]=R 

Y= - 

dF* 

~dï? 

where R * is the result of the same substitution in R. 

From this, we obtain 

[*!] 
dw, 

[Yi'] = 

[*;’] 

dR * 

dx'° ‘ 

dR * 

dw' ’ 

According to our hypotheses, R does not depend on y and ÿ and thus 
R * does not depend on w and w'. 

Consequently, [T,1] and [X,-1] are zero and [T,'1] depends only on 

x° and x'° and therefore is a constant. 

Of the four equations (14.8), the two first ones are satisfied identically. 

The fourth equation can yield n'1 since the left-hand side is a constant. 

From this (denoting by F$ the result of the substitution of x° for Jt, in 

F0) it follows that 

Y}= - 
y d2F* 

k dx°dx°k 

dF* 

dx° 

whence 

d2F* 

dx°dx°k 

dR * 

dx° 
(14.9) 

The quantities n) must be constants, which is also true of dR */dx°i. Con¬ 

sequently, the same holds for the quantities ]. 

In fact, to obtain x\ it is necessary to replace, in dSx/dyk (no. 134), the 

terms y and ÿ by w and w'; or, which comes to the same, if this substitution 

is made in 5,, we obtain 

*^1 — ^ a\ k Yk S \ > 

k 

However, 
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where S [ is periodic with respect toy and / while the a, * are constants. 

This will yield 

4 =axk + 
dS\ 

dwk ’ 

whence 

[4] = a\k- 

Q. E. D. 

Let us consider the first of the equations of system (14.7) by setting 

there p = 2. If the terms [4] are constants, the following will remain: 

[X2 + Z2+U2] — 0. 

However, it follows from the definitions that 

[Z?]= 0, £4 = 0. 

Consequently, we have 

[*?]=o. 
This conclusion, which has been obtained on the basis of the feasibility 

of the expansion demonstrated in the preceding chapters, can also be 

obtained directly. 

In fact, we have 

X2 — Y ^ 4 yl V d 4 y'1 

^ dwidwk k ^ dwtdw'b 
' (14.10) 

y _A-0j—x\ + Y ^ 4 xr' + ^4 . 
^ dw,dx°k k dWjdx’k k dwt 

It goes without saying that, in Fx and f2, the quantities^,, xt, ... are 

assumed as replaced by wt, x°t,.... 

It is obvious that the mean value of dF1/dwj is zero. It remains to prove 

that the algebraic sum of the mean values of the first four terms on the 

right-hand side of Eq. (14.10) is also zero. 

In fact, let us assume that the expressions 

d2Fx , d2F1 

dWjdwk ’ ’ diV'dw'b 
y'k> 

are expanded in trigonometric series, in the sines and cosines of multiples 

of .Thus X2 will be expanded in a series of the same form, and it be¬ 

comes a question of calculating the terms of this series that are indepen¬ 

dent of Wf. 
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For this, it is sufficient to calculate the terms independent of wx in the 
product 

d2Fx , 
-—y)c 
dwtdwk 

and in any other analogous products. 

However, the constant terms of this product are obtained by consider¬ 
ing a term of 

d2Fx 

diVjdwk 

depending on 

cos( mlwl + m2w2 + • • • + mqwq) 

(if it is assumed that the number of wt is equal to q) or on 

sin(mxwx + m2w2 + • • • + mqwq ), 

by means of a term ofyj. depending on the same cosine or on the same sine. 

Let us note first that we can disregard the case in which 

mx = m2= ■■■ =mq =0. 

In fact, since 

d2Fx 

dwtdwk 

is a derivative with respect to w, of a function periodic with respect to w, it 

cannot contain terms independent of w. This is of some importance; in 

fact, it follows from this that it no longer is necessary to calculate the 

quantities 

[4], [4], •••• 

Now, Eqs. (14.6) will indeed yield y\, xk, ... to within an arbitrary 

function of w, but they will not yield the mean values of these functions. 

Fortunately, as we have just seen, we do not need them. 

Thus let 

mx, m2, . . ., mq 

be any system of positive or negative integers not all of which are zero at 

the same time. Let us put 

mxwx + m2w2 + • • • + mqwq — h. 

In the two factors of each of the terms on the right-hand side of Eq. 

(14.10), we will search for the terms of cos h and in sin h, and we will 

check whether they give the terms independent of w in X ]. 
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Therefore, let 

A cos h + B sin h 

be the terms of F1 depending on h. It is obvious that A and B will be 

functions of x°, x'°, and w'. 

The corresponding terms will be 

d2Fx 
in 

in 

in 

in 

dw.dwu 
mimk (Ac -f Bs), 

d 2Fx 
m, | 

( dA 
s + 

dB 

dWjdw'b l dwk dwk 

d2Fx 
m,. | 

( dA 
S + 

dB 

dw,dw°k l dxk dx°k 

d2Fx 
m, | 

( dA 
S + 

dB 

dwxdxk \ dx'k° dxk 

(where, for abbreviation, the symbols s and c are used instead of sin h and 

cos h ). 

We now have Eqs. ( 14.6), which become, settingp = 1, 

dx) dF{ 

Z" 

dwk 

o 

dww 

= + 
dw[ 

dF\ 

dx, ’ 

together with two other equations where the symbols xj, y), u;, (but not 

wk ), and are replaced by the same primed symbols. Thus if we put 

m,n? + m2n°2 + • • • + mqn°q = —, 
M 

it will be seen that the terms in sin h and cos h will be 

dA dB 
in yi: 

in y'kl: -m{^ 

in x{ : + Mm 

in x’kl : + m(- 

s — 
dx°k 

dA dB \ 

dx’k° dx'k° ) 

Bs), 

/ dA dB 

\dwk dwk ) 

Substituting into the right-hand side of Eq. ( 14.10), we will find that 
all these terms vanish. As predicted, we will thus have 

[*■] =0. 
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After this, settingp — 1 in Eqs. ( 14.6), it is easy to calculate 

4» 4> y'i\ x,'1 
to within an arbitrary function of w'. 

In this manner, we know «°, n), n-\ and 

4 -[a1], 4-[4], tf'-W1], - [*;']. 
We also know that [x] ] is a constant, i.e., a function of x° and x'°. Ac¬ 

cording to the remark made at the beginning and analogous to that at the 

end of no. 126, we know that this function can be arbitrarily selected. Thus 

we can conclude that xj is completely known. 

Next, we have to determine 

[*/'] and [y;1]. 

For this, we make use of Eqs. (14.7) by setting there p = 2. Noting that 

[z;2] = [c;2] = [r;2] = [v;2] =o, 

we can show that these equations become 

I" 
r1 
k 

d [A'1] 

dw’k 

X n. 
d [y,1] 

dw’k 

[z;2], 

[z;2]-«;2. 

(14.11) 

We have given above [Eq. ( 14.10) ] the expression for X2. To derive 

from this the expression for X\2 it is sufficient to change there wt into w'; 

for deriving the expression for T'2, it is sufficient to change wt into x'°. 

Thus in [X-2], for example, we will have terms of the form 

d2F\ \ d2Fl 

_dw\dwk 7k _ 
1 

dw\dXk 

from which one easily finds 

(14.12) 

r d2Fj r d2F1 

dw'dwk . dw\dwk 

d 2Fl d2Fl 

. dw'dx°k dw\dx\ 

(A 

(4 

[4]) 

[4]) 

d2R * 
H- 

dw'dwk 

| d2R* 

dw-dx°k 

[4]; 

[4]; 

However, by hypothesis, R depends only on x, and xj so that the de¬ 

rivatives of R * with respect to w- are zero. From this, we can draw the 

following conclusion: 
The terms ( 14.12) that enter the second member of the first equation of 

the system ( 14.11 ) depend only on 

4 - [4]> 4 - [4]. • • • ‘ 
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which are known but do not depend on \y\ ], [xj. ], ... which are un¬ 

known. Consequently, [X ,'2] is a known function of w' and therefore, it is 

possible to derive from this the value of [x -1 ], under one condition, name¬ 

ly, that 

[ [xi2] ] =°- 

This condition must be satisfied identically, since we know in advance that 

the expansion is feasible. 

For the same reason, [ Y'2] is a known function. In fact, we now know 

[xj! ], [x^.1 ] but do not yet know ] nor [yk ]. However, the terms of 

[ Y'2\ that depend on [y\ \ and on \yk ] are written in the form 

-2 
d2R * 

W]-X 
d2R 

.rO. [y*]* 
dx'°dwk L 'J ^ dx'- ]dw'k 

and, since R * does not depend on w or on w', they are zero so that the 

second equation of ( 14.11 ), added to 

[[^;2]]=<2> 

will yield n'2 and [_y'1 ]. 

Having thus determined [x,-1] and [j7,'1] by means of Eqs. (14.7:3,2) 

and (14.7:4,2), i.e., by the third and fourth equations of system (14.7) 

where p is set equal to 2, we can now proceed to determine [x2]. 

The simplest way is to make use of the fact that the expression 

X XidYi + X X‘dy‘ 

must be an exact differential. 

If, in this expression, we replace x,, yt,... by their expansions (14.2), 

then the coefficient of each of the powers of p will become an exact differ¬ 

ential. The following differentials 

X' X°dw if 

X' {x)dwi +x°idy\), 

X' (x2dw, + x)dy) + x(-dy2), 

X' {x]dwt + x2dy) + x\dy2 + x^dy]), 

thus must be also exact. The sign 1' is to mean that the summation must be 

extended over all indices i and, in addition, over all primed symbols. 
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If, for example, there are q symbols^, without prime and A symbols^' 
with prime, we will have 

X' tfdwt = x°xdw i + x°2dw2 + • • • + x°qdwq 

+ x\°dw\ -f x2dw2 + • • • + w'°dwx. 

Since, on the other hand, the quantities x° and x'° are constants, then 

S' Adfi 

will always by an exact differential in such a manner that we can write 

S' x)dwi — d(px, 

S' (xfdw, + S' xjdyij = dcp2, 

S' (x-dw, + x]dy) + xj + xjdyf) = d<p3, 

(14.13) 

In addition, <px, cp2, op3,. . . must be functions of w and w’ whose deriva¬ 
tives are periodic. 

Let us see how the equation 

S' xjdwt + S' x)dy) = dcp2 

will permit us to determine [x^]. This equation yields 

x2k +S'*,1 —= ^. 
^ dwk dwk 

However, since the derivatives of qp2 must be periodic, we will have 

dcp2 

dw k 

= const., 

which furnishes 

[4]+S X 
, dy) 

i n 

dw k J 

+ 2 x r 
dy[ 

dw 

i 

k 

= const. (14.14) 

In Eq. ( 14.14) everything is known except [x2k ]. In fact, we do know 

xj, x'1, y'\ and we also know dy\/dwk since yj — [_)>,'] is known. With 

respect to the constant on the right-hand side, one of our previous remarks 

shows that it can be arbitrarily chosen. 

Thus it becomes possible to calculate \x2k ]. 
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Let us now calculate [y] ] by means of Eq. ( 14.7:2,2). This equation is 

written as 

ynfiML= [yj]-n2, (14.15) 
^ dw'k 

from which we obtain by equating the mean values taken with respect to 

w', 

[[^]]=4 (14.16) 

However, 72 depends only on x),y), x’\y'\ and x2. The quantities xj, 

x'1, and y'1 are completely known. Conversely, we only know 4 — [4 ] 

and [x2]. Let us see how Yf depends on xf and y,1. We obtain 

rf= -I 
d2F0 

dx]dxk 

where A is completely known. 

From this we derive 

4 
^ d2Fl i . 

— > -— yi A-A, 
^ dx°dwk 

ZxSrW] 

-X 

-x 

dx°dx°k 

d2F, 

dx°dwk 

d2R* 

dx®dwk 

(4 -[ylk]) 

[yi] + [A]. 

Since R * does not depend on wk and since the quantities d2R */dx°idwk 

are zero, [4] is completely known and Eqs. (14.16) and (14.15) will 

yield n] and [4 ]. 

Subsequently and successively, we will determine xf — [4 ] from Eqs. 

(14.6:1,2); x'2 - [x'2] from Eq. (14.6:3,2); y'2 - [y'2] from Eq. 

( 14.6:4,2); y2 — [4] from Eq. (14.6:2,2); [x'2] from Eq. (14.7:3,3); 

[y’2] and n\3 from Eqs. (14.7:4,3); [xf] from Eq. (14.14:3) [namely by 

an equation derived from the third equation of system (14.13) as Eq. 

(14.14) had been derived from the second equation of system (14.13) 

above]; [4] and n] from Eq. (14.7:2,3); xf — [xf], x'3 — [xf3], 

y? — [43],4 - [4]» [43]. [43] and«'4, [xf], [4] andn\, etc., etc. 

If care is taken to proceed with the calculation in this sequence, one 

would never be stopped, since each equation contains only one unknown 

that must be determined. 

In addition, let us recall that the mean values 



CHAPTER 14 § 151 423 

[[*?]]■ [W]]. [[*?]]. [[?,*)] 
can be arbitrarily chosen as functions of x° and x'°. 

To make the integration possible, certain conditions must be satisfied. 

However, we know they are satisfied (which, no doubt, is also easy to 

demonstrate directly ) since we know in advance that the expansion is 
feasible. 

Application to the Three-Body Problem 

152. In Chap. 11, we demonstrated the manner in which the principles of 

no. 134 are applicable to the three-body problem. Obviously, this is the 

same for the results of the preceding number, which are derived directly 

from these principles. In Chap. 11 we adopted successively the variables 

A, A', 

K A Î, T» 
(14.17) 

A, A', Pi, 

A i, A[, COi, 
(14.18) 

A, A', Vn 

A2, A 29 K- 
(14.19) 

Using the system ( 14.19), the equations of motion assume the same form 
as those in no. 134 and no. 151. 

However, the change of variables that permits passing from the system 

(14.18) to the system (14.19), is rather laborious, and in most cases the 

eccentricities are so small that this change can be avoided by the artifice 

described at the end of no. 140. Let us recall here the basic principle. In the 

function F, the terms of /uFx that depend on powers of the eccentricities 

and inclinations higher than the third are very small. Thus if we put 

pFx = fiF [ +ju2F '2, 

where jj,F \ represents the ensemble of terms of at most the third degree 

and h2F’2 represents terms of at least the fourth degree, then /i2F 2 will be 

very small and F2 will be finite. In that case, we can write 

F = F0 + fiF\ 4- fi~(F2 F F2) + -f- 

and F will still be expanded in powers of p• However, considering F ; as a 

periodic function of A, and A \, its mean value will not depend on cot, such 

that with variables (14.18) the conditions in no. 134 will be satisfied. 

It is true that the significance of the parameter p thus differs slightly 
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from that ordinarily attributed to it; however, this is of little importance 

since the purpose of this parameter is merely to demonstrate the order of 

magnitude of the various terms. 

Once these conventions are made, the results of the preceding number 

become directly applicable to the problems in question here. However, to 

avoid the difficulties discussed in Chap. 12, we will replace variables 

(14.18) by variables (14.17); this will cause some modifications in these 

results, which must be discussed in some detail. To obtain greater symme¬ 

try in the notations, we will substitute, in the remainder of this chapter, A 

and A ' for A] and A [ ; Fx for F\ ; and F2 for F'2 + F2. This cannot lead to 
confusion. 

It is known that variables (14.18), from the formal viewpoint, can be 

expanded in ascending powers of p in the following manner: 

A = ^pkAk, A' = 3>*A*. 

A = ^nkAk, A' = ^pkA'k, (14.20) 

kok ri > Pi = 'Z^kp: 

In this, Ak, A'k, Ak, A k,pk,cokare periodic functions of w and w' except for 

the case of k = 0; A0, A'0, and p° are constants, while A0 and A Ô reduce to 

wl and w2 and <y° to w’. 

Adopting variables ( 14.17) we will have at the same time 

ai = X ^k(j Ti = X ^T‘‘ (14.21) 

where a k and rk will be periodic functions of w and w’ so that, on abbrevi¬ 

ating the constant as x°, we obtain 

Let us add that, since 

AdA + A'dA ' + ^ Pidcoi 

must be an exact differential, this must also be so for 

AdA -\- A'dA ' + ^ atdrt. 
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since 

X a‘dri = Y.P'd(°i + 3 X d(-a,T> P 

If the same meaning as in the preceding number is given to wit w', «,-, «', 

. . . , then our equations will be written as 

dA d\ dF 

dwV dA 
(14.22) 

which is an equation analogous to Eq. ( 14.19) of the preceding number, 

just as expansions (14.21) are analogous to expansions (14.18) of the 
preceding number. 

Naturally, Eq. (14.22) must be supplemented by other equations in 

which the symbols A and A are replaced, respectively, by A' and A A and 

— A by A ' and — A'; a, and r, by r, and — <r( . We should add that the 

number of parameters w is 2 in the three-body problem and « — 1 in the «- 

body problem; the number of parameters w’ is 4 in the three-body problem 

and 2« — 2 in the «-body problem in the three-dimensional case while it is 

only « — 1 in the «-body problem in the two-dimensional case. 

Let us substitute expansions ( 14.21 ) and those of «, and «' into Eqs. 

( 14.22), so that the two sides of these equations can be expanded in pow¬ 

ers of //, and we can write 

dF 

dA 

dF 

dA 

dF 

dri 

= 2^pl 

= 2>P/p> 

dF 

dA' 

dF 

dA' 

dF 

da, 
p 
i’ 

which are equations analogous to Eqs. (9.10) and (9.11) of no. 127 and to 

other equations encountered in the preceding number. 

Let us continue with the calculation as in the preceding number and let 

us put 

'P’ 
— dwk ^ ~ dwk " dwk 

which are equations in which the signs 2 and 2' have the same meaning as 

in Eq. (14.21) of the preceding number and to which other equations 

must be added in which the symbols 

A, Ap, Aq, 7jp 

are replaced by the same primed symbols, or by 
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Ap, ^o> 

or by the same primed symbols, or by 

or, finally, by 

07, erf, a, 

T 1 p’ 

y p 
^ I > 

Tf. 

Clearly one must try not to confuse the symbols Zp and Z f, Tp and T f. 

Similarly, we will put 

2"^=2'pp<dK~‘ 
dwk 

+ 2pe<^--2p‘uP’ 
~k awk — 

which is an equation in which the signs 1 and 1' have the same meaning as 

in Eq. (14.22) of the preceding number, and to which other equations of 

the same form should be added, in which the symbols 

A, K u„ VP — 1 9 1 w p 

are replaced by the same primed symbols or by 

-L ^-p—1> ^o> Lp, 

or by the same primed symbols, or by 

07, erf ', <7°, U f 

T° Lf. 

or, finally, by 

T ■ T 1 ' t > • ■ 

Now, we can write a series of equations analogous to Eqs. (14.6). 

If, to shorten the notation, we put for any function u, 

du 
_ ni - 
k 
IX 
k 

IX 

dwk 

du 

— A u, 

= A 'u, 
k dw'k 

then these equations will be written in the form 

AAp + A'Ap_ ! =Lp+Zp + Up, 

H>+A'Xi =lp + Tp + Vp-n'l, 

Acrf + AVf~‘ = Sf+ Zf-f t/f + n'px'° sin w\. 

Arf + A'rf- 1 = ©f + rf + Vf - n'fx'0 cos w'. 

To the two first equations of system ( 14.23 ), it is convenient to add two 

other equations which differ from the former since all symbols there are 

primed except for n\ which is replaced by nf- Just as in the preceding 

(14.23) 
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number, the left-hand side must be eliminated for p = 0 and the second 
term on the left-hand side, for p = 1. 

On equating the mean values of the two sides with respect to w, equa¬ 

tions analogous to Eqs. ( 14.7) will be obtained. These are written as 

A'[AP-,] = [Lp+Zp + Up], 

A'[ AP-l] = [IP + Tp + Vp]-nï, 

A VP1] = [Sf + Zf+Uf] + n'px'i°sinw'i, °4-24) 

A'[rr '] = [©?+ r?+ Vf\ - n'fx'f cos w'. 

For p — 0 and 1, the left-hand side must be eliminated. 

Let us then add equations analogous to Eqs. (14.13) and (14.14). 

Indeed, we have seen that 

A dA + A ’dA ' + X cridri 

must be the exact differential of a function all of whose derivatives are 

periodic; the same will then also be true for the following expressions: 

X Ao dA0 + X o®dr°, 

X (Ai^o + A0 cW,) + X + o^dr)), 

X (A2<W0 + Aj^/lj -f A0dA2) + X (o?dT°i + ajdrj + ofdr*), - 

In each of these expressions, the first sign 2 extends over the two planets, 
in such a manner—for example—that 

X A0 dA0 = A0 dA0 + A^dA^. 

If, for the moment, we consider w’ as constants and w as the only 

variables, these expressions will a fortiori remain exact differentials while 

dr° and dcfj will be zero, so that 

crpdT° and a°dr ? = d(a°r f) 

will be exact differentials. Since this holds also for A0 dAp and since 

A0 = wv A Ô = w2, the expressions 

A^u;, + A[dw2, 

A2 dwx + A'2dw2 + X A|üWi + X cr'dr), 

A3 dwx + Ajdw2 + X (A2 dAx + Atdl2) + X (°fdri + a'dff), ... 
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will also be exact differentials of functions whose derivatives are periodic 

and, consequently, whose derivatives with respect to wx and w2 have a 

mean value independent of w'. 

Reasoning as in the preceding number, where we derived Eqs. ( 14.14) 

from Eqs. ( 14.13 ), we will find 

[A,] = const., 

+ 1 Oi 

dr) 

dw1 
= const., 

[A3] + 
dAl dA-, 
--b Aj —— 

dwl dwx. 

, dr) , dr) 

‘ dwx ‘ dwx. 

(14.25) 

= const., 

Let us first consider Eqs. ( 14.23) by setting there p — 0. It is easy to 

demonstrate that these equations are satisfied identically, provided that 

(as we are assuming here) A0 and K'Q are constants, that A0 and A Ô reduce 

to wx and w2, that a° and r° reduce to x’° cos w- and x'° sin w', that n'A is 

zero, and that n° has a suitable value. 

Let us now pass to Eqs. ( 14.24) by setting therep = 1 so that, as in Eqs. 

( 14.8), we obtain 

:V°. 
(14.26) 

\LX ] — 0, [/] ] — n 1, 

[s)]= [01]=» 
As in the preceding number, it is obvious that [LJ, [S')], and [0,1] are 

derivatives of R with respect to A, r, , and — <x; . Of course, it is necessary 

to replace, in R, the quantities A, A, cr, , and r, by A0, A0, <j°, and t°. Now, in 

Chap. 10 we found the expression for R, which is 

^AiCaf + rj) +B, 

where B and At are functions of A and A'. 

This demonstrates that Eqs. (14.26) except for the second one, are 

satisfied identically, provided that 

n'1 = - 2A? 

( where A ° and B0 are what A, and B become on replacing A by A0 ), since 

[L.]=0, [S]]=2T?t°, [0l]=-2A°o°. 

On the other hand, 

d2F 
[l']= ~^7T[A'] dhi 

d2p° [ A[ ] - V (x'°)2 - 
dA0 d\’0 ^ dA0 dA0 
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just as [ A, ] and [ A' ] must be constants as shown above, with [/, ] also 

being a constant which makes it possible to equate it to n\. 

To continue the calculation, using the same sequence as in the preced¬ 

ing number, it will now be necessary to consider Eqs. (14.6:1,1), 
(14.6:3,1), (14.6:4,1). 

The left-hand sides will reduce to 

AA„ Act,1, At), 

while the right-hand sides will be known and periodic functions of w and 

of w' whose mean value, with respect to w, will be zero since Eqs. ( 14.24) 

(p — 1 ) are satisfied. 

Thus the integration can be performed as in the preceding number and 
as in no. 127, yielding 

A, — [AJ, a) - [a]], r) - [t]]. 

Since we know that [ A, ] reduces to a constant and that this constant can 

be chosen arbitrarily, we can regard A, as completely known. 

Let us consider Eq. (14.6:2,1) whose left-hand side reduces to A/1,. 

Since the right-hand side contained no unknown quantity other than A,, 

this side becomes a known function of w and w' so that the above-applied 

procedure will furnish 

— [/tj. 

Next, [ <y\ ] and [r-] must be determined on the basis of Eqs. 

( 14.7:3,2) and ( 14.7:4,2). The right-hand side of these equations is not 

completely known. They actually depend not on [/l,] but on [A,], on 

[ ], and on [ t\ ]. The terms that depend on these quantities can be 

written in the following form: 

(i) In Eq. ( 14.7:3,2), for example, 

I 
d2R 

[All + X 
d2R 

Wk] + X 
d2R 

dr'-dr0,. 
K]- 

dr°dA0 1 ^ dr°da°k 

The first term is known since [ A, ] is known. According to the form of the 

function R * given above, all second derivatives are zero except 

d 2R */dT°i2. The two last terms thus reduce to 

2A°i\r)]= — n\x [rj]. 

In addition, the right-hand side of Eq. (14.7:3,2) contains a term in 

«;2x'° sin w\ and the right-hand side of Eq. ( 14.7:4,2) contains a term in 

— n'2x'° cos w’, both of which contain the unknown quantity n'2. 

Thus the right-hand side of Eq. (14.7:3,2) is equal to - w'1 [r‘] plus a 

known function of w' (and of n’2). Similarly, the right-hand side of Eq. 
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(14.27) 

(14.7:4,2) reduces to a known function of w' (and of n'2), in such a 

manner that our equations become 

A' [cr) ]+«,''[ r) ] = <px + n'2x’° sin w\, 

A' [T1] - ' [o’,1 ] = <p2 - «,'V cos w;, 

where <p, and q>2 are known periodic functions of w'. For abbreviation, let 

h = m[w[ + m'2w'2 + ••• + m'qw'q, 

where rri are any integers and, similarly, 

N = m[n[x + m2n2 + ••• + m'n'K 

Let 

T, cos h + B| sin h, 

A2 cos h + B2 sin h 

be the terms in h in the known functions cpx and op2. In addition, let 

Cj cos h + Dx sin h, 

C2 cos h + D2 sin h 

be the terms in h in the unknown functions [ aJ ] and [ t) ]. It is now a 

question of calculating the coefficients C and D as a function of the coeffi¬ 

cients A and B. 

Equations ( 14.27) will yield, on identifying, 

NDX + n'lC2 = AV 

— NCX + n\xD2 = Bx, 
, (14.28) 

ND2- n’lCx=A2, 

— NC2 — n'1Dl = B2. 

These equations (14.28) make it possible to know the unknown coeffi¬ 

cients C and D at least so long as the determinant is not zero. However, 
this determinant is equal to 

[N2 - (rc;1)2]2. 

Thus the determinant can vanish only if 

n— ±«;\ 

i.e. (since no linear relation with integral coefficients exists between the 

quantities «(.'), if 

h = ± Iv¬ 

or (since we need not consider separately the terms in h and in — h) if 

h = w'. 

Let us then identify all terms in w' by equating the two sides of Eq. 
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(14.27). For abbreviation, we will write h instead of w- (and A instead of 

n'1), since it is assumed here that h = w', and we continue to denote by A,, 

Bx, ..., the coefficients of cos h and sin h in the functions q>v etc. Only, 

here Eqs. ( 14.28 ) no longer have the same form since the terms in n'2 that 

enter the right-hand side of Eqs. ( 14.27) must be taken into considera¬ 

tion. Consequently, we obtain 

N(DX + C2) = Ax, 

N{ — C, + D2) = Bx + n'2x'°, 
, n (14.29) 

N(D2 — Cj) =A2 — n'2x'°, 

— N( C2 + Dx) = B2. 

To have these equations become compatible, it is obviously necessary that 

A, + B2 = 0 

and 

A2-Bl = ln’2xf. (14.30) 

The first condition must be satisfied identically since we know that the 

expansion is feasible. The second condition will yield the value of n’2. 

Since these conditions are satisfied, Eqs. ( 14.29) are no longer distinct. 

They will yield C, and £>, if C2 and D2 are known. We state that C2 and D2 

can be selected arbitrarily. This will be proved by a reasoning analogous to 

that in no. 126. In fact, the form of the series is not changed by adding, to 

A0, A', x'°, w, and w', arbitrary functions of/x, A0, and x’° divisible by /1. 

The number of these arbitrary functions is the same as that of the vari¬ 

ables, i.e., 12 for the three-body problem in space. Thus these can be used 

for satisfying 12 conditions. One way is to utilize them such that the mean 

values of A, A', A, A' as well as the coefficients of cos w’ and sin w- in the 

four functions r,, become arbitrary functions of /x and of the constants A0 

and x'°. These functions must be expandable in powers of /x\ when one 

considers separately the various terms of this series, one can see that the 

coefficients of cos w\ and sin w\ can be arbitrarily chosen in the various 

functions r f and, specifically, C2 and D2. 

Consequently, Eqs. (14.27) will permit determining [cr,1] and [ r,1 ]. 

Let us next determine [A2]. For this, we will make use of the second 

equation of system ( 14.25) where everything is known except [A2]. 

This is the same for [ A2 ]. 

Let us now calculate [Ax] by means of Eq. ( 14.7:2,2). This equation— 

compare with Eq. ( 14.7:2,2) of the preceding number and with our rea¬ 

soning in using this equation for determining [y] ] —can be written as 

follows: 

A'[/l,] — A — n\, 
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where A is a wholly known periodic function of w'. This equation can be 

integrated if one equates n\ to the mean value of the periodic function A, 

so that the mean value of the right-hand side becomes zero. The terms 

[A J ] and n\ are determined in the same manner. This leaves to deter¬ 

mine, by the same procedures, 

A2 — [A2] by (14.6:1,2), 

of-[of] by (14.6:3,2), 

rf — [rf] by (14.6:4,2), 

A2-[A2] by (14.6:2,2). 

[of], [rf] and n’3 by (14.7:3,3) and (14.7:4,3), 

[A3] by the third equation of (14.25) 

[A2\ and n\ by (14.7:2,3), 

and so on. 

Diverse Properties 

153. The six quantities Ap, Ap, of, rf, nf, n'p, defined in the preceding 

number are functions of A0, w, x'°, and w'. However, since we have 

of = x'° cos w', rf = x'° sin w', 

we can also consider these as functions of A0, w, of, and rf. We intend to 

demonstrate that these functions can be expanded in powers of of and of 

Tf- 

This proposition is subject to another, obviously equivalent, statement. 

Let us return to the variables A0, w, x-°, w'; our functions Ap,. . . will be 

periodic with respect to w and to w’ and, consequently, will be expandable 

in trigonometric series. Let 

A cos h or A sin h 

be a term of one of these series. We assume that 

h = ^mkwk +^m'kw'k, 

where mk and m'k are positive or negative integers. The coefficients A are 

functions of A0 and of x'°. 

Thus our proposition can be formulated as follows: 

The quantity A can be expanded in powers of xk°. The series is divisi¬ 
ble by 
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and all its terms contain x'° to an even power if m\ is even or to an odd 

power if m\ is odd. 

To demonstrate this proposition, I will use a recursive argument. In the 

preceding number, we successively determined the functions Ap,... by a 

series of equations for which we will keep the same numbering as in the 
preceding number. 

It is now a question of demonstrating that the values of the functions 

determined by these equations can be expanded in powers of <7° and r°. 

We will note first that, since Fean be expanded in powers of a, and r,, 

the functions denoted by Lp, lp, Sf, ©f, can be expanded in powers of 

(and the same letters primed) 

(14.31) 

Recalling the significance of the quantities Zp, etc., this means that the 

right-hand side of Eqs. ( 14.23) can be expanded in powers of quantities 

( 14.31 ), of their derivatives with respect to w and w’, and finally of /if and 

n'ip. 

We mean to prove that all these quantities, just as the right-hand side of 

Eqs. ( 14.23) and ( 14.24), can be expanded in powers of of and of r°. For 

this, we will review the sequence of operations by which, in the preceding 

number, we derived these quantities from one another, showing that none 

of them can change this property. 

These operations are as follows: 

(i) Replace on the right-hand side of Eqs. (14.23), the quantities 

( 14.31 ), their derivatives, and the quantities n1’, and n’pby their previous¬ 

ly calculated values. Since the right-hand sides of Eqs. (14.23) can be 

expanded in powers of the substituted quantities and since these substitut¬ 

ed quantities are themselves expandable in powers of of and r° (since we 

are reasoning by recurrence and assume that the already calculated quan¬ 

tities possess the indicated property), it is clear that the result of the 

substitution can also be expanded in powers of of and r° 

(ii) Take the mean value of a known periodic function either with 

respect to w alone or with respect to w and w'. 

This is what happens when the right-hand side of Eqs. (14.24) are 

deducted from those of Eqs. ( 14.23 ) or else if the mean value of the right- 

hand side of Eq. (14.7:2,2) is canceled by equating n\ to the mean value of 

A (see above, toward the end of the preceding number). 

1 *■ 1 9 • • 9 J*p9 

Ax, A2, • •. Ap, 

■ api. 
T°, 

r!> rf. ..., rf, 
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Since this operation consists in eliminating terms in the trigonometric 

expansion of the considered function, it is obvious that this cannot change 

the enunciated proposition. 

(iii) Dilferentiate one of the quantities ( 14.31 ) with respect to w or w'. 

Let, as above 

A cos h or A sin h 

be a term of the expansion of the quantity differentiated here. 

The derivative of this term with respect to w, will be 

— Amt sin h or Amt cos h. 

Its derivative with respect to w’ will be 

— Am- sin h or Am' cos h. 

It is obvious that, if A satisfies the stipulated condition, this will also be 

the same for 

±Amt and for +Am'. 

(iv) Integrate Eqs. (14.23), (14.24), and (14.25). 

Some of these equations will directly yield the unknown; these include 

Eqs. (14.25) and those that furnish n f, which must be chosen so as to 

cancel the mean value of the right-hand side of Eq. ( 14.7:2, p). However, 

other equations require an integration; these include, for example, Eqs. 

( 14.23) which have the form 

o dx o dx /1 a n \ 
n\—-h»2——=y, (14.32) 

div j div 2 

where x is the unknown function and_y is a known periodic function. Let 
then 

A cos h or A sin h 

be a term of_y. The corresponding term of x will be written as 

A . . A 

n°1ml -f 
sin h or 

n°lml + n°2m-i 
■ cos h. 

It is clear that, if A satisfies the postulated condition, this will also be so for 

| A 

n°xm i + «° m2 

The same reasoning is applicable to Eq. ( 14.7:2, p) which, after one has 

selected «fin such a manner as to cancel the mean value of the right-hand 
side, will take the form 

S» 
! 1 
k 

dx 

dw' 
=y, (14.33) 
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where y is known and x is unknown, and is thus of the same form as Eq. 

( 14.32). It should be noted, in addition, that the quantities n'\just as n°, 

depend on A0 but not on x'°. It should be added that Eq. (14.33) deter¬ 

mines the unknown x only to within a constant which can be arbitrarily 

selected as a function of A0 and of x'° Naturally, to have the theorem 

hold, it is necessary to select this arbitrary function in such a manner that 

it can be expanded in integral powers of (x'°)2. 

Similarly, Eqs. (14.25) determine [Ap] only to within a constant 

which can be arbitrarily chosen. It is necessary to make this choice in such 
a manner that 

[[A,]] 
becomes expandable in powers of (x'°)2. 

(v) The integration of Eqs. (14.7:3,p) and (14.7:4,/?) is treated in 
approximately the same manner. 

For example, let us consider Eqs. (14.27) and let us make use of the 

equations which had been previously applied in studying these equations. 

Let us first consider the case in which h is not equal to + w' and in 

which the determinant of the linear equations (14.28) is not zero. It is 

then obvious that, if the coefficients Ax, BUA2, B2 satisfy the stated condi¬ 

tion this must also be the case for the coefficients C„ Dx, C2, D2 derived 
from Eqs. ( 14.28). 

Let us now pass to the case in which h = w\ and in which Eqs. ( 14.28) 
must be replaced by Eqs. ( 14.29). 

We first have the equation 

We assume that A2 and Bu which are the coefficients of the expansion 

of a previously calculated function, will satisfy the postulated condition, 

i.e., that they are expandable in powers of x'k, that they are divisible by x'°, 

and that the quotient contains none but even powers of x'k°. It follows from 

this that n'2 also will contain only even powers of x'k° and thus satisfies our 

proposition. 

Returning to Eqs. ( 14.29 ), one can see that C, and Z), satisfy the stated 

condition provided that C2 and D2 satisfy it. However, we have seen that 

C2 and D2 can be chosen arbitrarily; we can always make this choice so as 

to satisfy the condition and, naturally, the theorem will hold only under 

this particular condition. 

Since none of our operations is able to change the mentioned property, 

this will hold in all its generality. 
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154. Let us now note the equations of motion will not change when, 

keeping A and /?, unchanged, the quantities A and co, are increased by the 

same amount. 

Let us return to series (14.21), retaining the numbering of no. 152. 

Since the mean values of the quantities Ap, Ap, A', A p, p?, col can be 

arbitrarily chosen with respect to w and w', we will choose all these mean 

values in an arbitrary manner. 

Then series ( 14.21 ) are the only ones that formally satisfy the equa¬ 

tions of motion and that, in addition, satisfy the double condition that all 

these mean values be determined and that 

^ A dA -f- ( 14.34) 

be an exact differential. 

In fact, the calculation of no. 152 determines, without ambiguity, the 

coefficients of the series subjected to these diverse conditions. 

Let us now add the same constant a to A, A ', and the <y, . We will again 

satisfy the equations of motion, according to the remark made at the 

beginning of this number, and our series ( 14.21 ) will not have changed 

except that A0, A '0, and co° have become wl + a, w2 + a, and w\ + a. 

Let us then change u;, and winto wt — a and w\ — a. The series will 

retain the same form, i.e., Ap, A ,p, p f, and co? (p > 0) will still be periodic 

functions of w and w' whose mean value will remain the same. These 

formally satisfy the equations of motion since we only have taken away a 

constant a from the constants SJ, and 7ô\ which are arbitrary. 

Finally, expression (14.34) will remain an exact differential. 

Consequently, these series cannot differ from series ( 14.21 ), which are 

the only ones that satisfy all these conditions. 

This means that the quantities Kp, Ap, ofi {p > 0) do not change when 

simultaneously reducing w and w' by the same amount. 

This also means that, if 

A cos h or A sin h 

is a term of the expansion of Ap, Ap, p 1, or co? and if 

h = X m‘w‘ + X 
then the algebraic sum of the integers m, and m\ must be zero. 

From this, one can readily conclude that, if 

A cos h or A sin h 
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is a term of a 1 or r ?, then this same algebraic sum must be equal to + 1; 

we should add that this sum is zero in the expansion of 

a 1 cos wk + r ? sin wk, 

t 1 cos wk — ap sin wk 

(and also in that of the same expressions where wk is replaced by w'k). 

Symmetry considerations and an analogous reasoning will then lead to 
other properties. 

Thus, since everything is symmetric with respect to the xz plane the 

equations of motion will not change when one changes the signs of A, A ', 

and t, without changing A, A', and cr, . 

Let us now assume that—in expansions ( 14.21 )—the mean values of 

Ap and of rf, which can be arbitrarily selected, are zero. Next, let us 
change 

A, A', r, 

into 

— A, —A', — Tt 

and, at the same time, wt and w[ into 

— wt and — w\. 

Series ( 14.21 ) will retain the same form and will not cease satisfying 

the equations of motion. The mean value of Ap and apt will not change 

since the quantities Ap and rf remain zero. Finally, expression (14.34) 

will remain an exact differential. 

For this to be the case, series ( 14.21 ) must not change. Consequently, 

Ap and a f do not change, while Ap and a f change sign when w and w' 

change sign. 

This means that the expansion of A and of cr, contains only cosines 

whereas the expansion of A and of r, contains only sines. 

At the same time, everything is symmetric with respect to the xy plane 

so that other conclusions can be drawn from this. 

Let us assume that we have to do with the three-body problem in three- 

dimensional space and consider 

A, A, (J], (Jj, <7^, cr4, 

Ay A , t,, r2, r3, t4. 

The third and fourth pairs of variables define the eccentricities and the 

perihelions. The first two pairs of variables define the inclinations and the 

nodes. 

Because of the symmetry mentioned above, the equations will not 
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change when a3, a4, r3, and r4 change sign, the other variables remaining 

unaltered. 

By entirely the same reasoning as above, it can then be demonstrated 

that series ( 14.21 ) do not change when we simultaneously change 

<t3, a4, r3, t4, w3 , w'4 

into 

- a3, - cr4, - r3, - r4, + w'3 + ir, w4 + rr. 

From this, it can be concluded that, in series ( 14.21 ) arranged in co¬ 

sines and sines of 

h — ^ rriiWi + m-w', 

the sum ra3 + m4 must be even in the expansion of 

A A' <j, a2 

A A’ T\ t2 

and odd in the expansion of 

o-3 é74, 

*3» r4. 

155. For simplifying the discussion and the calculations, we used an 

artifice in no. 152, which had already been described at the end of no. 140 

and which we recalled at the beginning of no. 152. It consists in regarding 

all terms containing the masses only to the first degree as being of the 

second order. 

This artifice is legitimate because of the extreme smallness of these 

terms but it does have some drawbacks. In fact, the significance of the 

parameter /z is somewhat modified by this. Setting [i = 0, one obtains a 

particular case of the three-body problem, namely, the case in which the 

perturbing masses are zero and the motion is Keplerian. Assigning a cer¬ 

tain determined very small value to /r, one comes to another particular 

case of the three-body problem, namely, that corresponding to the real 

masses of the bodies under consideration. However, assigning an interme¬ 

diate value of n, the equations will be those of a dynamics problem which 

has no relation at all with the three-body problem. 

This will no longer be the same if the original meaning had been re¬ 

tained for the symbol /u, as defined in no. 11. Irrespective of the value 

attributed to //, the equations will be those of a particular case of the three- 

body problem corresponding to certain mass values. 

Therefore, it will be much more satisfactory to restore the original 

meaning to the symbol /1 and to attempt to expand our variables not only 
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in powers of fi but also in powers of the constants we called x'° and which 

are of the order of the eccentricities. 

The equations of motion still have the same form; only the mean value 

of Fj, again denoted by R, has a more complex expression. More simply, 

we have as in no. 152, 

R = B + ^Ai(a^ + ij). (14.35) 

However, R can be expanded in ascending powers of cr, and r,, and the 

right-hand side of Eq. (14.35) represents only the first terms of the series, 

namely, those of zero degree and those of second degree (all terms, as is 

known, being of an even degree). 

Let us then expand our variables ( 14.17) in powers of// and x'°. Let us 

retain series ( 14.21 ) and let, on the other hand, 

where 

Ap — Ap0 + Ap, + Ap2 + ‘ ‘ , 

Ap = Ap0 + A p ! + Ap2 + • • • , 

a* = af + af +a?2+ ••• , 

rpt = r?0 + rÇ + r?2+ , 

(14.36) 

p q ’ 
A pq’ 

■ pq 

represent the collection of terms of degree q with respect to x'°. 

We still assume 

A0 = const., A0 = cov 

and, consequently, 

A0g = A0q = 0 for q> 0; 

but we no longer suppose that 

= x'° cos w'i, r° = x'° sin w'. 

We next assume that 

a?° = 7f° = 0; 

of1 = x'° cos w'i, T°1 = x'° sin w'. 

However, a ? q, r°q will not be zero. 

After making these hypotheses, let us return to the calculation of 

no. 152. 

We first considered Eqs. ( 14.23) by setting there/? = 0. These equa¬ 

tions will be satisfied provided that, with n'° being zero, of and r° do not 

depend on iv, but only on w’, which we will assume here. 
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Next, let us turn to Eqs. (14.24) by setting there p = 1 [see Eqs. 

(14.26) of no. 152]; however, it should be noted that the form of Eqs. 

( 14.23) and ( 14.24) is somewhat modified. 

In fact, let us consider, in Eqs. (14.6:3,/?), (14.6:4,/?), (14.7:3,/?), 

( 14.7:4, p ), the last term on the right-hand side. This term must be written 

as 

for (14.6:3,/?) 

for ( 14.6:4,/?) 

for (14.7:3,/?) 

for (14.7:4,/?) . . . . 

da° 

dwk 

dr* 

dwk 

-I 

-I 

-1 

-I 

n'p nk 

n 'p 

n'kp 

,'p 

daj_ 

dw'k ’ 

dw'k ’ 

dc^t 

dwk ’ 

dr* 

dwk 

(14.37) 

In no. 152, the quantities a° and r° reduce to 

x'° cos w- and x'° sin w', 

after which these four terms reduce to 

„ sin 
± n’px’° u?;. 

cos 

However, this is no longer the case here, and expressions (14.37) must be 

retained for these terms. 

In that case, Eqs. ( 14.24) for p = 1 are written in the form 

[L,] =^- = 0, 
u/ifi 

dR _ ^ .! do-° 

dr° ^ k dwk 

[A] = «!> 

d*=2*id* 

(14.38) 

dcr? dw'k 

Naturally, it must be assumed that, in R, the terms A, A, at, and r, were 

replaced by A0, A0, o®, and r°. 

These equations, in a different form, are the same as those discussed in 

Chap. 10. The first of these is satisfied identically. Let us therefore exam¬ 

ine the two last equations that must determine a° and r°. 

Let us expand n'1 in powers of x'° and let 

, (14.39) ft'i1 = n\ 1-° + «;1-2 + n;1-3 + 

where n'l q is the set of terms of the degree q with respect to x'°. 

In the two last equations of system ( 14.3 8 ), let us substitute expansions 
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(14.36) and (14.39) for the quantities aP, r° nk and let us equate all terms 

of the same degree in both members. For abbreviation, let us also put 

A"u = Z” 
/l.O 

k 

du 

dw'k 

Equating the terms of the first degree with respect to x'°, we obtain 

A"a° 1 = 2A ° r°'1 ; A"t°' = - 2A ° o? 

These equations are satisfied provided that 

«'l 0= - 2A ?. 

Let us now assume that we had already determined 

tf1, r2, . .., rq~\ 
r?-1, r?2> . 

ro.9 - 1 
• • > ' / > 

nr, nr, ■ • nrr 
and that we wish to determine 

ao.g To q n’\ q~ 1 
U I 9 ' / > 11l 

Let us equate, on both sides of the two last equations of system (14.38), 

all terms of degree q. These terms will be: 

In the third equation: 

Left-hand side . . . 2A,t°'v + known quantities. 

Right-hand side . . . A "079 + n\ \.q- 1 
da°A 
-1- known quantities. 
dw; 

In the fourth equation: 

Left-hand side ... — 

Right-hand side ... A 

Thus we can write 

2T,cr° 9 + known quantities. 

"r°9 + «;' 
. , dT0A 

9-b known quantities. 
dw' 

A"of-9 + «;,07f-9 = ^l + /7'1'9- 

A"r°'9 + «;10(j°9 = <p2 + «;19- 

'x'° sin w'j, 

'x'° cos w', 
(14.40) 

where cpt and q>2 are known periodic functions of w'. 

The analogy of these equations with Eqs. ( 14.27) is evident. It is possi¬ 

ble to pass from one to the other by changing [a) ], [ t) ], n'k, n'2 into q, 
O.q /l.O ,\.q-\ Tj , nk , n, 

Consequently, Eqs. ( 14.40) will be treated like Eqs. ( 14.27). The con¬ 

dition for success of the method [namely, that in the equations analogous 
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to Eq. ( 14.29), Ax + B2 be zero] must be satisfied identically since we 

have demonstrated the feasibility of expansion in advance. 

When the two last equations of system ( 14.38) have been satisfied, R 

will be a constant (since these two equations admit R = const, as integral, 

analogous to the vis viva integral); since this must hold, irrespective of the 

constants A0 and AÔ, the derivative — dR /dA0 must also be a constant 

depending solely on A0 and x'°. 

However, we have 

dA0 dA0 dA0 dA0 

The derivatives of F0 are constants. The first equation of system (14.25) 

demonstrates that this is true also for [ A, ] and [ A] ]. Thus [/, ] will also 

be a constant that can be equated to n\, which thus satisfies the second 

equation of system (14.38). 

In no. 152 we then determined successively Al — [A,] (and, conse¬ 

quently, also A] since [ A, ] is a constant that can be arbitrarily selected) 

aswellascr* — [a)],r] — [r)],Ax — [Ax] byEqs. (14.6:1,1), (14.6:3,1), 

(14.6:4,1), and (14.6:2,1). We changed nothing in this portion of the 
calculation. 

Let us next determine 

|>!] and [rj], 

and, for this, let us consider Eqs. ( 14.7:3,2) and ( 14.7:4,2). These equa¬ 
tions assume the form 

a ' r 11 I v-1 d R r i i d R 

'dr°do°k 'dT°dr°k 

dd\ 
dwl 

A'[r.!] =<p2-£ 
d2R 

da°da°k 
[ai] -yJli- [r‘] - Vn 
L J ^da°drï L J ^ 

dr° 

dw'k 
(14.41) 

where cpx and ç>2 are known. 

These equations are analogous to Eqs. (14.27); however, since R, a°, r° 

have less simple expressions, it now no longer happens—as was the case in 

no. 152—that for the first of these equations, for example, the last three 

terms on the right-hand side reduce, respectively, to 

0, 2A°[t-], n2r°, 

which results in a considerable simplification. 

Consequently, in Eq. ( 14.41 ) let us replace the quantities a) and rj by 

their expansions (14.36) and the quantity nk by its expansion (14.39) 

and, finally, the quantity nk by its expansion 
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n'k = n'k20 + n'21 + n'22 + 

analogous to Eq. ( 14.39). In addition, let cp 1 and <p \ be the collection of 

the terms of cpx and of <p2 that are of degree q with respect to x-0. 

We will then equate all terms of the same degree on both sides of Eq. 
(14.41). 

Equating first the terms of zero degree, we obtain simply 

A"K°]=^?+2^?[rl,-°], 
( 14 421 

A"[r,10] =<p02-2A°[*'l»]. 

Here cp and (p ° will be constants depending solely on A0 and Aq . In fact, 

by virtue of the reasoning in no. 153, which remains valid without modifi¬ 

cation, the quantities <px and q)2 can be expanded in powers of x'° cos w' 

and of x'° sin w'. All terms of zero degree with respect to x'° will thus be 

independent of x'° as well as of w'. 

It results from this that [r,1 °] and [cr10] also are constants and that 

the left-hand side of Eqs. ( 14.42) are zero. Equations ( 14.42) thus permit 

us to determine [cr* 0] and [r*0]. 

Let us now assume that we had determined 

K°], K']> [^2]> ..., [^-'] 

[r,10], [r)A], .... [T1"-1] 

n'20, n'2\ •••. n'2q~2, 

and that we wish to determine 

n'2q~\ (14.43) 

For this, let us equate all terms of degree q on both sides of Eqs. 

(14.41). 

In defining the terms dependent on the unknown quantities (14.43), 

we obtain 

A" [a) q] + n'i] 0[r) q] = + n'i2q 'x,'0 sin w'„ 

A"[r) q] +n'l0[a)q] ^fa + n'^-'xfcosw'. 
(14.44) 

where and are known functions. 

These equations are analogous to Eqs. ( 14.27). In fact, we pass from 

one to the other by changing 

KL [t1], « k > 

into 

K*]> [t)«] 
rl.O n, 2.q - 1 

Thus Eqs. ( 14.44) can be treated like Eqs. (14.27). 
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After this, one would determine 

[A2], n\, [Aj], A2, crf-[aj], rf - \tf ], A2-[A2], 

as in no. 152. 

For determining 

[0?], [t?], and n'\ 

one would make use of Eqs. ( 14.7:3,3) and ( 14.7:4,3). These equations 

would have the same form as Eqs. ( 14.41 ) and would be treated in the 

same manner. 

Noteworthy Particular Cases 

156. Series (14.21) and (14.36), as shown in no. 153, have their right- 

hand sides expanded in powers of x'° cos w' and of x'° sin w\. 

If all arbitrary constants x'° are simultaneously canceled, then our 

variables will no longer depend on w' but only on wx and w2. Their expan¬ 

sions will proceed along trigonometric lines of 

mxwx + m2w2, 

where mx and m2 are integers. 

According to our statements in no. 154, the sum m, -f m2 in the expan¬ 

sion of A and of A must be zero so that these variables will depend solely on 

wx — w2. For the same reason, this will be the same for 

cr, cos wx -F r, sin wx, 

t, cos wx — <t, sin wx. 
(14.45) 

Obviously, this means that these particular hypotheses (x'° = 0) cor¬ 

respond to the case of a periodic solution, and it is easy to prove that the 

resultant solutions do not differ from those which, in Chap. 3, were desig¬ 

nated as periodic solutions of the first kind. 

From this, it can be concluded that series ( 14.21 ) which ordinarily are 

not convergent in the geometric sense of the word will become so as soon 

as the constants x'° vanish. 

Since the constants x'° generally are small, it is obvious that the real 

solution will oscillate about the periodic solution without deviating much 
from it. 

Let us now consider, in the expansions of A, A, and expressions 

( 14.45), all terms of the first degree with respect to xj°. Taking the results 

of nos. 153 and 154 into consideration, it will be found that these have the 
form 
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X x'k° cos(wk - u>i)<Pk sin(< - W0A> (14.46) 
k k 

where cpn and tpk are periodic functions that can be expanded in multiple 
sines and cosines of wx — w2. 

The interpretation of this result is evident. In Chap. 4, we discussed the 

variational equations relative to a given periodic solution. Let us now 

consider our equations of motion and the periodic solution of the first 

kind, obtained on canceling all*'0. Expressions ( 14.46) will then be noth¬ 

ing else but the most general solution of the corresponding variational 
equations. 

From this, it can be concluded that the characteristic exponents, rela¬ 

tive to this solution of the first kind, will be 

± V — 1 (n'k - nx). 

It is of importance to note that, in this expression, the constants jc'° ( on 

which n'k and «, depend) must be equated to zero. 

One could propose to derive from series ( 14.21 ) and ( 14.36) the peri¬ 

odic solutions of the second and third kind, exactly as it had been done for 

those of the first kind. However, this is somewhat more difficult. 

To understand better what has to be done, we will first use a simpler 

example. Let us return to the series of no. 127 and let us deduce from these 

the periodic solutions of no. 42. In the series given in no. 127, we have seen 

that the mean values of the periodic functions xpt and y? can be arbitrarily 

chosen and that, specifically, this selection can be made such that will 

be zero each time that p > 0. This condition can also be realized by proper¬ 

ly choosing the mean values of xp, while the mean values of y? remain 

arbitrary. 

Thus, let us suppose that we had chosen the mean values in the above- 

described manner and that, consequently, 

", = «° 

Let us suppose, in addition, that the quantities had been chosen such 

that the quantities «° would have certain mutually commensurable given 

values. It then happens, if the calculation of no. 127 is to be performed, 

that certain coefficients become infinite unless the constants 75, are prop¬ 

erly chosen and the mean values ofremain arbitrary. 

If the choice is made in this manner, the series of no. 127 will be valid; 

these are convergent and do not differ from those of no. 44. Let us now 

return to the three-body problem. 

Let us select our constants A0, K'0, and x’° as well as the mean values of 

the various terms of series (14.21) and (14.36), considered as periodic 
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functions of w and w'. In other words, let us select these quantities in such 

a manner that 

(a) the quantities «° and n2 will have given values that are mutually 

commensurable ( we note that, if the notations of no. 155 are used, nfp will 

be zero forp>0); 

(b) the quantities n ? and n\p will be zero for/?> 1; 

(c) we will have 

n\=n2—n'A (/= 1,2,3,4). 

The selection can be made such that these conditions will be realized 

and that even half of the mean values remain arbitrary. 

It then happens, if the calculation of nos. 152 or 155 is to be performed, 

that certain coefficients become infinite unless the constants 75, and To’ are 

properly chosen so that the mean values remain arbitrary. 

If this is done, then series (14.21) and (14.36) will exist. They con¬ 

verge and do not differ from those that represent solutions of the second 

and third kind. 

Let us now suppose, without canceling xj° and x2°, that x'3° and *4° 

vanish. This will yield a series of particular solutions of the three-body 

problem, which depend only on four arguments 

W\, w2, w[, w2. 

These are the solutions corresponding to the case of the three-body prob¬ 

lem in the plane. Here, the number of arguments is reduced to four, as is 

the number of degrees of freedom. 

However, it should be noted that the quantities A and A and the expres¬ 

sions ( 14.45) depend only on the differences 

W2 — Wu w[ — wu w2 - wv 

as demonstrated in no. 154. 

Thus, if A, A, and expressions ( 14.45 ) are used as variables, the number 

of arguments will be reduced to three. This corresponds to the case of the 

problem discussed in no. 5 with three degrees of freedom. 

Let us now imagine that the mass of the first planet is infinitely small 

(case of a minor planet perturbed by Jupiter). It will first happen that 

<*2' 7_2> ^4> 

are reduced to 

£’> v'» p', q'- 

These quantities, like A', will be constants, and A ' will reduce to w2. 

From this it follows that 



CHAPTER 14 § 156 447 

n\ = 

nA — 

dw2 

dt 

dw\ 

~dT 

0, 

0. 

The number of our arguments, which had been six, is now reduced to 

four, namely, 

wu w2, w[, w3. 

Here it no longer happens that A, A . .. depend only on the differences 

w\ — w2, w[ — w2, w3 — w2. 

The reasoning of no. 154 actually proves only one point, namely, that in 

the general case A depends solely on the five differences 

w2 — wu w’i—w1 (/=1,2,3,4). 

When two of the w' reduce to constants (which happens in the particular 

case studied here), two of these five arguments will differ only by one 

constant and it is for this reason that not more than four arguments will 

remain; however, there is no call for pushing the reduction still further. 

In addition, our variables—in virtue of no. 153—remain expandable in 

powers of 

x'° cos w', x'° sin w'. 

Let us assume that x3° and x'4° are canceled. This corresponds to the case in 

which the three bodies move in one and the same plane (always assuming 

that one of the masses is infinitely small). Then, our variables no longer 

depend on w3 and only three arguments remain, namely, 

Wi, w2, w[. 

Let us then also cancel the constant x2. This corresponds to the case in 

which the orbit of the second planet is circular, i.e., to the problem of no. 9. 

Since our variables can be expanded in powers of x'° cos w' and 

x'° sin w\ and since 

x'2° = x’3° = x\° = 0, 

they no longer depend on w2, w3, or w4. Because of no. 154, they depend 

only on the differences 

u;, — W2, W\ — w'. 

However, we have shown above that there are three of the w' that no 

longer must enter their expression. These will now depend only on 

wx — w2, w1 — w[. 
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The number of arguments is thus reduced to two. We have also seen 

that the problem of no. 9 admits of exactly 2 degrees of freedom. If, in 

addition, we set x'° = 0, we fall back on the periodic solutions studied by 

Hill (see no. 41 and especially the remark made in the last three lines). 

If, in the theory of the moon, this satellite is considered as subject only 

to the influence of earth and sun and if the relative motion of these two 

latter celestial bodies is considered as being Keplerian, we come back to 

one of the particular cases investigated above. 

However, it is frequently necessary to allow for perturbations that oth¬ 

er planets exert on the earth while still neglecting the direct action of these 

planets on the moon. If this particular viewpoint is adopted, the relative 

motion of the earth and sun will no longer be a Keplerian motion but will 

be known, and the moon will remain subject only to the action of these two 

mobile bodies that move in accordance with a known law. 

Thus, let us assume that the coordinates of the sun with respect to the 

earth can be expressed by series of the same form as those studied in this 

chapter and depending on n arguments. It is easy to demonstrate, by 

reasoning more or less as done in this chapter, that the lunar coordinates 

are expressed by series of the same form, depending on n + 2 arguments. 

To explain what we really mean by this, let us return to the problem of 

no. 9, i.e., let us imagine that the earth and the sun describe concentric 

circumferences. Then the solar coordinates will depend on n = 1 argu¬ 

ment; the distances from the moon to the earth and to the sun will depend 

on two arguments (which are those denoted above by wl — w2, wl — w\ ). 

However, the lunar considérâtes with respect to fixed axes will depend on 
n + 2 = 3 arguments. 

Similar considerations are applicable to the case of more than three 

bodies. For example, let us assume that four such bodies are present. Then 

the number of iu, will be three and that of w', six. 

Let us assume that one has set the six constants x'° simultaneously 

equal to zero. An immediate consequence of this hypothesis is that the 

motion takes place in a plane. In addition, the quantities A and A and 

expressions ( 14.45 ), and thus also the mutual distances of the four bodies 
will depend on no more than two arguments 

W\ — w2, wx — w3. 

It does not follow from this (as in the case in which, considering only 

three bodies, all terms x'° are canceled ) that the series become convergent 

in the mathematical sense of the word; however, it is possible to deduce 
from this the periodic solutions of no. 50. 

The mode of operation is as follows: 
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Let us choose our constants of integration and the mean values of the 

various terms of series ( 14.21 ) and (14.36) such that (a) the quantities 

n°x-n°2, n^-n0! 

will have mutually commensurable given values; (b) that 

np=np2=npi 

for p > 0. The constants 75] and 75] as well as half of our mean values 

become arbitrary. 

If one wishes to perform the calculation of no. 152, certain coefficients 

become infinite unless one chooses the terms 75, properly, while leaving 

arbitrary 75] and the mean values. 

If this choice is made in the above manner, the series will exist, will 

converge, and will represent the periodic solutions of no. 50. 

Conclusions 

157. Such are the series obtained by computational methods discussed in 

the preceding chapters. Newcomb was the first to have conceived these 

and to have discovered their principal properties. 

These series are divergent; however, if one terminates the series at the 

proper place, namely, before having encountered very small divisors, they 

will represent the coordinates with an excellent approximation. 

The series can be used in still another manner. 

Let us imagine that the expansion is stopped at a certain term and that 

then, applying the method of variation of constants, the quantities A0, x]°, 

75n and 75] are used as new variables. These new variables will vary ex¬ 

tremely slowly and the old methods can be advantageously applied to the 

differential equations that define these variations. For example, it would 

be possible to expand these new variables in powers of time. 



CHAPTER 15 

Other Methods of 
Direct Calculation 

Problem of No. 125 

158. Let us return to the equations 

dy, dF 

dt dx, 

and 

dx, _ dF 

dt dyi 

We have in mind to satisfy these equations by means of series arranged 
in sines and cosines of multiples of n arguments 

w2, . .., wn, 

a series whose existence we have proved in no. 125. 

Let us recall also that we have 

Wk = nkl + &>k 

and, consequently, 

dXj dx, 
> nk-=-, 
k dwk dt 

05.3) 

In no. 127 we have used Eqs. (9.10) and (9.11) for determining the 
series; however, one can also operate differently. 

First, we have the kinetic energy integral 

F= const. (15.4) 

On the other hand, the expression 

Y.x'dy, (15.5) 

V dy, dy, 

k dwk dt 

(15.1) 

(15.2) 

450 
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must be an exact differential and, since the quantities x° are constants, this 
must also be so for 

which yields 

dS 

dw. 

^ U, — x°)d)>i = dS, 

dy, 
X- *“) 

dw. 
(15.6) 

I now say that Eqs. (15.2) are a consequence of Eqs. (15.1), (15.3), 

( 15.4), and ( 15.6). In fact, Eqs. ( 15.6) mean that expression (15.5) is an 

exact differential and that the integrability conditions for this expression 

can be written 

I 
dXj dy, dx, dy, 

dw„ dwdw, dwn 
= 0. (15.7) 

q A: A; <7 

Let us multiply this equation by nq \ then, retaining a constant value for 

k, let us successively set q = 1, 2, 

Next, let us add the resultant n equations. Allowing for Eq. (15.3), this 

yields 

'dXj dyt dx, dy, 

dt dwk dwk dt 

or, taking Eq. ( 15.1 ) into consideration, 

= 0 

y dx^ _^+ y dF dx, _q 
^ //in * 

(15.8) 
dt dwk ^ dx, dwk 

Let us now differentiate Eq. (15.4) with respect to wk; we obtain 

y dF dx, ^ dF dy, _Q 

" dx, dwk ^ dyt dwk 

or, taking Eq. (15.8) into account 

dx, dy, dFdy, 
V-=V--— (k= 1, 2,..., n), 
^ dt dwk dyj dwk 

whence 

dx, _ dF 

dt dy, 

Thus we can determine our series using Eqs. ( 15.4) and ( 15.6) and 

dy, dF 

dwk dx, 
(15.1a) 
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In these various equations, let us replace the quantities nk, and S 

by their expansion in powers of fi: 

Then, let us equate the coefficients of like powers of /j, on both sides. 

This will yield a series of equations that permits us to determine by 

recurrence the coefficients of the series. 

Let us assume that we had calculated 

yl 

1 k » 

yl, 

nxk, 

x], 

yl 

S0, Sx, 

and that we wish to determine 

yï p- i 

p —i9 

xpi, ypi, npk, Sp. 

In Eq. ( 15.4), let us equate the coefficients of ji p so that 

2n° 
°yP 4> + const. (15.9) 

Here, as in this entire chapter, I designate by a wholly known and 

periodic arbitrary function of w. There is no need to mention that the 

various functions, thus denoted by <E>, are not identical. As to the constant 

on the right-hand side of Eq. ( 15.9), it is arbitrary just like the constant on 

the right-hand side of Eq. (15.4). 

Let us now equate the coefficients ofon both sides of Eq. ( 15.6), so 

that 

dS 
—JL = xpk+<S>, (15.10) 
dwk 

from which, taking Eq. (15.9) into consideration, we obtain 

_ dS. 
V nk—— = <l> + const. (15.11) 

dwk 

The function Sp must have all its derivatives periodic with respect to w, 
i.e., the function must have the form 

«ip^i +a2pw2+ ••• +anpwn -yep, 

where akp are constants while ç> is a periodic function. 

Equation ( 15.11 ), by means of a calculation very similar to the integra¬ 

tion of Eq. (15.6) in no. 125, will yield the value of Sp. It should be 
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mentioned here that the constants akp can be arbitrarily selected as a 

function of the constants xl- since the constant on the right-hand side of 

Eq. (15.11) itself is arbitrary. 

After Sp has been determined in this manner, Eqs. ( 15.10) will yield 

the quantities x pk whose mean value akp as will be demonstrated below, 

can be chosen arbitrarily. 

Since now the quantities x p are known, let us equate the coefficients// p 

on both sides of Eq. (15.1a). This yields 

I n°k 
dyï 

dwk 
= <1> — np. (15.12) 

We start by determining the constant n p in such a manner as to cancel 

the mean value of the right-hand side of Eq. ( 15.12). Then, Eq. (15.12) 

will yields p by a calculation entirely similar to that in no. 127. Let us note, 

in passing, that the mean value oiyp can be arbitrarily selected as a func¬ 

tion of x f. 

159. Let 

Another Example 

ê\> • • • > 

Vu Vu • • • . V n 

be our n pairs of conjugate variables. 

Let us assume that .F can be expanded in ascending powers of £,■ and of 

77,; let us also assume that this expansion contains no terms of either the 

zero or first degree and that the terms of the second degree are written as 

follows: 

+ X^'(77')2- 

We are using parentheses (£, )2 for writing the square of so as to 

avoid confusion with the notation È, ] which will be used below and in 

which the numeral 2 is an index rather than an exponent. 

Then let 

_dF_ d?h__ dF 

dt drji ’ dt dÇi 
(15.13) 

be our differential equations. 

We now suppose that we wish to expand and 77, in powers of certain 

integration constants aif and we write 
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Vi=vl + vf+,m’+v'+'"- 
The quantities £ f and rj ? will represent the terms of the series that are of 

order p with respect to ar These must be periodic functions with respect 

to n arguments: 

wx, w2, ..., wn. 

In addition, we should have 

£ J = a, cos Wj, rf] — a, sin w(. 

We have, moreover, 

nk — n°k + nl + ' ‘ ’ + n k + ‘ " > 

where nk is expanded in powers of and n pk, representing the collection 

of terms of the order p with respect to a, . Our differential equations then 

become 

I nk Æl 
dwk 

On the other hand, 

dy, 

dwk 

dF 

di.' 
(15.14) 

X & dVi 

must be an exact differential which, naturally, will also be the case for 

dS='££idyi -£</(£ Jifc). 

Finally, let us note that S must also be expanded in powers of a, ; we 

denote the collection of terms of the degree p by Sp. 

Let us also put 

.X, = cos Wj + rjj sin Wj, 

yt = ii sin Wj - rjj cos Wj 

and 

= y,=^ypn 

xp = Çp cos Wj + T) ? sin Wj, 

yï = ÇPi sin Wj - 7]p cos Wj, 

xj = cos Wj + 7]? sin Wj = at, 

y) = o. 

whence 
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One immediately finds 

«° = -2Ak. 
Let us then note that Eqs. (15.14) furnish 

dx, 
X nk -,- 

* dwk 

X"‘ 
dy, 

dF 
- COS W: 

dp, 

dF 
~ -7- sin wt - n,y„ 

dît 
(15.15) 

dF 
-sm w, 
drjj 

dF 
H-cos wt + njXj. 

dît 
(15.16) 

We calculate our series by means of Eq. ( 15.16), from the equation 

F— const. (15.17) 

and from 

dS „ dr). d(t '77, ) 
-= y t —'j-_ y 1 h 1. (15.18) 
dwk ^ dwk ^ dwk 

Equations (15.15) and thus also Eqs. (15.14) and (15.13) are readily 

derived from this. Let us thus assume that we had determined 

Î), ÎU •• 
(rP—i. 

> Si > 

vl vl ■ ■ 77 P ~ *■ 
» 'll > 

xj, xj, . . x p 1 • 

yj> yj •• , v?_1- 

n°k, n\, . . , npk~2', 

Sx, S2, • ■ , sp, 

and that we wish to determine 

it* Vn yï. npk p+ 1 ■ 

Let us equate all terms of order p on both sides of Eq. ( 15.16) and all 

terms of the order p + 1 on both sides of Eqs. (15.17) and (15.18). 

For abbreviation, we will put, as in the preceding chapter, 

Ah = X n° 
du 

dwk 

From this, it follows that 

Ay? = 0 + 2 A,(£ Pi cos w,• + n 1 sin wt ) + njx ? + n f ~ 'x], ( 15.19) 

£ 2At (i }£■ p + v'.V D + + const. = °- (15.20) 
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Noting that 

d£) = - y'idwi, dy) = g )dwif 

we can write 

^rLL = iin+vini+<f- 
dwk 

(15.21) 

Combining Eqs. ( 15.20) and ( 15.21 ) will yield 

A Sp+ , = 4> + const. (15.22) 

On the other hand, Eq. ( 15.21 ) can be written as 

dSn+l 
-f±L = akxpk+^, 

dwk 
(15.23) 

while Eq. ( 15.19) can be written as 

Ay ? = 4> + n pt ~ 'a,■. (15.24) 

Then Eq. (15.22) will yield the value of Sp + , and Eq. (15.23) will 

furnish the quantities x pk. By writing that the mean value on the right- 

hand side of Eq. (12) is zero, we will obtain n pt ~ 1 and Eq. ( 15.24) will 

then yield y f. Having thus found y f and x we will have g f and y p. 

For determining these quantities it would also have been possible to use 

the following equations, which are derived from Eq. ( 15.24) by equating 

all terms of the order p on both sides and which are analogous to Eqs. 

(15.21) of no. 152: 

^pi = 2Aiypi + npi-Xy) + <&, 05.25) 

At7?= -2 (15-26) 

By an argument similar to that given in no. 153, it would then have 

been obvious that the quantities g pt, y p can be expanded in powers of 

a, cos wit a, sin wt, 

and that this also holds for npi (i.e., those quantities that do not depend on 

wt can be expanded in even powers of a, ). 

This obviously also is true for the periodic terms of Sp + ,, in view of Eq. 
(15.22). 

It is known that 

Sp+ 1 = P\W\ + PlW2 + " ' + PnWn + , , 

where /3 k are constants and S rp + , is periodic. 

For + j, we learn from Eq. (15.22) and from a reasoning analogous 

to that in no. 153 that the condition has been satisfied. As to the quantities 
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fi k, these can be arbitrarily chosen. Thus we can assume that (3k can be 

expanded in even powers of a, and is divisible by (ak )2. 

There is no need to repeat here the argument given in no. 153. 

Let us merely note what happens when treating Eq. (15.23). This 

equation yields the value of akx pk which, naturally, must be divisible by 

ak \ in fact, I say that dSp + ,/dwk and 4> are divisible by ak. 

It should be noted that, if ^ is a function expandable in powers of 

a, cos wt and a, sin w, and if this function is expanded in a trigonometric 

series, then the coefficient of the cosine or of the sine of 

w,uq + m2w2 + • • • 

in this expansion will be divisible by 

Thus the coefficients of the terms depending on wk are divisible by ak; 

consequently, d\l>/dwk is divisible by ak. 

^LlL = a+^2±I 
dwk dwk 

and 13 k has been selected as divisible by ak, so that dS 'p+x /dwk must also 

be divisible according to what we have seen above. Consequently, this 

holds also for dSp + , /dwk. 

On the other hand, 4> is a sum of terms. Each of these terms is the 

product of factors one of which has the form 

dÇp< dy]p 
—— or -, 
dwk dwk 

and, consequently, is divisible by ak. 

Therefore, <t> is also divisible by ak. Q.E.D. 

160. Let us assume that F depends on a very small parameter/r and has 

the form 

F=F0+/zF, + /Æ + 

We are still assuming that Fean be expanded in powers of and of 77, , 

that the expansion of F0 starts with terms of the second degree, and that 

these terms are written as 

X^/(£)2 + 'ZAi(y>)2- 

However, we also assume that the expansion ofF,, F2, . . . , starts with 

terms of the first degree. 
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We now propose to expand 

in Vi> x„ y„ nk, S, 

not only in powers of the constants or, but also in powers of these constants 
and in powers of p. 

Let us denote by 

ip, 
p.q 

vïq> 
■ pq 

yr, 
p.q 

'p.q 

the terms of these series that are of the degree p with respect to or, and of 
the degree q with respect to p. 

In addition, we will have 

i°° = Vi° = o, 

H ° = or, cos w,-, 7]) ° = or, sin w,-, 

n°k°= — 2Ak. 

We also have 

whence 

=E -X <«£!•>,>, 

S„.0 =s 1.0 = 0, 

si.o = — iX (aiî2wi — |^(or,)2 sin 2wt. 

Let us then assume that we had calculated 

i 
a.b 

Vi 

a.b y.a.b 
■A ; , Ti 

a.b o- 1.6 
nk ’ 1.6 

(a<p, ci b^p -)- q), 

with exception of the combination a=p,b = q, and that we wish to calcu¬ 
late 

Let us return to Eqs. ( 15.13)—( 15.18). On both sides of Eq. (15.16), 

let us equate all terms of order p with respect to or, and of order q with 

respect to//. Similarly, let us equate in Eqs. ( 15.17) and ( 15.18) all terms 
of order p + 1 with respect to or, and of order q with respect to p. 

Let 

= x nr du 

dwL. 

This will return us to Eqs. ( 15.19)-( 15.26), with the one difference 

that the single indices (superscripts or subscripts) p,p + 1, orp — 1 will 
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be replaced by the double indicesp.q,p + X.qorp— \.q and that the single 

indices 1 or 0 will be replaced by the double indices 1.0 or 0.0. 

These equations, as in the preceding number, will be used for succes¬ 

sively determining Sp + x q, x pkq, n ' q, y fq, and thus£f9 and rj pq. 

As in no. 153, it will be seen that § p 9 and 77 f9 can be expanded in 
powers of 

ak cos wk and ak sin wk. 

It results from this that £°'9 and 77°9 are constants. 

On the other hand, it should be noted that the remark in no. 126 in 

virtue of which the mean values of x f and y p can be arbitrarily chosen is 
applicable here only with certain restrictions. 

Let us return to the reasoning in no. 126. Let us consider the expansion 
of and of 77, in powers of p and of a,. 

Let us change there a, and wt into 

«/(l + <Pt)> wt + il>i, 

where <p, and rp, are two functions that can be expanded in powers ofp and 

of (ak )2 and reduce to zero when these quantities vanish. The values of 

v°'q will not be modified by this change. As a result, the mean values 
of 

*ïq, ypiq (p > 0) 

can be chosen arbitrarily, but this is not the case for 

x?-9, y°q. 

It is easy to see that these latter mean values must be zero. 

Let us now suppose that we return to Eqs. (15.13)—(15.18) and that, in 

Eqs. ( 15.13)—( 15.16), we consider the terms of zero degree with respect 

toe*, and in Eqs. (15.17) and ( 15.18) the terms of zero or first degree with 

respect to a,; this will yield equations whose form will differ somewhat 

from that of Eqs. ( 15.19)—( 15.26) to which we must thus return. 

This difference in form is due primarily to the fact that npi~x'q is zero at 

p = 0 and to the fact that, since 9 and 77° 9 are constants, 

A£°’9 = À77°'9 = 0. 

It is sufficient to consider Eqs. ( 15.13), (15.14), (15.17), and (15.18) 

from which Eqs. (15.15) and ( 15.16) are directly deduced. For abbrevia¬ 

tion, let us put 

£l,=ê\x,+£ï1+iï2+-- 

Let us similarly define 77° and 77' and let F * be the result of the substitu¬ 

tion of and 77° in F for and 77, . 
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The terms of zero degree in Eqs. ( 15.13) and ( 15.14) will yield 

(IF* 

~dïï 

dF* 

dv° 
= 0. 

These two equations permit determination, by recurrence, of the quan¬ 

tities gf9 and 

The terms of zero and first degree of Eq. ( 15.17) then yield 

F* — const., 

dF* , dF* 
rj) = const. 

The first of these two equations permits us to determine the constant on 

the right-hand side [which cannot be arbitrarily chosen as had been done 

for the constant of Eq. ( 15.20 ) when assuming p> 1 ]. 

The second equation is self-satisfied and the constant on the right-hand 

side must be zero since the two derivatives of F* are zero. 

This leaves Eq. (15.18); the zero-degree terms furnish 

d(S0 0 + S0 , + S0 2 + •••)= 0, 

noting that, since 77° are constants, drf will be zero. It is sufficient, for 

satisfying this equation, to assume that the quantities S0 q are constants. 

The first-degree terms then furnish 

rfis, „ + su + sL2 + •••) = 2 - 2 di ;>?• 

It is sufficient, for satisfying this expression, to assume that 

y)q + Ç°-2y)q~2 + • 

The terms of zero and first degree will thus raise no difficulties, unlike 
what could have been feared. 

Problem of No. 134 

161 . The same method obviously is applicable to the problem of no. 134. 

Let us resume the notations of no. 151. 

Let us return to Eqs. ( 15.1 )-( 15.6) of no. 158, by agreeing that the 

signs 2 extend not only over all x, (or over all;;,, or over all w,, etc.) but 

also over x, and x\ (or over;;, and y1', or over wt and w', etc.). 
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As in no. 158, we will then see that Eqs. (15.2) are consequences of 

Eqs. (15.1), (15.3), (15.4), and (15.6). Therefore, we will retain Eqs. 

(15.4), (15.6), and (15.1a), which are useful for determining our un¬ 

knowns. 

As in no. 158, we will replace, in these various equations, all quantities 

Xj, _y,, nif and S’ by their expansions in powers of // and then equate the 

coefficients of like powers of /u on both sides . 

However, the resulting equations are not the only ones which we will 

use; we will also employ those derived from the former by equating on 

both sides the mean values taken only with respect to wk (but not with 

respect to w'k ). 

Let U be an arbitrary periodic function with respect to w and w'. As in 

no. 151, we will use the symbol [ U] for denoting its mean value taken with 

respect to w alone and by [ [ U]] its mean value taken with respect to both 

wand w'. 

This will furnish 

but, in general, 

d[U) 

dwk 
= 0, 

d[U] 

dwk 
ko. 

So far as 5 is concerned, this is not a periodic function but merely a 

function whose derivatives are periodic. 

Thus we will only have 

' dS ' 

. dwk . 
= const. 

Let us now suppose that we had completely calculated 

xi X2 
A/> -/V/> ■, xp- 

yl y). -, yr 
n°k, n\, • > npk- 

as well as jc? 1, .y T \ and , to within an arbitrary function of w' and 

that we now wish to determine x ?“ \ yn p and Sp_ , and then to 

calculate n pk completely and to calculate x ?, y ?, and Sp to within an 

arbitrary function of w'. 

Equation (15.9) of no. 158, obtained by equating, in Eq. (15.4), all 

terms in /lip, will assume a slightly different form since the right-hand side 

will no longer be wholly known. This formula will be written as 
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I"^ = IfS•>,?“l + 2^^*?“' + ,I, + cons,• (l5'9a) ay; ax’ 

In the case of p = 1, we simply have 

^ n°kx[ = Fx + const. (15.9b) 

It goes without saying that in Fx the term xi is assumed to be replaced 

by x° and the term yt by y° = w(. 

The right-hand side of Eq. ( 15.9a) is not entirely known since x ? ~ 1 

and y 1 ~ 1 are known only to within an arbitrary function of w1. 

Let us now take Eq. (15.10); here again, since the right-hand side is not 

entirely known, the form will be somewhat modified so that we must write 

*L+lx]*£l 
dwk i dwk 

+ <t>. (15.10a) 

Noting now that 

xprx-[xpr'] and yprl-[yprx] 
are known, Eqs. (15.9a) and (15.10a) can be written as 

dF, dF, 
J^n°kxpk [y> 1 ] + ^ + const., (15.9c) 

dÿï 

^L=^s + I[^r']^- + ix)d[yr'] +4». 
dwk i dwk i dwk 

(15.10b) 

One sees the role played by dy)/dwk; it is this that leads me to first 

determine this quantity by a detailed study of the first approximation. For 

this, we have the above equation (15.9b) as well as the equation 

dS | 

dwk 

such that Eq. (15.9b) will become 

(15.10c) 

X n°k ~~ = F\ + const- dwk 

We note first that the quantities n’k are zero and that, consequently, we 
can write 

dS 
S n°k ——— = Fx -\- const., (15.9d) 

dwk 

where S designates a summation extending over only x, or over only x', 

while X is to denote, as above, a summation extending simultaneously 

over x, and x'. Using the mean values of the two sides, and since 
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we will obtain 

</S, 

dwk 
const., 

[F, ] — const. 

However, [F,] is actually R which is independent of x° and of x'°. 
Since these are arbitrary constants, the constant on the right-hand side 
will also be arbitrary and Eq. ( 15.9d ) can be integrated without difficulty. 

Let us now, on both sides of Eq. (151a), equate the first-degree terms, 
so that 

I «2 
dy]_ 

dwk 
+ «, y d2fo y dF' 

T dx°,dx°k " dx° ' 

The right-hand side is wholly known. In fact, the second term there 
depends only on x° and on y° = w,. The first term, in addition, depends on 
xj, (but not on xk since F0, by hypothesis, does not depend on x'). How¬ 
ever, these quantities are equal to dS{/dwk which are known, since 5, had 
been determined to within an arbitrary function of w'k. 

In addition, the mean value of this right-hand side, taken with respect 
to wt along, is a constant. 

In fact, this mean value is equal to 

_ v d F° r r1 1 — d [-l± 1 
^ dx°dx°k [ a J dx(), 

However, 

[4] 
' dSx 

. dwk 
= const., 

d [F, ] 

dx° 
-= const., 
dx° 

since R depends only on x° and x'° which both are constants. 

Thus since the mean value of the right-hand side is a constant, we can 
equate it to n). The quantity n'1 will be calculated in a similar manner 
except that, in this case, the first term will be absent and the equation 

reduces simply to 

. dR 

n‘ ~ dx'° ' 

The equation can then be integrated without difficulty and will yields,1 

to within an arbitrary function of w’. 
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What we stated with respect to_y,' holds without change for y'1. As to 
x'\ this is equal to dS^/dw] and, consequently, is known to within an 
arbitrary function of w’. 

Let us now return to Eqs. ( 15.9c) and (15.10b). 

Let us take the mean values of both sides with respect to w alone, and let 
us first perform this operation for Eq. (15.10b) by assuming that the 
derivative dSp/dwk has been taken with respect to one of the quantities wk 
rather than with respect to one of the quantities w'k. We will have 

dSp 

dwk 

[*r‘] 

d [yp '] 
- const., -— = 0, 

dw. 

dy) 
1 

= [*r‘] 
dy) 

dw dwk 

from which it finally follows that 

[x pk ] = <f> + arb. const. 

k J 

= 0, 

( 15. lOd ) 

Let us operate in the same manner for Eq. ( 15.9c), so that (since n'k = 0), 

X n°kxk = Sn°kxp, 

dFV 

.dy°i. 

dF; 

_dx°t 

dR 
-= a given const. 
dx° 

Thus we will have 

S/î°[*£] +4> +const., (15.9e) 

whence, using Eq. (15. lOd), 

dR 
[*? '] + const. 

or 

dR ] +s— r 
J dx’° L 

.'P — i ■ = 4> + const. 

However, [xp 1 ] is known to within a constant. In fact, we have an 
equation analogous to Eq. (15.1 Od ) on changing p into p — 1: 

[x p 1 ] = 4> + const. 

Taking the equality 
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into consideration, we can thus write 

Srt''[x,'p_1] = 4> -f const. 

Let us now return to Eq. (15.10b) but change there wk into w'k and p 

into p — 2. Noting that [x? 2] and 2] are known, this equation 
can be written as 

—^_L = 1 + 4>. (15.10e) 
div'k 

Here, Sp _ x is a sum of terms some of which are periodic with respect to w 

and to w' while others reduce to a constant multiplied by one of the quanti¬ 

ties w or by one of the quantities w'. This results from the above hypothesis 

that the derivatives of Sp_ , are periodic. 

If, in this sum of terms, we omit all those that depend on w, we will be 

left with a function of w', which can be designated by [S' j ] ; since we 

had assumed that the function Sp _ , is known to within an arbitrary func¬ 

tion of w', we can say that we know Sp_l — [Sp _ , ] but not [5p _ , ]. 

We then have 

d [sP-i ] 
dw'k 

[xkp~']+<î> 

and, consequently, 

Sn-' —^ 1 ^ = 4> + const., 
dw\ 

which is an equation yielding [Sp _ , ] and thus achieving the determina¬ 

tion of Sp _ j . 

Equation ( 15.10e) and the analogous equation 

divk 

thus achieve the determination ofx£“ 1 andx^p~ *. 

Next, let us equate, on both sides of Eq. ( 15.1a), the terms of degree/?, 

so that 

dv ? dv p- ~ 1 
V «2— +Y/ii-V-+ npi = <S> + A+B, (15.12a) 

dwk dwk 

where A represents the coefficient of p, p in — dF0/dx, while B is the 

coefficient of /z p~ 1 in — dFx/dx,. 
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The quantity F0 depends only on the x, which now are wholly known, 

up to and including x Thus we can write 
• -, 

d 2F 
A = Q-S 0 xC 

dx°dx°k 

Similarly, since the x f “ 1 are wholly known, we will have 

d2F 
a--^yPk-x 

^ J..0 J„0 ' k dykdx, 

or even, since we know 

y% 

5 = 0 y d 2p' 
k dfidjJj 

br1]- 

On the other hand, the quantities n'k are zero and, since y f 1 is known 

to within an arbitrary function of w’, we will have 

2* 

0 dyl dy f 

dwk dwk 

. ^r1 „ , 1 
1 =0 + S n'kl 

dwh dw',. 

whence 

S n°k 
dypt 

dw,. 
S n 

*-2 

dwk 

d2F0 

dx°dx°k 

+ npt 

-x 
d2F, 

(15.12b) 

br1]. 
dy°kdx° 

Let us now take the mean value of both sides and note that 

d2F | 

Ydyldxl 

d2R 

dy°kdx° 
= 0; 

it follows that 

' • ^ dx°dx°L L J dwk 

We have found above 

(15.12c) 

(15. lOd ) [x pk ] = O + arb. const., 

which means that, since the constant on the right-hand side can be arbi¬ 

trarily chosen, [x pk ] is known. We thus have 

S n 
„ dh-r'] 
k 

dw',. 
= O — n p,. (15.12d ) 
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The term n p can be used for canceling the mean value of the right-hand 

side, after which Eq. ( 15.12d ) is readily integrated, yielding [y p ~ 1 ]. 

In a similar manner n'ip and [y'] is calculated, so that x pt~ \x'ip~ \ 

will now be wholly known. 

Then, Eqs. ( 15.9a) and ( 15.10a) can be written as 

yi nkx k — S«°x pk — <t> 4- const., 

dSp 

dw. 
= xpk+<b, 

dSp 

dw[. 
= x'kp + 4>, 

from which we obtain the equation 

( 15.9f) 

(15.10f) 

(15.10g) 

Sn°k —— = 4> + arb. const., 
dwk 

which determines Sp to within an unknown function of w' (since, above, 

we selected [Sp , ] in such a manner that the mean value of the right- 

hand side reduced to a constant); that is, it determines 

sP-[*„]■ 

Equations (15. lOf) and (15.10g) will then yield xpk and x'kp to within 

functions of w', i.e., they will determine 

xpk~[xpk], x'kp-[x'kp]. 

We should add that, since Eq. ( 15. lOd) already yields \x pk ], the quantity 

x pk is wholly known but not the quantity x'f. 

This changes Eq. (15.12b) into 

dv p 
Sn°k —— = <h. ( 15.12e ) 

dwk 

The mean value of the right-hand side is zero because of Eq. (15.12c). 

From this, we derive 

and, similarly, 

ypt- [yp] 
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Three-Body Problem 

162. As independent variables we will take 

A, A', cr,., 

A \ , A j , Tj 

and, as in no. 152, by eliminating the indices that now have become use¬ 

less, we will use A and A ' instead of A, and A [. 

Next we will attempt to satisfy the equations of the problem by substi¬ 

tuting each of these variables by series (14.20) of no. 152 and the series 

( 14.36 ) of no. 15 5; we will proceed in powers of /r and of certain constants 

denoted in nos. 152 and 155 by and x;° and denoted here by a:, in 

analogy with the notations of no. 159 to avoid confusion. 

In addition, we have 

Aqo — const., Aqo — const., Aqq uq, A qq ^2? 

A0.„ = K.q = A0.g = A 'Q q = 0 (q > 0); 

af° = r°° = 0; 

<7° 1 = cos w’; r°A = a, sin w'-. 

The next step is to form the equation that is to be analogous to Eq. 

(15.6) and to Eq. (15.18). 

This equation will be 

dS dA , . ., dA’ 
— ( A — A0 o ) —-h ( A — A0 o ) 

dw dwk 

dr, dicP^Tt) 
+ 2>'77-I 

dw. 

dwk ^ dwk 

with an analogous equation in which wk is replaced by w’k. 

To Eq. (15.6a) and to the kinetic energy equation 

( 15.6a) 

F = const. (15.4) 

we will add the following equations: first, 

dA 

dt 

dF 

dA ’ 
(15.1b) 

to which still another equation of the same form should be added, in which 

A and A are replaced by A' and A '. Further, let us agree once and for all, 

without having to repeat it again, that to each equation that is not symmet¬ 

ric in A and A', A and A ', etc., another equation where these symbols are 

interchanged is to be added. The symbols 1 and S retain the meaning they 

had in the preceding number. Secondly, we will again have equations 

analogous to Eqs. (15.16) of no. 159. 
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For this, as in no. 159, let us put 

Xj = cr, cos w'i + Tj sin w', 

yi — a, sin w\ — r, cos w', 

x f19 = a f 9 cos w'j + t 1q sin w’, 

whence 

xV=a„ yfl = 0. 

We then will have 

dF dF . 
=-cos vu}-sin w'j — n\ yt, 

dr, da, 

1 
dy, dF . , dF , , 
-=-sin w, H-cos w' + n x, . 
dwk dr; da, 

It is obvious, as in the preceding numbers, that the equation 

d A _ dF 

dt dA 

(15.27) 

(15.28) 

as well as Eqs. (15.27) are a necessary consequence of Eqs. (15.6a), 

( 15.4), (15.16), and (15.28). Thus these latter are sufficient for solving 

the problem. 

The problem, posed in this manner, presents a combination of all the 

difficulties that we had solved separately in the first number of this 

chapter. The same procedures are applicable here. 

We will use the following notation for abbreviating some of the nota¬ 

tion; let us write 

*f=5>r. 

a^ = 2aPiq 
P 

[see series (14.36)]. Similar notations will be used for symbols other 

than cr, . 

After this, we can start by canceling// in all our equations; Eq. ( 15.4) 

will yield 

F0( A0,Aq )= const. (15.4a) 

Since the constant on the right-hand side is arbitrary, we will satisfy this 

equation by giving A0 and Aq arbitrary constant values. We can assume, 

as we did above, that these constants are independent of i.e., that 

AO (?=0 for q>0. 
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We will then have, starting from Eq. (15.6a), 

dS0 = y ^ do]_ _ y d(o°Ar°) 

dwk ^ ' dwk ^ dwk 

So far as Eq. (15.1b) is concerned, it will reduce to 

n T = — 
dFp 

dAn 

and, similarly, 

dFp 

dA0 

Equations ( 15.27) and ( 15.28) will yield 

dx°. 
I «° 

I> 

dwk 

dwk 

(15.6b) 

n)y„ (15.27a) 

fO 0 
Z Az • (15.28a) 

These equations are satisfied by assuming that the terms n'° are zero and 

that the terms x°, y°, a°, and r° do not depend on w but only on w’. 

Let us now determine S0 or, rather, 

s0-[s0]. 

Since cr° and r° are independent of w, Eq. (6.1a) will yield 

dSp _ dS0 _q 

dwt dw2 

which means that S0 does not depend on w but only on w'. 

Let us now consider all terms of the first degree in // in our equations. 
Then Eq. ( 15.4) will give 

S/î°A| = 7î°A, +n°A| = Fx -f const. (15.4b) 

Equation ( 15.6a) will furnish 

dSx 

dw. 
= SA, 

dA{ 

dw. dw. I 
d(,Jf-'rj) 

dw. 
(15.6c) 

J k ULUf. U. LU ^ ULUfc U LU ^ 

The first term on the right-hand side obviously reduces to A, for k = 1 

and to AJ for k — 2, since we know that 

Ap — w|, A p — W-,. 

For the same reason, on transforming wk into w’k, we obtain 

, dr* , 0 dr) d{aVr\) dS 

dw 7 = 2 O’, 
dw'. 

■ + <*i 
dr) 

dw'. dw'. 
( 15.6d) 
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It has been shown above that rf depends neither on w, nor on w2, and 

the same holds for of; thus it follows that 

d[S, 

dwk 
= const., 

dw, 
0, 

^(of'rj)1 

or, 
dr 

dw, 

l i 

= K] 
dr[ 

dw, 

l i 

dw,. 

= 0. 

= 0, 

If we take the mean values of both sides in Eq. ( 15.6c), and if we succes¬ 
sively set k = 1 or 2, we will have 

[A,] 

[a;] 

' dS | ' 

. dw, . 

dS, 

. dw2 . 

- const., 

= const. 

Taking the mean values of both sides in Eq. (15.4b), the left-hand side 

will become an arbitrary constant with which the constant of the right- 

hand side can be interchanged, with the result that 

[F,] = R = const. (15.4c) 

In F„ the variables A, A, a,, and r, are assumed to be replaced by A0, A0, 

cr°, and rf. Since the variables A0 and A have disappeared from R, R will 

remain a function of A0, <r°, and r°. This function can be expanded in 

powers of of and of rf. The lowest-degree terms are of the second degree 

and are written as 

2T,(of)2 + 2T,.(rf)2. 

Let us now pass to Eq. (15.1b); the first-degree terms in /u will yield 

d 2Fn S„oA + s»* dA° 

dWr dw. 

dFx d2F0 A| 

dAn dAl dA0 dA’0 
Al. (15.1c) 

Taking the mean values of both sides, we obtain 

n = 
dR 

dAn 

d2F, 

dAl 
r [A,] 

d2F0 

d A^d A'q 
[AÎ ] ( 15. Id ) 

This equation will be used below for determining n \. 

Let us now turn to Eqs. ( 15.27) and ( 15.28), which yield 

dwk ^ 

0 dy) 

dx f dF, 

dwk 

dy°i 

= —- cos w 
drf 

= ^4 sin w- 
dw,. dr\ .0 

dF, 

daf 

dF, 

dof 

sin w\ — n'1 y% (15.27b) 

cos Wj + n' xj (15.28b) 
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or, taking the mean values of both sides and noting that x°, _jf, o®, r° 

depend only on w', 

S< = cos w; - ^ sin w't - y°t, (15.27c) 

,, df, dR 

dR 

da' 

dR 
Snk-— =-sin w--cos w- — n\ jf. (15.28c) 

dwk dr° da' 

We are now in a position to determine the quantities S0, of, r°, and nk. 

The analogy with the problem in no. 159 is quite obvious. 

We pass from the present problem to that of no. 159 by changing, 

respectively, 

cr, x° 
9 y„ lk » W k> R, S0 

into 

ii, V n xi> y a nk» wk, F, S. 

In that case, Eqs. (15.4c), (15.27c), and (15.28c) are, respectively, 

equivalent to Eqs. (15.17), (15.15), and (15.16) of no. 159. Similarly, Eq. 

( 15.6b'), obtained on replacing wk in Eq. (15.6b) by w’k, is equivalent to 

Eq. (15.18) of no. 159. 

It is true that R depends not only on of and on r° but also on A0 and . 

However, these quantities—as we have demonstrated above—must re¬ 

duce to constants. 

Consequently, the procedures of no. 159 become applicable and will 

furnish 

According to Eq. ( 15.4c), the quantity R reduces to a constant which 

latter will depend on a,, A0, and AÔ which are our integration constants. 

From this it results that dR /d\Q is still a constant. Since [ A, ], [ AJ ], 

and the derivatives of F0 are still constants, the right-hand side of Eq. 

( 15. Id) will thus also be a constant, which makes it possible to set it equal 

to n\. 

The quantity n\ is calculated in exactly the same manner. 

The right-hand side of Eqs. (15.27b) and (15.28b) are now completely 

known, which makes it possible to write these equations in the form 

S n% 
dx) 

S n 

dwf 

o dy) 

= 4), 

dw. 
= 4>. 
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The mean value of the right-hand side is zero because of Eqs. ( 15.27c ) 
and ( 15.28c); thus these equations permit calculating 

[*!]» y'-[y' ]> 
and, consequently, 

J-[<*)]’ r) - M], dT' 
dw, 

However, it is preferable to operate differently. 

Equating on both sides of 

dTj dF 

dt da, 

the terms in /i, we obtain 

dr) 
—C = O, 
dw 

which furnishes the value of 

r ■i-KJ. 
dr) 

dw. 

Equation ( 15.6c), for wk = w{, will then give 

dS | 

dw. 
= AI + X(a?-of>) 

whence 

(15.29) 

(15.30) 

A, = + 4>, a; = 
_dS 

dw-, 
+ 4>. 

Then, since Fx is known and since the constant on the right-hand side of 

Eq. ( 15.4b) had above been selected in an arbitrary manner, Eq. ( 15.4b) 

will become 

S„0-^L = q>) 
dwk 

an equation which determines 

S,-[S,] 

and, consequently, 

A| [ A,], A, — [A, ]. 

Since, as stated above, [A,] and [ A\ ] are constants that can be chosen 

arbitrarily, A, and A\ are known. 

Equation ( 15.6d) then gives us 
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dr° dS, + 4>, (15.31) 
dw'k dw'k 

or, taking the mean values and noting that dr°/dwk does not depend 

on wk, 

dw[ dw'k 

(15.32) 

or else, by subtracting and noting that St — [S’, ] is known, 

dr° 
Et-t i°\-[<*]) = *• 

dwk 

This yields a sequence of linear equations, from which we can derive 

Let us note that the equation 

da) 
S «°-- = O, 

dwi. 
(15.33) 

(15.34) 

deduced from 

d(J, _ dF 

dt dr, 

by equating the terms in //, is a consequence of Eqs. (15.29), (15.30), 

(15.32), and of the previously satisfied equations (15.4a), (15.4b), 

(15.1b), (15.27a), (15.28a), (15.6b), and (15.6c). 

This is practically obvious and we will return to this point later. It is 

then easy to derive Eqs. ( 15.27b) and ( 15.28b) from this. 

Since, on the other hand, 

S n 
l dAc 

dw. 
= n; 

is known through Eq. ( 15.Id), we can write Eq. (15.1c) in the form 

s n°k 
o dA i 

dwL 

Since the mean value of 4> is zero according to Eq. ( 15. Id), this equation 
will yield 

Similarly, we obtain 

Ai-[At\. 

A[- [A[]. 
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Let us now consider, in our equations, all second-degree terms in //. 
First, Eq. (15.4a) will furnish 

a2 = X+ Zti:+ S+ ° +const- <'5.4d) dal dr] dA, 

Similarly, Eq. (15.6a) yields 

dS' =SA,-^ + SA, dA' 

dw dwL dw. 

1 07 
d^_ 

dwk 
+ CTi 

drJ 0 dij d(a°ATj) 

dw. 
+ a, 

dw, dw, 
( 15.6e) 

Let us take the mean values of the two sides. I say that the mean value of 

the right-hand side reduces to 

[A2] +4>. 

In fact, A, and A, — [A, ] are known so that also dAx/dwk is known. It 

will be shown that, as in the treatment of Eq. (15.6c), 

dr\ o 1 

Ol 
dw 

On the other hand, 

k J 

dr2, 

dw. k 

ditf'rj) 

dw. 
= 0. 

dr) ‘ 
a,- 

dwk J (0)! - [>,']) 
dr) 

dw. 

r i n dr) + K] , L dwk 

The first term on the right-hand side is known since a) and t) are known to 

within a function of w'. The second term is zero since 

w 

Thus we finally obtain 

[A2] = 

dr) 

dw k 
= K] 

dr) 

dw k J 

= 0. 

dS2 

dw. 
+ 4> = 4> + arb. const. 

We will now take the mean value of both sides of Eq. ( 15.4d). We have 

just obtained the mean value of [ A2]; let us now consider a term on the 

right-hand side, for example, 

dF 

dal 
a). 



476 CELESTIAL MECHANICS 

We obtain 

f^l 
_ 

[da0, \ 

dF | , J r 1 1 \ dFx r i -, 
+ 

[da° L 1 

= 4> + dF\ 

do0 

Operating in the same manner on the other terms of Eq. ( 15.4d), by 

combining into a single function the known functions 4> and the arbitrary 

constants, we find 

Y (—[a]] + ~n [ r) ] ^ = 4> + 
^ \da- dr*1 *) 

const. ( 15.4e) 

It is known in fact that 

dR 

dAn 
= 0. 

Let us now pass to Eq. ( 15.27) and let us see what this equation will 

furnish. First, the left-hand side will yield 

V 2 d*° „ „ dx2 , dx) 

dwL 

If we take the mean value of this expression, recalling that n'° is zero and 

that the mean value of a derivative taken with respect to tu, or w2 is also 

zero, we will find 

Siti* 

i dx] 

dw[. 
+ S n\ 

0 1 dx 

dw'k 

On the right-hand side, let us first consider the term in dF/dr, which 

gives 

so that the mean value will be 

We can operate in the same manner for dFx/da°. This will permit us to 

write what becomes of Eqs. (15.27) and (15.28) if we take the second- 

degree terms in /a on both sides. This furnishes 
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S/7 k —7—;— = A cos w’ — B sin w' — n'l\y) ] — n-2y°, 
dw'i Jk 

d \y] 1 
Snk-— = A sin w' — B cos w\ — n']\yJ1 — n'2y°, 

dwl 1 J 

( 15.27e) 

(15.28e) 

where A and — B are the right-hand sides of Eqs. ( 14.41 ) from which 

Eqs. (15.27e) and ( 15.28e) are readily deduced. To Eqs. (15.27e) and 

( 15.28e) we can add the following, obtained by taking the mean values in 
Eq. ( 15.6d): 

d[s'] - dT‘ 1 dad[7]] 
dw’k ^ V ' dw'k ' dw'k dw'k 

With the aid of Eqs. (15.4e), (15.27e), (15.28e),and (15.60 we will 
now determine 

O']’ [rj], n'2 [S',]. 
The equations are not distinct, and we have demonstrated in Chap. 14 that 

these quantities can be determined solely from Eqs. (14.41) of no. 155, 
equivalent to Eqs. (15.27e) and (15.28e). 

However, we wish to outline another procedure in which only Eqs. 

( 15.4e), ( 15.6f), and ( 15.28e) are used and which more closely resembles 

the method I have always used in the present chapter. 

It might thus be of interest to demonstrate that Eq. ( 15.27e) can be 

derived from Eqs. ( 15.24e), ( 15.6f), and ( 15.28e). However, for this it is 

necessary to examine in more detail the manner in which Eq. (15.27) can 

be deduced from Eqs. (15.4), (15.6a), and (15.28), and thus make a 

digression which will occupy the following numbers. 

163. Let us return to the problem and the notations of no. 158; the 

references, unless stated differently, will always pertain to that number. 

At the beginning of that number, we demonstrated that Eqs. (15.2) are a 

consequence of Eqs. (15.1), (15.3), (15.4), and (15.6). However, one 

can also raise the following question: Let us assume that all equations 

derived from Eqs. ( 15.1 ), (15.3), ( 15.4), and (15.6) have been satisfied 

by equating, on both sides, all terms independent of/x, all terms in/x, in /x2, 

and so on up to terms in [i p inclusive. Does it follow from this that the 

equations derived from Eq. ( 15.2) have simultaneously been satisfied by 

equating on both sides all wholly known terms as well as the terms inix,/x2, 

. . . ,/x p ? In other words, we assume that Eqs. (15.1), (15.3), (15.4), and 

( 15.6) have been satisfied up to terms 'm/x p+ \ i.e., in such a manner that, 

after substitution of our approximate solution, the difference of the two 

sides becomes divisible by /x p + 1 ; does it follow from this that Eqs. (15.2) 

. ( 15.6f) 



478 CELESTIAL MECHANICS 

are also satisfied up to terms in// p 4 '? If Eqs. ( 15.1 ), (15.3), ( 15.4), and 

( 15.6) are satisfied up to terms in// p4 ', this will also be the case for the 

equations obtained therefrom by differentiation, addition, or multiplica¬ 

tion, such as—for example—Eqs. (15.7) and (15.8). Thus Eqs. (15.7) 

and (15.8) are still valid but with the one difference that, on the right- 

hand side, the zero will have to be replaced by a function expandable in 

powers of // and divisible by // p + '. 

We will thus have 

^ dwk \dXj dt ) 

where //is divisible by // p+ '. This then permits the conclusion that 

dF dy, 

dx, dt 

is equal to a function of the same form, provided that the determinant of 

dy/dwk is not divisible by //. However, this is exactly what happens since 

the determinant reduces to unity for /i — 0. 

Consequently, Eqs. (15.2) are satisfied to within terms in// p + '. 
Q.E.D. 

Let us now pass to the problem in no. 161. The preceding reasoning 

applies here without change, but one more question has to be raised in this 

respect. 

Besides the equations derived from Eqs. (15.1a), (15.2), (15.4), and 

(15.6) by equating on both sides the coefficients of // p, we also must 

consider the equations obtained by equating the mean values on both 

sides. 

We will assume that Eqs. (15.1a), (15.4),and (15.6) are satisfied upto 

terms in // p. As we have just seen, it follows from this that the same holds 

for Eq. ( 15.2). 

We will assume, in addition, that the equations obtained in the follow¬ 

ing manner are also satisfied: In Eqs. (15.1a), ( 15.4), and ( 15.6), let us 

equate the coefficients of // p and let us then take the mean values of the 

two sides. Does it follow from this that the equation derived from Eq. 

(15.2) by the same procedure will also be satisfied? 

Our hypotheses can be expressed as follows: Equations (15.1a), 

( 15.4), and ( 15.6) are not exactly satisfied, but the difference of the two 

sides is a periodic function of w and w' which can be expanded in powers of 

// and is divisible by // p and whose mean value, taken with respect to w, is 

divisible by // p+ '. 

We will designate by H any function satisfying these conditions. It 

results from this that the sum of the two functions H is a function H and 
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that the derivative of H with respect to wk or w'k is a function H. If, finally, 

we multiply H by a function K periodic in w and w' and expandable in 

powers of //, then the product will still be a function H provided that, for 

/u = 0, the function K does not depend on w but only on w'. Then, we will 
have 

àXj dy, dx, dy, 

dt dwk dwk dt 

and 

dt dXj 

±L(^L+dF_\H^L = Hi 
dwk \ dt dx,) dwk 

since dx,/dwk or dx,/dw'k reduces to zero for// = 0 and, consequently, is 

independent of w. 

It results from this that the right-hand side of Eq. (15.8) will again be a 

function H. Since the differentiation of Eq. (15.4) yields 

\dx, dwk dyt dwk ) 

it follows that 

1dyL^_dF\ 
^ dwk\dt dy,) 

where Hk is a function H\ from this, 

dxj dF jj A, k 

dt dy, ^ A 

where A is the determinant of the dyt/dwk, including therein, of course, 

there the quantities dy'/dwk, dy/dwk, and dy'/dw'k. As for Aik, it is one 

of the minors of A. 

For // = 0, the determinant A reduces to unity, A, k to one or to zero; 

thus A^/A is independent of w. Consequently, we have 

dx‘ dF _ h 

dt dy, 

Q.E.D. 

164. Let us now return to the hypotheses of no. 159. Let us adopt the 

notations given there and let us agree that all references will pertain to the 

equations of no. 159. It is now a question to establish that 

(a) Equations (15.15) can be deduced from Eqs. ( 15.16)—( 15.18). This 
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is a point which we had postulated above without proof but of which we 

will now give a demonstration which will be useful later. 

(b) If Eqs. (15.17) and (15.18) are satisfied up to terms of order p + 2 

with respect to a, and Eqs. ( 15.16) up to terms of order p + 1, then Eqs. 

(15.15) will also be satisfied up to terms of the order p + 1 or, in other 

words, Eqs. (15.25) and (15.26) will be a consequence of Eqs. ( 15.19) — 

(15.21). 

Equations (15.18), which express that dS is an exact differential, will 

yield 

( dî, dp, d^ dp i 

? dwk dwq dwq dwk 

from which, as in no. 158, we can derive 

dpi dÇt dpi 

= 0, 

= 0. 

(15.35) 

(15.36) 
,dwk dt dt dwk 

Moreover, Eq. (15.17), when differentiated with respect to wk, yields 

I 
dF d£, dF dp, 

+ ■ 

Let us now put 

dît dwk dp, dwk 

dPi 

= 0. (15.37) 

dgt 
-cos W: H-— sin w, — X,, 
dt dt 

d£, . dp 
- Sin W:-COS W: — Y:, 
dt 1 dt 

dît dp, 
= xï, cos w, H- - sin w, 

dwk dwk 

dît dp, 
sin w,- cos w, = n dwk dwk 

dF dF 
= At, — cos w,- sin w, 

dpt dît 

dF . dF 
-sin w, H-cos w, = B,. 
dpi dÇ, 

Indeed, with these new notations, Eqs. (15.15) and (15.16) will read, 
respectively, 

X,=A,, 

Y: — B: . 

(15.38) 

(15.39) 

Equation (15.36) becomes 
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X (Xf7,. - yfX,) =0 (15.36a) 

and Eq. ( 15.37) becomes 

^ (XfB, ~ YfA,) = 0. (15.37a) 

I say that from Eqs. (15.39), (15.36a), and ( 15.37a) we can derive Eq. 

( 15.38); and, indeed, that from Eqs. ( 15.36a) and ( 15.39) we can deduce 

X {XfB,- Y%) =0 (15.40) 

or, finally, 

2'YHX,-AI)= 0 (k = 1,2, ...,«). (15.41) 
i 

Since the determinant of the 7 fis not zero, one can conclude from this 
that 

X,=A,. 

Q.E.D. 

Let us now assume that Eqs. (15.16) are valid up to terms of order 

p + 1 with respect to a, and that Eqs. ( 15.17) and (15.18) are valid up to 
terms of order p + 2. 

Then, Eqs. ( 15.35), ( 15.36), ( 15.37), and ( 15.37a) will be valid up to 

terms of order p + 2, andEq. ( 15.39) up to terms of order/» + 1. Since the 

expansion ofXf starts with terms of the first order, a multiplication of Eq. 

(15.39) by Xf will yield an equation valid up to terms of order p + 2. 

It follows from this that Eqs. ( 15.40) and ( 15.41 ) are satisfied to with¬ 

in terms of the order p + 2.1 say that, consequently, Eq. ( 15.38) will also 

be valid up to terms of order p + 1. 

In fact, let us put for the moment 

a i = Aa\ 

in such a manner that the terms of order p with respect to a, become 

divisible by A p. 

We will then put 

Xi-Ai=Ap+xCi, 

y f = az f. 

What I propose to establish here is that C, remains finite for A = 0. 

Since Eq. ( 15.41 ) is satisfied up to terms of the order p + 2, we will 

have 
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^Y^Xi-Ai)=A» + 2Hk, 

where Hk remains finite for A = 0; hence 

^ Z k,Ci = Hk. 

It follows from this that C, remains finite for A — 0 provided that the 

determinant of Z f does not vanish for A — 0. 

However, this determinant reduces, for A = 0, to 

±a\ 

and thus is not zero. Q.E.D. 

165. We will return now to the problem of no. 162. We will prove that 

Eq. (15.27e) is a consequence of Eqs. (15.4e), (15.6f), and (15.28e), 

naturally by assuming, as had been done above, that Eqs. (15.4a), 

(15.4b), (15.6b), (15.6c), (15.28a), ( 15.28b), ( 15.1b), and ( 15.1c) had 

been satisfied beforehand. 

These hypotheses can be formulated in the following manner: 

To state that Eqs. (15.4a), (15.4b), and (15.4e) are satisfied means 

that we have 

F = const. + /u2H0. 

We will denote by //any function expandable in ascending powers of/1 

and periodic with respect to w and w', while we will call H0 any such 

function whose mean value vanishes for /u = 0. 

From this, we can derive 

£ (— — + — — + — — + ÉL AllA = (15.42, 
\dA dwk dA dwk dr( dwk dat dwk J 

To state that Eqs. (15.1b) and (15.1c) are satisfied, means that 

dA 

dt 

whence, since dA/dwk vanishes for /u = 0, 

dwk \ dt dA/ 

(15.43) 

(15.43a) 

Let us now pass to the equations deduced from Eq. (15.6a). 

We will assume that Eqs. (15.6b), (15.6c), ( 15.6d) are satisfied, but 

this is not all. In fact, to establish Eq. ( 15.4e), we have made use of Eq. 

( 15.6e ) or, rather, of an equation, which we might call Eq. ( 15.6g ), that is 

derived from the former by equating the mean values on both sides. 
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Consequently, this equation ( 15.6g) is assumed as satisfied. However, 

this is not the case for Eq. ( 15.6g') which is derived from the former by 

changing there wk into w'k. 

How can all this be expressed in our new parlance? 

Since Eqs. ( 15.6b), ( 15.6c), and ( 15.6g) are satisfied, we will have 

dS 

dw. 
= Ck + irH, 

o> 

where Ck, for the moment, is to denote the right-hand side of Eq. (15.6a). 

If wk is transformed into w'q, we will obtain, when denoting by C ' what 

becomes of Ck, 

dS 

dw' 
C'+n2H. 

The mean value of H does not vanish for = 0 since Eq. ( 15.28e' ) is not 

assumed to be satisfied. 

On differentiating the first of these equations with respect to w'q and the 

second with respect to wk and subtracting, we have 

dCk dC: 

dw' dw. 

Similarly, we would obtain 

dCk dC„ 

dwn dw. 

■ = p H0. 

= H2H0. 

However, we only would have 

dC'k dC: 

dw' dw'k 

without having the mean value of H vanish for fi = 0. Nevertheless, if the 

equation is multiplied by n'q which vanishes for /u = 0, we get 

. (dC'k dC[ 

, dw' dw'k 
= n3H. 

Thus we will have 

X 
,IC\ dC„ 

dwn dw. 
+ n'a 

' dC, dC: 

dw' dw. 
o> 

with the analogous equation that is derived from this by transforming wk 

into w'k. 

This permits us to write 

fdA dX 

^ ' dt dw,. 

dA dA da, dr, dr, dai 

dt dw. 
+ 

dt dw. dt dw. 
= H2H0 (15.44) 
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together with the equation derived from this by transforming wk into w'k. 

Let us put, as in the preceding number, 

daj dr, 
-cos w\ H-sin w\ = X„ 
dt dt 

da, dr, 
-sin w'i-cos w’i = Y 
dt dt 

da, 

dwk 

dat 

dwk 

COS w'i + 

sin w'i — 

dTj 

dwk 

dwk 

sin w’i = X f, 

cos w] = Y f, 

dF , dF . , . 
-cos w-sin w, = A 
dr, da, 

-sin w'i H-cos w\ = B, 
dTf da, 

with other analogous equations where wk, X f, Y f are replaced by the 

same primed symbols. 

Equations (15.42) and (15.44) then become 

Y ( dF dA 

^ V dA dwk 

(dK dA 

^ V dt dwk 

dF dK 

dA dwk 

dA dA 

dt dwk 

+ X ^B, 

+ X^Yi 

(15.42a) 

(15.44a) 

with other analogous equations in which wk, Af, Yf are replaced by the 

same primed symbols. 

On the other hand, since Eqs. (15.28a), (15.28b), and (15.28c) were 

assumed as satisfied, we obtain 

y, - B, = /U2H0. 

A combination of all our equations will then yield 

with another equation in which the terms wk and Tf are replaced by the 
same primed symbols. 

This constitutes a system of linear equations from which one can find 

d A dF 

dt dA 
and Xj — A 
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For /u = 0, what becomes of the coefficients of these equations and of 
their determinant? 

The derivatives of dA /dwk vanish except for dA /dw, and dA Vdw2 

which reduce to one. The terms Tf vanish. With respect to 

„ , do" dr° 
Y =-sin w':-cos w' 

dw'k dw'k 

this expression is independent of and w2. 

The determinant and its minors are thus independent of w for // = 0. In 

addition, this determinant does not vanish. 

From this it follows that 

Xi-Ai=v2H0, 

which means that Eqs. (15.27a), (15.27b), and (15.27e) are satisfied. 

Q.E.D. 

I must still establish that, as announced above, Eq. ( 15.33) of no. 162 is 

a consequence of Eqs. (15.29), (15.30), (15.32), (15.4a), (15.4b), 

(15.1b), (15.27a), (15.28a), (15.6b), and (15.6c). 

From Eqs. (15.4a) and ( 15.4b), we deduce 

A = irH, (15.42b) 

where A is the left side of Eq. ( 15.42). 

From Eq. (15.1b) we obtain 

dA 

dt 

dF 

dA 
= HH 

and 

d A 

dwk 

dA_ 

dt 
(15.43b) 

Let us now pass to the equations derived from Eqs. ( 15.6a). Since Eqs. 

(15.6b) and (15.6c) are satisfied, it follows that 

dS 

dwk 
= Ck+ n2H. 

Similarly, Eq. (15.6b') is satisfied but Eq. (15.6d) is satisfied only to 

within a function of w'. In fact, we have deduced Eq. (15.32) from Eq. 

(15.31), which is equivalent to Eq. (15.6d), by subtracting from it an¬ 

other equation whose two sides are unknown functions of w'. Therefore, 

we can now write 

dS 

dw'q 
— C' T n H + [xK, 

where K is independent of the w. 
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One can deduce from this 

dCk dC'  

dw’q dwk 

dCk dCq 1 
Cr 

3
 dwk 

dC k dC '  

dwq dwk 

is divisible by /i, 

, (dC'k "• u ■ dCq\ 

dwk ) 
H2H, 

or, finally 

C — /u2H, (15.44b) 

where Cis the left-hand side of Eq. (15.44) or else this same side with wk 

replaced by wk. 

Equations (15.27a), (15.28a), and (15.32) will yield 

dr. dF 
— + — = fj. 2H. 
dt da, 

A combination of all our equations will then give 

ydL<dA_dL\+drl_(d^_dF\=ii2Ht 

^ dwk \ dt dA J dwk \ dt dr; J 

which are linear equations from which, as above, we can derive 

da, 

dt 

dF 

drt 
= lu2H. 

Q.E.D. 

166. After this long digression, let us return to the problem of no. 162 

where we left off. At that point, it was a question of determining [cr1 ] and 

[r,1] by means of Eqs. (15.4e), (15.28e),and (15.6f). 

For this, we will assume the two terms of our equations as being ex¬ 

panded in powers of a, and equate all terms of the same degree on both 

sides. 

Equation (15.4e) will start with first-degree terms and, equating all 

terms of the first degree, we will obtain 

^lA.iaVW)0] + ' [r,1 °] ) = 4* -f const. (15.4f) 
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Since the right-hand side of Eq. ( 15.6f) starts with first-degree terms, 
we will first find 

[5,o ] = const. 

After this, equating all terms of the first degree, we obtain 

dw'L 
K°] 

dr' .0.1 

dw'k 
+ <f, 

.0.1 d [r/‘°] d(o*lA [rj'°] ) 

dw[. dwi 

or else 

d[SiA] dr .0.1 da o.o 

dw’k dw'i 

dw'k dw[. 

-0A[T'k°] = -xV[x'k0]. (15.6h) 

In this manner, Eq. ( 15.4f) will become 

^ d\S]X] 
Y 2A,-= <t> + const., 
^ dw\ 

which yields [5,, ] and, consequently, the terms [xj.0]. 

It then remains to determine the quantities [_g[°] and to satisfy Eq. 

(15.28f), obtained by equating all terms of zero degree in Eq. ( 15.28e) 

with respect to a,-. Rigorously, Eq. (15.4f) is sufficient for this if it is 

recalled that the terms [cr} °] and [t}.0] must be constants since the terms 

ak and rk are expandable in powers of a, cos w] and a, sin w\ so that the 

terms of zero degree with respect to a, must be independent of w\. 

What is now the function on the right-hand side of Eq. ( 15.4f)? To 

obtain this function, it is obviously necessary to do the following: Take the 

function — F2; replace there A, A, cr,, and r, by A0, w, cr°, and r°; take their 

mean value; consider, in this mean value, the terms of first degree with 

respect to cr° and to r°; replace there cr° and r° by a0A and t° Thus 4> will 

have the form 

yB,ay + yCiry, 

where B, and C, are constants. Then, Eq. ( 15.4f) is written as follows: 

y 2Ai (ay [cr,1 °] + r°i 1 [t) 0] ) = £ B,T°iA + £ C,r° + const. 

If the quantities [cr10] and [r10] must be constants, the equation can 

be satisfied only by canceling the constant and by setting 
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I say that, furthermore, Eq. ( 15.28f) is satisfied in this manner, since 

thus Eqs. (14.42) of no. 155 are also satisfied, and Eq. (15.28f) is only a 

simple combination obtained by adding these equations after having mul¬ 

tiplied them by + sin w' and — cos w'. 

Let us now equate the second-degree terms in Eq. ( 15.4e), so that 

£2 T,(a°V,"] +r°1[r,1']) = <J> + const. (15.4g) 

Similarly, on equating the second-degree terms in Eq. ( 15.6f) we ob¬ 

tain 

4> + 
d [S,.2 ] 

dw’k 

.0.1 
(<rk -xV[xlk1]. ( 15.6i) 

Then, Eq. (15.4g) becomes 

_ d\Sl2] 
V 2A: —-—— = + const., 
^ dw\ 

which yields [S, 2 ] and, consequently, also the [xxk1 ]. 

Let us now consider Eq. (15.28g) which is obtained by equating, inEq. 

(15.28e), all first-degree terms. This could also be obtained by setting 

q = 1 in Eqs. ( 14.44) of no. 155, multiplying the first equation by sin w\ 

and the second by — cos w\ and then adding them. Let us perform this 

operation by recalling that the constant, denoted by x] ° in no. 155, is now 

represented by a, . This yields 

S n /l.O 

k 
d[y)A] 

dw'k 
A" [>>,'1 ] = 4> -/?! °[x‘'] +n'2 lai. (15.2g) 

We now know [x,1 1 ], so that the equation reduces to 

A" [y)A ] =4> + «;21«,.. 

The quantity n,2A is determined such that the mean value of the right- 

hand side becomes zero, after which the equation readily will furnish 

[jT1] and thus [a]1] and \r) ']. 

Continuing in this manner, one would similarly determine the quanti¬ 

ties n’i2q~x, [cr;1<?], and [r,I <?]. 

After the terms n], [a] ], and [r,1 ] have been determined in this fash¬ 

ion, the other quantities can be calculated by the methods given in no. 162. 
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Each quantity would have to be determined by a procedure differing from 

this only by the fact that its index ( relative to the degree in ^ ) is less by one 

unit. 

Naturally, it is necessary to observe the same sequence as in no. 162. 

The methods of Chap. 15 thus permit reaching the same goal as those of 

Chap. 14. Several of the calculations are somewhat simplified. In addi¬ 

tion, these new methods have an advantage worth mentioning and not 

exhibited by the methods of the preceding chapter, namely, that of inher¬ 

ently containing the proof of their own feasibility. Thus these methods can 

be developed without having to go over the intermediary of Chaps. 9 to 13, 

not to mention the numerous changes of variables that had to be made in 

those chapters and that are useful only for demonstration purposes but 

not for the calculations themselves. 



CHAPTER 16 

Gyldén Methods 

167. The methods to be discussed here possess considerable originality. 

Most of them, despite appearance to the contrary, are based on the meth¬ 

ods discussed in the foregoing chapters. However, some of the new meth¬ 

ods go beyond the former and permit treatment of problems to which the 

procedures given in Chaps. 9 and 15 are no longer applicable; thus they 

have a more intimate relationship with the methods to be discussed later 

in the text. 

Naturally, the manner of approach will differ greatly from that em¬ 

ployed by Gyldén. 

The Gyldén methods are actually a composite of several artifices that 

have no necessary interconnection and that should preferably be studied 

separately, it then being only necessary to effect the synthesis, which can 

be done by the reader himself without any difficulty. 

The first of these artifices is the use of a particular independent vari¬ 

able. 

Let us first assume that the three bodies move in the same plane. In this 

plane, let us consider the motion of one of the planets, subject to the action 

of a central body whose position we will take as the origin, and subject to 

the perturbing action of another planet. 

Let r and v be the polar coordinates of the planet under study, n the 

mass of the central body, and if the perturbing function. The equations of 
motion will be 

// _ dCI 

r dr 
(16.1) 

In the case in which Cl — 0, the motion becomes Keplerian. In that case, 

the first of the equations of system ( 16.1 ) is directly integrated and yields 
(with c a constant) 

(16.2) 

If then the quantity v is used as the independent variable and if we put 

r — — 1/w, the second equation of system ( 16.1 ) becomes 

490 
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d 2u 

dv2 
+ « + — = 0, 

c 
(16.3) 

which directly demonstrates the elliptical shape of the trajectory. 

Let us return to the general case in which il is not zero. Glydén suggest¬ 

ed adopting an independent variable such that the equations of motion 

assume a form analogous to that of Eqs. (16.2) and ( 16.3). 

For this, let us put 

dv o = yfcp 

dt r 
(16.4) 

where c0 is a new constant. 

When taking v0 as an independent variable, the first part of system will 
become 

d 2v 

dv20 

r2 dd 

cn dv 
(16.5) 

and the second part of Eq. ( 16.1 ), again putting r = — \/u, 

d 2u 

dvl 
+ u 

dv 

dv n 

r di1 

Cr, dr 

The analogy with Eq. (16.3) becomes even more evident if it is noted that, 

in the calculations given below, v will differ very little from u0 and if, 

introducing into the right-hand side of the equation a very small term 

being of the same order of magnitude as fl, we write 

dv^21 d2u 

dv20 

fi r dQ, 
+ u H—- —-b u 

Cn Cn dr 
1 - 

dv, 
(16.6) 

The choice of the variable v0, despite the fact that it offers obvious 

advantages, is not without drawback. 

In fact, the three-body problem presents itself in two quite different 

forms, depending on whether one has to do with two planets whose masses 

are comparable or with planets one of which is much smaller than the 

other. 

In the former case, it is necessary to refer one of the planets to the 

independent variable v0 and the other to the independent variable v'Q 

which is analogous but different and is defined by the equation 

where r' is the radius vector of the second planet. 

This constitutes a source of complications. Therefore, the Gyldén 

method, in its original form, is more suitable for the second case, for 
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example in studying perturbations of the minor planets produced by Ju¬ 

piter. 

However, here again difficulties arise. 

The motion of Jupiter is known, but as a function of t rather than of v0. 

To change from the expression as a function of t to the expression as a 

function of u0, it is necessary to substitute for t its value as a function of v0, 

derived from Eq. ( 16.4). This expression of t as a function of v0 will differ 

in each approximation; therefore, each time it will be necessary to correct 

the coordinates of Jupiter. These drawbacks are partly compensated by 

significant advantages. Another disadvantage is the fact that our equa¬ 

tions have lost the form of Lagrange equations; however, we will be quick 

in restoring these. 

168. Below, we give the form under which the equations of motion 

appear. 

The coordinates u and v of the first planet are expressed as a function of 

u0 by Eqs. (16.5) and (16.6), whose left-hand sides have the simple form 

d2u 

dv o 
and 

d~u , u 
+ w H-, 

Cr\ dv o 

and whose right-hand sides depend not only on u and on v but also on the 

corresponding coordinates u' and v' of the perturbing planet. 

The variable v0 will be correlated with t via Eq. ( 16.4). 

The coordinates u' and v' of the second planet will similarly be ex¬ 

pressed as a function of a new variable v'0 by Eqs. (16.5') and (16.6') 

analogous to Eqs. (16.5) and (16.6). 

The variable v'0, for its part, will be defined as a function of t by an 

equation (16.4') analogous to Eq. (16.4). 

Let us assume now that one wishes to apply to these equations proce¬ 

dures analogous to those of the old methods of celestial mechanics; then 

the following is necessary: Let us imagine that the approximate values of u 

and v as well as of u' and v' are known as a function of v0 and as a function 

of v'0. 

On the right-hand side of Eq. (16.5) or Eq. (16.6), let us replace u, v, 

u', and v' by their approximate values as a function of v0. The right-hand 

sides will become known functions of vQ and our equations are then easy to 
integrate by quadrature. 

This furnishes the closest values of u and v as a function of v0. 

In operating similarly for Eqs. (16.5') and ( 16.6' ), we will obtain clos¬ 

er values of u and v' as a function of v'0. 

By quadrature, Eq. ( 16.4) will yield rasa function of v0 and Eq. (16.4') 
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will furnish / as a function of v^. Consequently, by comparing these two 

results, we will obtain v0 as a function of v'Q and vice versa. 

It will then be possible to express, in a closer approximation, u and v as 

a function of Vq or u and o' as a function of v0. Since we now have closer 

values of u, v, u', and v' as functions of v0 and as functions of v'0, we can use 

this second approximation for operating as we had done with the first 

approximation, and so on. 

It now remains to select the first approximation. For the moment, let us 

attempt to see what mathematicians, imbued with the spirit of the older 

methods, would have done for a better understanding of the improve¬ 

ments that Gyldén had found necessary to introduce. It is clear that the 

choice conforming best to this spirit would be that of taking, as first ap¬ 

proximation, the Keplerian motion. 

This will yield 

v = On, u= ~ — + a cos v0 + IS sin u0, 
c0 

t 

o'= 00, u' = - ^7 + a' cos o'Q + 0' sin v'Q, 
co 

where a, /?, a , and 0 ' are constants of integration. 

So far as the relation between u0 and v'0 is concerned, its form is rather 

complicated. We obtain 

do0 dvÔ 

which is an equation that can be integrated by quadrature. From this, v'Q 

can be derived as a function of v0. On expanding Vq in ascending powers of 

the constants a, ft, a', and /? ' which generally are very small, the first term 

of the series which is independent of these four constants will reduce to a 

linear function of v0. 

Thus the correlation between v'Q and v0 is complicated from the first 

approximation on. This represents a somewhat artificial difficulty of an 

entirely new type. It has to do with the choice of independent variables 

and will disappear only in abandoning the procedures inspired by the old 

methods for the actual Gyldén methods. 

We encountered nothing similar in studying the Newcomb methods; 

nevertheless, the importance of the fact must not be exaggerated. The 

expansion of the perturbing function will always require tedious and 

lengthy calculations. However, the series is obtained more rapidly as a 

function of the true anomalies than as a function of the mean anomalies. 

In the Newcomb method, we had assumed the perturbing function as 
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being expressed over osculating elements of the two planets and their 

mean anomalies. To obtain this function, excessive efforts would be neces¬ 

sary, but were it actually to be derived, all obstacles would immediately be 

leveled. Here, conversely, we have expressed H as a function of u, v, u', and 

v' which is incomparably easier. However, the difficulty that we have thus 

avoided for the moment will of necessity reappear . The complex relation 

that connects v0 to v'0 is the first form under which we encounter it. The 

inconvenience here is the fact that one has to start anew at each approxi¬ 

mation and that this will have to be repeated several times. 

Let us now define the pitfalls to be feared in employing these proce¬ 

dures that mimic the old methods and let us define the artifices used by 

Gyldén for avoiding them. 

Equations (16.5) and (16.6), after replacing on the right-hand side the 

terms u, v, u', and v' as a function of v0, will become linear on the right- 

hand side and will be easy to integrate. 

In the first approximation, these right sides present themselves in the 

form of trigonometric series whose terms will depend on the sines and 

cosines of 

(« + mk)v0, 

where n and m are integers and k is the ratio of the mean motions. If the 

right-hand side of Eq. (16.5) did not contain known terms or if the right- 

hand side of Eq. (16.6) did not contain terms in sin v0 or in cos v0, then the 

values of u and v derived from Eqs. (16.5) and (16.6) would still have the 

same form. However, the right-hand side of Eqs. (16.5) and (16.6) do 

contain wholly known terms, terms in sin v0 and in cos u0; consequently, 

there will appear in the expression for v, a term in 

«8 
and in the expression for u, terms in 

v0 cos v0 and v0 sin v0, 

where the independent variable u0 comes out from under the trigonomet¬ 
ric functions. 

In the following approximations, it is obvious that still higher powers 

of v0 will be encountered outside these trigonometric functions. Thus, as 

was easy to predict, the use of the variable vQ has changed nothing in the 

essential character of the old methods; therefore, one must resort to an¬ 

other artifice to prevent the variable from leaving the trigonometric func¬ 
tions. 

The only advantage of the choice of v0, aside from the drawbacks men¬ 

tioned above, is thus the fact that it imparts a linear form to the equations. 
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169 . To avoid secular terms, i.e., terms in which v0 is no longer under 

the sine or cosine functional sign, Gyldén had to invent a new artifice. 

Let us consider one of Eqs. ( 16.5) or ( 16.6). Let us transfer, to the left- 

hand side, that or those terms of the right-hand side whose influence 

seems greatest. On the right-hand side, let us replace u, v, u', and v' by their 

approximate values in such a manner that the unknown quantities v, u', 

and v' will appear only on the left-hand side. This will yield new equations 

which can be integrated with the aid of the new artifices. 

Obviously, this constitutes a high degree of arbitrariness. In fact, de¬ 

pending on the individual case, one can center attention on either one or 

the other term and transfer it to the left-hand side. This is the prime reason 

for the flexibility of the method. Although this can be varied ad infinitum, 

so to say, we will enumerate here the forms of equations most often consid¬ 

ered by Gyldén. 

Let ux, vv u\, and v\ be the approximate values of u, v, u', and v'. Let us 

put 

u = u{+p, v = vl+x, u' = u\+p', v' = v[+x'- 

The quantity p will be what Gyldén called “evection” and the quantity x 

will be called “variation.” Ordinarily, one is content to take 

G = yo J v = vo + X- 

With these new unknowns, Eqs. ( 16.5) and ( 16.6) will assume the form 

(16.5a) 

( 16.6a) 

where A and B are functions expanded in ascending powers ofp, p , x, and 

X' and in addition—at least so far as B is concerned—in ascending powers 

of dx/dv0. The coefficients of the series will be known functions of vQ. 

Then we will transfer to the left-hand side some of the terms of A and of B\ 

retaining the unknownsp and x on the left-hand side, we will replace these 

quantities by zero on the right-hand side for a first approximation. 

The function B, among other notable terms, will contain also terms of 

the form 

Cp", Cp sin(/li;0 + k) 

where C, A, and k are constants. 

( i ) If the second of these terms is transferred to the left-hand side of Eq. 

( 16.6a), we will find 

+ p[ 1 — C sin(/ly0 + k) ] = B ' 
dv20 

(16.6b) 



496 CELESTIAL MECHANICS 

where B ' is what becomes of B when eliminating the term which thus has 

been transferred to the left-hand side. 

In B ', we will then set 

P = X = P = X' = °- 

Equation ( 16.6b) will still be an equation linear on the right-hand side but 

will no longer be an equation with constant coefficients. 

It is now obvious that one can just as well write 

+ p[ ( 1 T a) - C( 1 + /3)sin(/lu0 + k) ] = B ", ( 16.6c) 
dv o 

where a and b are any two very small quantities, and 

B " = B ' + ap + C/3p sin(/lu0 + k) 

and where, in addition, we finally will have in first approximation 

B " = B ' = B, 

since it has been agreed to cancel p, p', and on the right-hand side. 

This makes it possible to profit in various ways from the indeterminacy 

of a and /?. 

(ii) It is also possible to transfer, to the left-hand side, a term in pi and 

to write 

4t-+P-Cp,=B-Cp1 
dv o 

or 
i 2 

—+ p( 1 + or) — Cp3 = B + ap — Qx, ( 16.6d) 
dv o 

and to then set 

p=X = Q 

on the right-hand side. 

(iii) It is clear that A will be a function expandable in the sines and 
cosines of multiples of v and v'. Let then 

C sin(mu + nv' + k) 

be a term of A ; m and n are integers and k is a constant. Let us replace there 

v by v^ + x and v' by its approximate value v[, expressed as a function of 
v0, so that we obviously will have 

— vo + vp, 

v\ ~ Bvo + vp > 

where q> and cp ' are series expandable in the sines and cosines of multiples 
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of u0 and pv0, while p is the ratio of the mean motions. The complementary 

terms <p and cp ' are incidentally much smaller than the leading terms u0 

and juv0. 

Then, the expression 

C sin(my, 4- nv\ + k) 

can also be expanded in a series of the trigonometric functions of multiples 

of v0 and pv0, while the main term of the series will be 

C sin(wu0 + npv0 + k). 

Similarly, if in the expression 

C sin (mo + nv\ + k), 

we replace v and v[ by 

vo + X + <P and + <P'> 

then this expression will be expandable in trigonometric functions of 

Vo* vo + X> and Wo 

and the main term of the series will become 

C sin (mi>0 + n/uv0 + rn\ + k). 

This is the term which we will transfer to the left-hand side of Eq. 

(16.5), which then can be written as 

d — C sin (mv0 + nfxv0 + m\ + k) = A' ( 16.5b) 
dv o 

where 

A ' = A — C sin(mv0 + npv0 + + k). 

Next, we will set in A 

P=X=P' =X' = °> 

in such a manner that A ' can be considered a known function of v0. 

Most often, one will be content to take 

v,=v0> v\=fiv0 

which somewhat simplifies the discussion of the above procedure. 

Equations (16.6c), (16.6d), and (16.5b) are those most frequently 

used by Gyldén. 

Let us note that all have the form 

(16-7) 
dv o 
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or 

ijL=f(XAt). (16.8) 
dv o 

Consequently, one can reduce them to the canonical form according to 

what we said in Vol. I, in the discussion following Eq. (1.6) of no. 2. 

We have assumed that, on the right sides of our equations, we had set 

P = X=P‘ = X' = °- 

This is actually what is done in first approximation. However, in second 

approximation, it becomes necessary to replace on the right sides the 

quantitiesp, x, p', and x' by their values derived from the first approxima¬ 

tion, and so on. 

Consequently, these right-hand sides will always be known functions 

of v0 and the equations will retain the same form. 

Reduction of the Equations 

170. Equations (16.5b), (16.6c), and (16.6d) are of the second order. 

This is due to the fact that we made certain that only terms depending on x 

alone were transferred to the left-hand side of Eq. (16.5) and only terms 

depending on p along to the left-hand side of Eq. ( 16.6). 

If then, on the right-hand side, we set 

P= X=P=X' = 0, 

then Eq. (16.5) will contain only a single unknown x and Eq. (16.6) will 

also contain a single unknown, namely, p. 

However, this cannot be always legitimate. It might happen for exam¬ 

ple that, on the right-hand side of Eq. (16.5) certain terms depending on p 

are just as important as the most influential terms depending on;p and that 

this also has to be transferred to the left-hand side. 

It is the same for Eq. (16.6). Thus after canceling the termsp and x on 

the right-hand side, the two equations ( 16.5) and ( 16.6) will still contain 

the two unknowns p and x so that, after elimination of one of these, the 

resultant equation will no longer be of the second order but will now be of 
the fourth order. 

The order will even be higher if one had been forced to transfer to the 

left-hand side all terms depending on p and x'■ 

In these cases, Gyldén—to return the equations to the second order— 

used a procedure of which we will give the essential principle. 

Let us first consider a fourth-order equation, for example, having the 
form 
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^+p = a(A+BA^ + B^ 
dv dv4 dv3 

+ B2~^- + Bl^- + B0p), (16.9) 
dv~ dv ) 

where A and B are known functions of v which are assumed to be finite, 
while a is a very small coefficient. 

The equation demonstrates primarily that, if the initial values ofp and 

of dp/dv are of the order of a, which we will assume here, then p will 
remain of the order of a. 

Thus neglecting all terms of the order of a1, we could write 

d2p 
—E- + p = aA 
dv 

which would return the equation to the second order. 

However, we wish to take terms of the order of a2 into consideration, 

neglecting those of the order of a3. With this degree of approximation, we 

obtain 

d4p d2p 7 d2A 
a —~ = — a - - + a~ 

a 

dv4 

d3p 

dv3 

dv 

dp 
= — a —t— + a 

dv 

dv2 

2 

dv 

a 
d2p 

dv2 
— — ap + orT. 

(16.10) 

This result is obtained on multiplying Eq. ( 16.9) by a and there ne¬ 

glecting all terms that have become of the order of a3 by this multiplica¬ 

tion. 

Then, Eq. (16.9) becomes 

d-P- p = aC + aD + aEp, (16.11) 
dv2 dv 

where 

C = A +B4(^-a) + B^ + B2A, 
\ dv ! dv 

D = B, - B3, 

E = - At 4 Bq. 

Thus the equation has been returned to the second order. 

Equation ( 16.11 ) is valid for quantities up to the third order, namely, 

to the order of a3. This will yield, to within quantities of the fourth order, 
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d2 + ,p 

dv2 + i 
_a^P + a2 — [C+D 

d' 

dv' dv‘ 

dp 

dv 
+ E (16.12) 

If then on the right-hand side of Eq. (16.9), we replace 

a 
d4 P a 

d 71 
a 

d 2p 

dv4 ’ dv3 ’ dv2 

by their values from Eq. ( 16.12 ), an equation will be obtained that is valid 

to within quantities of the fourth order and which itself will be of the 

second order. 

And so on. 

It is obvious that the same method is applicable to any equation of the 

form 

~TT +/i = afi' (16-13) 
dv 

where a is a very small coefficient, and where /, can be expanded in 

powers of p and of dp/dv, and f2 can be expanded in powers of 

dp dn~ 'p d "p 

P’ dv ’ dvn~x ’ dvn 

Consequently, Eq. (16.13) is no longer linear. However, the only dif¬ 

ference resulting from this is the possibility that there are terms present of 

a degree higher thanp and its derivatives, and that these would be allowed 

for only after the second and third approximation. 

171. Let us now consider the following equation: 

+ p = a (^A + B JpCdv^j , (16.14) 

where a is again a very small number while A, B, and C are known func¬ 

tions of v. This equation, when differentiated so as to eliminate the integral 

sign, would become of the third order. However, Gyldén reduced this 

expression to the second order by profiting from the smallness of the 

number a and by using a process analogous in essence to that employed by 
us in simpler examples. 

In fact, p and a are of the first order so that the term 

can be considered as being of the second order. In that case, neglecting all 
quantities of the third order, we obtain 
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whence 

) aB I pC dv = ccB j' AC dv — aB j~ ~~r Cdv, ( 16.15 

and. integrating by parts and denoting by C and C " the derivatives of C 

with respect to v, 

f ^-£-Cdv = C^-C’p + 
J dv dv 

dp 
J pC"dv. 

In general, the quadrature $ AC dv can be performed readily, so that 

B I AC dv = D 

can be considered a known function of v and that the integral fpC dv will 

be reduced to the integral f pC "dv which has the same form. 

In general, in the examples that Gyldén had to treat, C has the form 

C = (3 sin (/it; + p), 

where /?, A, and p are constants. It results from this that 

C " = — A 2C, 

whence 

aB j pC dv = a2 
dp 

= a D — aBC —A— + aBC 'p + A ~aB 
dv 

j pC dv, 

from which it follows that 

f a2D aBC dp aBC' , aB^Cdv = T_-T—JL + —p. (16.16, 

If, in Eq. ( 16.14), we replace 

aB j pC dv 

by its value ( 16.16), which can be done by neglecting all quantities of the 

third order, the equation will be reduced to the second order. 

If C is a sum of terms of the form 

/3 sin(/li; + p), 

then the expression 

aB j pC dv 

will be a sum of terms of the form 
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and each of these terms can then be transformed by a formula analogous 

to Eq. (16.16). Thus Eq. (16.14) will again be reduced to the second 

order. 

Equation ( 16.15) is valid only for quantities up to the third order. If 

one does not wish to neglect these quantities, one must write 

d2p 
aB j pC dv — a2D — aB 

dv2 
C dv + crcr, 

CB pCdv 

by putting, for abbreviation, 

a = B j dv^ 

Again assuming that C reduces to a single term 

C — p sin(/lu + p), 

we can derive from this that 

a2D 

)■ 

aB pC dv = 
aBC dp aBC' , a1 a 

- — + --—P +- 
l — A2 l — A2 dv l — A2 1 — A2 

such that Eq. ( 16.14), on transferring certain terms to the left-hand side, 

will become 

d2p ( aBC' 
F +P U - 

dv 1 -/l 

dp aBC a2D 
+ —-rr = aA -- + 

a2a 

dv l- A2 ~~~ ' 1 -A2 ' 1 - A2 

In general, one does not retain on the left-hand side all terms that we have 

transposed to there but only the most important of these. When bringing 

the other terms back to the right-hand side, one obtains an equation of the 

form 

^JL + E^ + Fp = G + Hp + K^ + La, (16.17) 
dv dv dv 

where E, F, G, H, K, and L are known functions of v. 

This permits operating as follows: On the right-hand side, let us first set 

p = a = 0. This will yield an equation linear on the right-hand side which 

can be integrated and will yield a first approximate value ofp and, conse¬ 

quently, of a. These values are then substituted on the right-hand side, 

yielding a new equation linear on the right side which will yield a second 

approximation for p and a, and so on. 

It is clear that we could also operate in the same manner if Eq. ( 16.14) 

were not linear and, for example, contained powers higher than p. From 

this it would merely result that the right-hand side of Eq. (16.17) would 
contain terms of the form 

Bpn and B Cpndv, 
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where B and C are known functions of v ( n > 1 ). In these terms, which are 

of the order n + 1 at least with respect to a, it is possible without incon¬ 

venience—as in the other terms on the right-hand side of Eq. ( 16.17)—to 

first replace/? by 0 and then by its approximate first value, followed by the 
second, and so on. 

So as to render application of this method useful, it is necessary that A 

be very close to 1, such that the expression 

a 

1 -i2 

will definitely be small but much less so than a. One then admits that the 

various terms on the right-hand side of Eq. (16.16) will be sufficiently 

large for not being neglected, even in the first approximation. 

Otherwise, it would be rather simple to leave the term 

aB pC dv 

on the right-hand side and to first assign a value of zero to the term p, 

followed by its various approximate values. 

This means that, in most cases, it is a question of transposing only a 

small number of terms ( and frequently only a single term ) to the left-hand 

side, having the form 

aB p/3 sin(/li; -f p)dv. 

The method of reduction to the second order, discussed above, is of advan¬ 

tage only if A contains no term in sin Av or in cos Av. Without this, the 

integral 

j* AC dv 

would contain a term in v, and in the expression of D the variable would be 

removed from under the trigonometric functions. 

This particular fact never occurred in the applications that Gyldén 

himself made of his method; besides, there always is some means of avoid¬ 

ing it. 

Let us write Eq. ( 16.14) in the form of 

(16.14a) 

Until now, we have considered A as being a known function of v. However, 

it can also be assumed that A depends not only on v but also on p in any 

manner, linearly or not, directly or through the intermediary of its dériva- 
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tives or integrals of the form f pD dv. Only the terms of A that depend onp 

are supposed to be smaller than the term 

aB J pC dv, 

which had been transferred to the left-hand side. 

Then, the value p in A will first be replaced by zero and then by its 

successive approximate values. Thus at each approximation, A can be 

considered as being a known function of v. 

Under these conditions, Eq. ( 16.14a ) is an equation linear on the right 

side. Indeed, if we set 

J pC dv = t, 

then p and d 2p/dv2 can be expressed linearly using the derivatives of r. 

For integrating the equation with a right-hand side, it will be sufficient 

to be able to integrate the equation without a right-hand side 

^r+p-ccB f pC dv = 0. 
dv2 J 

This equation has the same form as Eq. (16.14) and can be subjected to 

exactly the same method of reduction. Only, since A is zero, the difficulty 

mentioned above need no longer be feared. 

172. To recapitulate, this is what we have done: Let us suppose that a 

term containing a single integral 

J' pC dv 

will be sufficiently important to have it of necessity brought over to the 

left-hand side. Because of the above-discussed transformation, this term 

can be replaced by a sum of terms independent of p and of dp/dv to within 

terms that are sufficiently small for being brought back to the right-hand 

side. 

Let us assume now that one had been obliged to transpose to the left- 

hand side a term containing a double integral, namely, a term of the form 

M — aA J' dvB ^ j pC dv^ = A dv ^aB J* pC dvj , 

where A, B, and C are known functions of v. To within terms that can be 

brought back to the right-hand side, we will then have 

where D and E are known functions of v from which it follows that 
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M = A J pDdv + A J ^-Edv = AEp + A^P(d~ dv. 

Thus M is reduced to terms depending only on a single integral and treat¬ 
able as in the preceding number. 

It then remains to explain how these terms, containing single or double 
integrals, can be introduced into our equations. 

These equations can be written as 

d2X 

di’l 
— A + By + Cp D, 

d~£-+p = E+Fp + G^ + HY + K, 
dv, dvo 

where A, B, C, E, F, (7, and H represent known functions of u0 while D and 

K depend on p' and x or on higher powers of p, x, and dx/dv0. 

From this, we derive 

—7- + p = E' + Fp + G f Bx dv0 + G f Cp dv0 
dv o J J 

+ H J J Bx dv o dv() + H j'J Cp dvQ dv0 + A", 

where E ' is a new known function of v0, easy to form, while 

K’ = K+G [ D dv0 + H 'II D dv0 dv0 

depends on p , x'■> ar*d on higher powers p, x, ■ ■ ■ ■ 

It is obvious that we thus have introduced terms of the form 

G dv o, dvQ dv0, 

which one could transpose to the left-hand side and transform as stated 

above. 

173. We have reduced our equation to the form 

d 2p 

dvl 
+ A —p- -\- Bp — C, 

dv o 

where A and B are known functions of v0 while C contains the unknown 

functions and, in particular, p. However, we have agreed to replace there 

these quantities first by zero and then by their successive approximate 

values such that C can also be considered a known function of v0. 

This is an equation linear on the right-hand side which can be further 

simplified by causing the term in dp/dv0 to vanish. For this, it is suffi¬ 

cient—as is known—to put 
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<rexp — dt 

so that the equation becomes 

d2a 

dvl 
+ B'a = C', 

where B ' and C are new known functions of v0. 

In general, it is sufficient to retain a single term in B ' and to transpose 

all others to the right-hand side so that the equation will be reduced to the 

form of Eq. ( 16.6b) in no. 169. 

174. Up to now, we had assumed that the three-body motion takes 

place in a plane. Very little has to be changed in the case in which the 

inclinations of the orbits must be allowed for. 

In that case, let r, v, and 0 be the radius vector, the longitude, and the 

latitude of the first planet so that the equations of motion, returning in all 

other respects to the notations of no. 167, will be 

d_ 

dt 

dCl 

dt ’ 

d2r 2Qdv2 d62 
—- — r cos~6 —- — r-— 
dt- dt~ dt2 

+ 4 
r 

dil 

dr ’ 

d_ 

dt 
+ r sin 0 cos 6 

dv2 

It2 

dil 

dO ' 

Let us then put 

u —-, s = tan 6 
r cos 0 

and let us introduce, as in no. 167, an auxiliary variable v0 defined by the 
equation 

From this, we deduce first 

dv0 

dt 

d2v 1 diL 

dvl cqu~ dv 
(16.18) 

an equation analogous to Eq. (16.5) of no. 167, and similarly we find 

d 2u 

dvl 
+ u = A — — cos3 6, 

d2s 
~— + s = B, 
dvi 

(16.19) 

(16.20) 
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where A and B are combinations of the derivatives of the perturbing 
function. 

Then, in B, A, and dCt/dv, one can replace the coordinates of the plan¬ 

ets by their approximate values. The right-hand sides of our equations 

( 16.18) and ( 16.20) are then known and we can calculate v and s. Ifsand 

thus also 6 are known, the right-hand side of Eq. (16.19) will also be 

known and u can be calculated. 

Operating in this manner means that we remain within the essence of 

the old methods. However, Gyldén, as indicated above, transposed some 

of the most important terms of the right-hand side to the left-hand side of 

Eqs. ( 16.18), ( 16.19), and ( 16.20), applying, as necessary, the reduction 

processes of nos. 170-173 and thus obtaining equations of the same form 
as those of no. 169. 

Intermediate Orbit 

175. We have put above 

U = U{+p, v = vt+x. 

where «, and ux are approximate values of u and v. 

The choice of these approximate values, which remains arbitrary to a 

certain extent, obviously is of great importance. To keep in line with the 

old methods, it would be necessary to take, for and vx, the values corre¬ 

sponding to the Keplerian motion. 

Gyldén preferred to come closer to the real orbit from the very first 

approximation. However, it is obvious that the subsequent approxima¬ 

tions will be more rapid and in addition—as shown in no. 133—the case in 

which the motion is Keplerian in first approximation presents a special 

difficulty which one should try to avoid. 

Below, we will show what Gyldén did in this respect. 

He assumed first that vx — v0 and that «, is determined as a function of 

v0 in the following manner: We have the equation 

Let us first replace dCl/dr by a function c0u2cp(u) depending only on u 

and differing very little from the mean of the values taken by dCL/dr when 

varying (while keeping u constant) v from 0 to 2rr and varying u and v' 

such that the second of the planets (whose coordinates are u' and v') 

assumes all possible positions on its Keplerian orbit. Next, let us replace u 

and v by ux and u, such that dv/dv0 reduces to 
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dvo _ j 

dv o 

+ — = £>(«,). (16.21) 
co 

This equation is easily integrated by quadrature. Interpretation of this 

approximate solution is readily possible. 

Let us add the following equation to Eq. ( 16.21 ): 

^ = u]^o- (16-22) 
dr 

It is obvious that, if we consider a fictitious star that has radius vector 

— 1 /u, and longitude v0, at the epoch r0, this star will have a same motion 

as though it were attracted by a fixed mass located at the origin, obeying a 

certain law different from the Newtonian law. Nevertheless, this attrac¬ 

tion depends only on the distance, since it obviously is equal to 

liu\ — c0u]cp{ux), 

and since 1 /«, exactly represents the distance of our fictitious star from 

the origin, i.e., from the fictitious attractive mass. 

The variables t and r, corresponding to the same value of u0, are con¬ 
nected by the relation 

dt _ u] 

dr u2 

The variable r, which is only rarely used outside this interpretation, has 
been given the name “reduced time.” 

The orbit described by our fictitious star has been denoted as “interme¬ 

diate orbit” since, so to say, it keeps the middle between the real orbit and 
the Keplerian orbit. 

For 

cp{u) = hu~3 or hu2, 

where A is a constant, the integration of Eq. (16.21) can be done with 
elliptic functions. 

dvx 

d\)n 

Thus our equation becomes 

d2u, 

dvr 
+ u. 

Absolute Orbit 

176. If one reflects on the spirit of Gyldén’s theories, one will understand 

that the choice of the variable u0 plays no major role here, and that fully 

analogous results can be obtained by using an independent variable. 
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The simplest and, in most cases, the most advantageous variable would 

be the time t. This has been done by Gyldén himself in one of his papers.9 

Numerous other choices are also possible. Among others, Gyldén has 

used in some of his investigations a variable whose definition is much 

more complicated and which also is denoted by v0. We will discuss this 

briefly. 

The famous astronomer undertook to determine an orbit deviating 

very little from the true orbit and called an “absolute orbit.” This orbit in 

turn keeps, so to say, the middle between the intermediate and the real 

orbit. 

Let us return to Eqs. (16.1) of no. 167. 

On the right-hand side of these equations, let us consider the most 

important terms. Let Q be the set of the most important terms of r2 dCl/dv 

and let Pbe the set of the most important terms of r dPl/dr such that, to a 

first approximation, we can neglect the differences 

7 dPL 
r 

dv 
Q, r 

7 dfl 

dr 
P. 

Let Co be what becomes of Q on replacing there u, u', and v' by their 

approximations as functions of v, and then replacing v by Do- 

Let us introduce an auxiliary function c, by putting 

and let us then put 

= Qo (16.23) 

(16.24) 

The function v0, defined in this manner, will be our new independent 

variable; it will differ little from v since it will satisfy the equation 

d ('£) 
dt 

whereas v satisfied the equation 

</(>-! 
V dt) _ dil 

dt dv 

which differed from the former only by the addition of certain terms 

which we assumed to be very small. Thus we can put 

v = v0 + x- 
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From Eqs. ( 16.23) and ( 16.24), we derive 

yfc = ^- = Q0 du0. (16.25) 

Now, we have assumed that, to obtain Q(), the coordinates u, u', and v' in Q 

were replaced by their approximate values as a function of v and then v by 

v0. 

As a result, Q0 is a function of vQ alone and Eq. ( 16.25) can be readily 

integrated by quadrature. 

The second part of system ( 16.1 ) will then become 

d2u + 1 <7 log c, rfu ^ ^ / (iu V // _ r2 dCl 

dv\ 2 dv0 dv0 \dv0J c, c, dr 

It is obvious, since % is very small, that dv/dv0 will be close to one. Conse¬ 

quently, the coefficient (dv/dv{))2 can be replaced by 1 in first approxima¬ 

tion. Thus, provided that w, is the approximate value of u and if we put 

u = u, +p, 

we could define w, by the equation 

d2ut | 1 d\ogc, du, | ^ +/i = To 

dvl 2 dv0 dv0 c, c, 

where P0 is what becomes of P upon replacing in it v by v0, u by and u' 

and v' by their approximate values as a function of v0. 

Since P() depends only on w, and v0 and since c, is a function of v0, 

known through Eq. (16.25), we will have a differential equation of the 
second order between u, and v0. 

On transforming this expression by means of the process given in no. 
173, i.e., by putting 

«, = (7(C| )_ l/4, 

we obtain 

d2 a 
—— = F(v0,a), 
dv o 

which has the same form as Eqs. ( 16.7) and ( 16.8) of no. 169. 

Having thus determined the coordinates \/ut and vQ of the fictitious 

star which describes the absolute orbit, we can calculate the corrections p 

and % by similar procedures, thus yielding the coordinates of the real 
planet. 
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Case of Linear Equations 
177. We still must do the following: 

(i) Perform an integration of Eqs. (16.6b), (16.6c), (16.6d), (16.5b), 

( 16.7), and ( 16.8) of no. 169. 

(ii) Establish how one can, in forming these equations, distinguish the 

terms that must be transposed to the left-hand side from those that must 

remain on the right-hand side. 

I will first investigate the integration of Eqs. (16.6b) and (16.6c), and I 

will devote this chapter to it. 

Equation (16.6c) which is the most general, is written as 

—~ + /o[ ( 1 + <t) — C(1 + /?)sin(/ly0 + k) ] — B , 
dv o 

where B " is considered a known function of v0. This is an equation linear 

on the right-hand side, whose integration reduces to that of an equation 

with zero right-hand side: 

^-Ç-+p[( 1 + a) — C(1 +/?)sin(/li;0 + k)] = 0. 
dv o 

If this equation is transformed by changing the notation and by putting 

p = x, s^Vq -f- /c — 2t + 
7T 

-jjd +a)=q2, +/?) =qu 
À A 

it will become 

d2* , 2 , -— — x( —q+qi cos It). 
dt2 

Study of the Gyldén Equation 

178. Let us consider the equationRI3 

= x( — q- + qt cos It). (17.1) 
dt2 

It was shown above that Gyldén, in his research, had been induced to 

consider the following equation [see no. 169, Eqs. ( 16.7) and ( 16.8) ] : 

511 



512 CELESTIAL MECHANICS 

d2x 

dt2 
=f{x,t), (17.2) 

wheref(x,t) is a function that can be expanded in powers of* and which is 

periodic with respect to t. 

Now, it so happens that, in the applications of this equation made by 

Gyldén, the most important terms off(x,t) have the form 

cp{t) + x( — q2 + <?, cos 21), 

with cpi t) being a periodic function of t alone, and that all other terms can 

be neglected in first approximation. 

Equation (17.2) can then be substituted by 

^rrT = (pit) + x( — q2 + qx cos It). (17.3) 
dt 

This is an equation linear on the right-hand side whose integration, as 

known, readily reduces to that of the corresponding equation with zero on 

the right-hand side which is nothing else but Eq. ( 17.1 ). 

Let us now study Eq. (17.1), and let us first recall what the general 

results given in Vol. I on the subject of linear equations (Chap. 2, no. 29, 

and Chap. 4, passim ) allow us to conclude. 

Primarily, these results show that Eq. ( 17.1 ) admits of two particular 

integrals of the form 

x — e'ht(pyit), x — e >htcp2it), 

where <pi and cp2 are two periodic functions of t with period tt, and where 

the two characteristic exponents h V — 1 and — h V — 1 are equal and of 
opposite sign. 

To go beyond this, we will make use of a general theorem demonstrated 

earlier in a paper on groups of linear equations.10 

Let there be a linear equation of the form 

d py 

dx p 
= <Pp- U) 

dp~ly 

dxp~l 
+ <PP-2(x) 

dxp~2 

+ <p iU) 
dy , „ 
— + <Po(x)y. 
dx 

(17.4) 

The coefficients cpt (x) are functions not only of x but also of a certain 
number of parameters on which they depend linearly. 

Let us assume, for example, that there are three parameters, and let us 

denote these by A, B, and C. Then, the function cpi (x) will have the form 

<Ptix)=A(p,iix) +%,"(*) + Ccp’l'ix). 
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The functions q) ' (x), <p " (x), and (jc) will be continuous, as will be all 
their derivatives, on the interior of a domain from which we have not re¬ 
moved x. 

After this, let us use the initial values of y and of its p — 1 first deriva¬ 
tives at the point x = 0 and let us vary x from zero to a certain value x,, by 
following a predetermined path. Letj>, be the value assumed by.y as soon 
as x arrives at the point xx. It is clear that >>, will depend on: 
(a) the initial values of y and its derivatives (on which it will depend 
linearly); 
(b) the parameters A, B, C. 

The theorem in question postulates that_y, can be expanded in a series 
in ascending powers of A, B, and C and that this series will converge no 
matter what the values of these three quantities might be; in other words, 
y{ will be an integral function of A, B, and C. 

Let us apply this theorem to Eq. (17.1). 

Let F(t) be a particular integral of this equation such that 

E(0) = 1, .F'(O) — 0; 

[ for abbreviation, we will denote dF/dt by F ' ( t) ]. 

Let, similarly,/(r) be a second particular integral such that 

/(0)=0, /'(0) = 1. 

Then, if x0 and x'0 are the initial values of x: and of dx/dt for t = 0, we will 
have 

x = x0F(t) +x'of(t). 

Our theorem thus is that F( t) and f(t) will be entire functions of q2 and 
of qx. This is also the case for F'(t) and f (t). 

Let us assume, specifically, that 

x = éhtcpx{t), 

so that 

<Pi(0)=xo, <p ; (0) + ih<px(0) =xô 

and 

e,hncpx(v) =x0F(tt) +X'0f{,TT), 

eihn[<p I (tt) + ih<Pi(tt) ] = x^'in) + x^f'(v). 

However, the function <px is periodic so that we will have 

<p,(0) = <p[{0) =<p[(v), 

whence 
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eihnXQ = x0F{ V) + x'of{ 77-), 

eihwx'0 =x0F'(it) + x'0f'{v). 

Hence 

[F{v) - eihn If'(TT)- eihn -f(v)F'(v) = 0. 

Thus elh7T is a root of the equation in S, 

[F{v)-S]\f'{v) -S]-Air)F'(v)=0. 

In the same manner, it can be demonstrated that the other root is e ~,hir. 

Consequently, the sum of the roots is equal to 2 cos hv, so that we have 

2 cos hv = F(v) +f'(v). 

It results from this that cos hv is an entire function of q2 and of qx, i.e., 

that cos hv can be expanded in integral powers of q2 and of qx and that the 

series is always convergent. 

We state now that this series contains only even powers of qx. 

If, in fact, we change t into t + v/2, the solutions 

x = e,ht<px(t), x = e~lh,qp2(t) 

will become 

x = e,h't/sx(t), x = e~,h,rp2{t) 

where 

M)= eihn/2<px + ^2 (0=e~ ihn/1cp2 ^ + yJ 

are periodic functions in t. Consequently, the characteristic exponents do 
not change. 

At the same time, since 

cos — cos 21, 

Eq. ( 17.1 ) becomes 

d2x , , 
——==x(-q — qx cos It), 

which means that the characteristic exponents and thus also cos hv do not 

change when qx is changed into — qx. However, this can take place only if 
the expansion of cos hv contains only even powers of qx. 

Let us note now that Eq. ( 17.1 ) will not change when one changes t 

into — t. It results from this that F{ t) is an even function of t and that/( t) 
is an odd function, i.e., that 

F(t)=F(-t), f(t) = -f(-t). 
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However, the solutions of Eq. ( 17.1 ) can be expanded in cosines and 

sines of ( h + 2m ) t, with m being a positive and negative integer. It results 

from this that Twill contain only cosines while/will contain only sines. 
We will then have 

F(t) =^Am cos(h -f 2mK 

At) = X Bm sin(^ + 2m)t, 

where m varies from — oo to + oo. This will yield 

F(0) = 1, 

F{v) = ^ Am cos{hv + 2mv) = ^ Am cos hv = cos hv, 

fit) = ^ Bm {h + 2m)cos(/î + 2 m)t, 

f'(0)=2BmVi + 2m) = 1, 

/'(v) = ^ Bm(h + 2m)cos /z-n- = cos hv. 

We thus have 

T(7r) =f'(v) = cos hv. 

179. Let us now see how one can obtain the expansion of T(7r) in 

ascending powers of qx. 

Let us assume that we are searching more generally for the expansion 

of F(t) and let us put 

F{t) = FQ(t) + qiFl(t) -\-q\F2it) + ••• . 

For determining F0, Fu F2, , we will have the following sequence of 

equations: 

d2F0 

dt2 
+ q2F0 — O» 

^ ,FJ- + q2Fx = F0 cos It, 
dt2 

d -)- q2F2 = T, cos 21, 
dt2 H 2 

(17.5) 
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In addition, the functions Ft must be even; F0 must reduce to 1 and the 

other functions Ft must reduce to 0 for t — 0. 

One can directly conclude from this that 

F0(t) = cos qt, 

d2Fx , 2r, cos(q + 2)t , cos(0-2)t 
+ TF\ =---+-r-> 

dt 

and 

„ , , cos(0 + 2)t — cos qt , cos(0 — 2)t— cos qt 
CO =-—-77-1-IT, 77 

8(?+l) 8(0-1) 

+ q2F2 = «o cos(0 + A)t + a, cos{q + 2)t 

We next obtain 

d2F 

~cIt2 

+ a2 cos qt + a3 cos(q — 2)t + a4 cos(q — 4)t, 

where a0, aua2, a3, and a4 are coefficients easy to calculate, from which 

we can derive 

aocos(0 + 4)t «,cos(0 + 2)t 
F2 = 

8(0 + 2) 4(0+1) 

ax cos(0 — 2)t a, cos(0 — 4)r 

4(0-1) 8(0-2) 

a4 cos qt + a2t sin qt a0 cos qt a,cos0t a3 cos qt 

8(0 + 2) 4(0+1) 4(0-1) 8(0-2) 20 

One can also see that a2 is equal to 1/8 (q2 — 1 ). The general rule is clear: 

Fi(t) =^/3°in [cos(0 + 2n)t - cos qt ] + sin(0 + 2n)t 

+ t2Y/32n cos(0 + 2n)t + ■■■ +tk y/?•„ (0 + 2«)r. 
cos 

Since the function F, (/) must be even, the coefficient of tk 

„ v sin 
/3kn (q + 2n)t 

cos 

will contain only sines if k is odd and only cosines if k is even. 

What are the values that the integer n can take? 

In the first term 

°n [cos(0 + 2n)t — cos qt ], 
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n will vary from — 2/ to + 2/; in the coefficient of t, n can vary from 

— 2(i — 2) to +2(i— 2); in the coefficient of t2, n can vary from 

— 2(/ — 4) to + 2( / — 4); and so on, such that k cannot exceed i/2. 

By means of Eqs. (17.5), it is possible to obtain recurrence relations 

between the coefficients /? . For the time being, we will not discuss this 
further. 

When we set t = v,'we will have 

cos ( q + 2n ) v — cos qv = 0 

and the first term of F,\t) will vanish, such that 

F,{tt) = 7t£/3J„ sin qv + v2^ f}]n cos qv + • • • . 

Furthermore, we know that Fj( v) will be zero if i is odd since we already 

know a priori that the expansion of F(v) must contain only even powers 
of qx. 

This was the manner used by Tisserand in calculation F(v) and thus 
also cos hv. He found 

cos hv = cos qv |l — 
v1 

2\2 

sin qv 

512<7 (1 — q ) 

v 

16q{ 1 - q2) 

(15g4-35g2 + 8)7r 

1024^(1 -q2)(22-q2) 

<f\ + " 

+ 

which we will write here as 

cos hv — p(q,qx)cos qv + (px{q,qx)sin qv, 

where (p{q,qx ) and cp\{q,qx ) will be series developed in ascending powers 

of q\ whose coefficients will be rational in q. 

The first question to settle is to know whether h is real or imaginary. If 

|cos hv\ = \F{v) | < 1, 

then h is real and the solution of our differential equation will be stable, 

and F(t) as well as f(t) will remain within finite limits. If, conversely 

\F{v)\> 1, 

then h is imaginary and the two functions F{ t) and/( t) will have the form 

F{t) = eatip{t) +e~atip( - t) 

f{t) = Aea‘rf>(t) — Ae~atip{ — t) 

where A and a are real constants and xp{t) is a periodic function of t with 
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period v. It results from this that F(t) and f{t) can increase beyond all 

bounds and that the solution of our differential equation is unstable. 

If we consider, for the moment, that q and #, are coordinates of a point 

in a plane, then this plane will be subdivided into two regions: one in which 

|E(7t)| will be smaller than 1 and h will be real and another in which 

\F{v)\ will be larger than 1 and h imaginary. These two regions are sepa¬ 

rated by the various segments of the two curves 

cos h77 = +1, cos hv = —1. 

Therefore, it is of interest to plot these two curves, at least within the 

portion of the plane that corresponds to the low values of#,. 

For #, = 0, we have 

cos hv = cos qir. 

Thus the curve cos hv = +1, which I will call C, intersects the #-axis at 

points whose abscissas are even integers, while the curve cos hv = — 1, 

which I will call C ', intersects the #-axis at points whose abscissas are odd 
integers. 

All other points of the q axis belong to the first region, namely, the 
region in which h is real. 

Let us then return to the equation 

cos hv — cos qv — q]F2(v) — q\F4{v) — • • • = 0, 

which connects h with q and with #,. The left-hand side vanishes for h = q, 

qi=0; the equation can be expanded in ascending powers of h — q and 

also of q\ ; finally, its derivative with respect to h reduces to — v sin qv for 

h = q,qi=0 and thus does not vanish unless q is an integer. Consequent¬ 

ly, if we assume that q is not an integer, the theorem of no. 30 demonstrates 

that h can be expanded in ascending powers of q\ and that the series is 
convergent provided that #, is sufficiently small. 

Let us now see what happens when q is an integer. In applying his 
formula, Tisserand found: 

for |#|>3, 

cos hv = ( — 1)9( 1 v1 

for \q\ = 2, 

for \q\ — 1, 

512#2(1 — q2) 2x2 + 

, . 57-p-qX 
cos hv = 1 + 

1 - 

73728 

Trq\ 

+ •• 

cos hv = 
32 
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and, finally, for \q\ =0, 

_2 2 irq\ 
cos hv = 1-(-•••. 

16 

In fact, when q is an integer, cos qv becomes equal to + 1 and sin qv 

vanishes. However, it happens at the same time that cpx (q,qx) becomes 

infinite so that the product 

sin qvcpx{q,qx), 

tends to a finite value as q tends to a whole number. Let us then consider 

the limit 

L = lim sin qv cpx (q,qx ), 

when q tends to an integral value. 

This limit can be expanded in powers of qx ; however, in the expansion 

of (P\{q,qx), the coefficient of q\ becomes infinite for \q\ — 0 or 1 while the 

coefficient of q\ becomes infinite for \q\ = 0, 1, or 2, and that of q\ be¬ 

comes infinite for \ q\ = 0, 1, 2, or 3. It results from this that, if <7 tends to an 

integer nx, the expansion of L will start with a term in q\n. On the other 

hand, the expansion of cp(q,qx) — 1 starts with a term in q\. It is for this 

reason that, in the expansions of 

cos hv — ( — 1 )g, 

obtained by Tisserand, the first term is in q\ for \q\ — 0 or 1 and in q\ for 

kl> 1. 

Let us thus consider the equation of the curve C, which can be written 

as 

1 — cos qv — q]F2(v) — q4xF4(v) — • • • = 0. 

Since the curve passes through the point 

q — 2n, qx=0 (n integer) 

the left-hand side vanishes for q = 2n, qx = 0; it is also expandable in 

ascending powers of q — In and of qx. It is easy to prove that this expan¬ 

sion contains no terms of degree 0 or 1, but starts with second-degree 

terms 

y (q — 2n)2 + Aq2x, 

where A is equal to 

and to zero for n ^0 

- for n = 0, 
16 
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It follows from this that the point q = 2n, qx — 0 is a double point for 

the curve C; however, two cases must be differentiated here: 

( i ) If n — 0, the second-degree terms reduce to the sum of two squares and 

the two segments of the curve passing through the double point are imagi¬ 

nary. Consequently, the origin for the curve C is an isolated point. 

( ii ) If n 5* 0, then A is zero. The two segments of the curve passing through 

the double point are mutually tangent and intersect the q-axis at a right 

angle. To determine whether these two segments are real or imaginary, it 

is necessary to consider terms in (q — 2n)q] and in q\. 

The coefficient of q\, as demonstrated above, is 

+ n2 — 5it2 

512<72( 1 — q2)2 °r 73728 ’ 

depending on whether |«| > 1 or =1. 

The coefficient of (q — 2n)q2 will be obtained by taking derivatives of 

tt sin qrr 

16^(1 — q2) 

with respect to q and by setting there q = 2n. This will yield 

v2 

\6q{ \ — q2) 

So as to have the segments of the curves be real (assuming |«| > 1 ), it is 
necessary and sufficient that the quadratic form 

2 2 x xy yz 

2 + \6q{\ — q2) + 512q2( 1 - q2)2 

be indefinite. This is beyond doubt only if this form is reduced to a perfect 

square, however, this is exactly what happens; thus we see that our two 

curve segments are not only mutually tangent but actually osculate. Nev¬ 

ertheless, to determine if they are real, we would have to calculate the 

terms of higher order unless we were fortunate enough to have an indirect 

means for deciding this question, a means that I will discuss below. 

In the case of |«| = 1, |<?| =2, our quadratic form becomes 

x2 xy 5 q2 

2 96 73728 

and is indefinite. The two curve segments are definitely real. 

Let us now plot the curve C ' whose equation is 

— 1 — cos qn — q\F2(Tr) =0. 

The left-hand side vanishes for 

q = n, qi= 0 (n odd integer), 
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and its expansion in powers of q — n and qx starts with second-degree 
terms 

A(q - n)2 + Bq\. 

If | « | = 1, then A and B are of opposite sign and the two curve segments 

passing through the cusp are real. 

if M > 1, then B is zero and the two curve segments are mutually 

tangent (and probably osculate). To decide whether the^ are real, it is 

necessary to use the indirect process mentioned above. 

The process consists in the following: 

One can ask what will happen when we have 

F( it) = cos hv = + 1 • 

According to what we have seen in no. 29, the most general solution of Eq. 

( 17.1 ) will have the form 

rp{t) + tif>i(t), 

where xp{t) and rpx (t) are periodic functions of t with period v if 

F(tt) = -f 1 and with period 2n if F(tt) = — 1 (thus they change sign 

when t changes into t + n). Consequently, we have 

F(t) = xp{t) + tif>i(t). 

If rpx{t) is not zero, this constitutes a solution ofEq. ( 17.1 ). However, 

F{ t) is an even function; consequently ift(t) is even and x[)x (t) is odd. Thus 

ipx(t) reduces to f(t) to within a constant factor, and f(t) is thus perio¬ 

dic^14 

If tpi(t) is identically zero, F{t) is periodic. 

Three different cases may occur: 

(a) Either F{t) is periodic, so that 

F'(tt) =0. 

(b) Or else/(/) is periodic, so that 

/(tt) = 0. 

(c) Or else these two functions are both periodic, so that 

F(tt) =f{n) = 0. 

The same result can be obtained in the following manner. We have 

identically 

F{t)f'{t)-F'(t)f{t) = 1. 

If, then 

F(tt) =f'(7T) = ± 1, 

we obtain 
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F'{v)f{v)=0. 

Thus at least one of the two quantities F'{ v) and/(7r) will be zero. 

Similarly, if 

F'(tt) = 0 or /(7r) = 0, 

we will have 

and, since 

we obtain 

F(v)f'(v) = 1, 

F(v) = f ( 7T ) = cos hv, 

cos hv = +1. 

The various points of the curves C and C ' belong thus to the two curves 

F\77-) =0, /(7T)=0, 

and vice versa. 

Let us note that F ' ( v) and/( v) are entire functions of q and of q,. For 

#, = 0, these functions reduce to 

E (7r) = - q sin qv, f(v) =-— . 
q 

Thus if q passes through an integer value different from zero, then 

F'{ v) and/( v) will vanish and change sign, and these values of q will be 

single zeros for these two functions. It results from this that the points 

q — n, #1=0 (n integer, «50), 

which are double points, sometimes for C and sometimes for C ', are single 

points for each of the two curves 

F\v)= 0, f{v) — 0. 

If q passes through zero, then F'{v) vanishes without change in sign 

(double zero) and/( v) will not vanish. Thus the origin will be a double 

point for F'{v) =0 but/(v) will not vanish at the origin. 

Consequently, four analytically distinct curves exist: 

F( v) = 1, F'{v) = 0, 

F(v) = 1, f(v)=0, 

F(v)=-l, F'(v)= 0, 

F{V) = - 1, /( 7T) =0, 

F(t+ v) =F(t); 

f(t + v) =/(?); 

F(t + v) = —F(t); 

f(t + v) - 

(17.6) 

(17.7) 

(17.8) 

(17.9) 

The curve C is then formed from the union ofthe twocurves (17.6) and 
(17.7). Each of these has a single point in 

q = In, ql = 0, 



CHAPTER 17 § 179 523 

and it is for this reason that the point is a double point of C. However, the 

two segments of C passing through this point thus belong to two analyti¬ 

cally distinct curves and can be nothing else but real. 

There is one exception, for the origin: 

<7 = 0, <7, = 0. 

This point is a double point of (17.6) but does not belong to (17.7). 

According to our above statements, the preceding reasoning thus does not 

apply; furthermore, we have seen that the two curve segments are then 

imaginary. 

Similarly, the curve C' is formed from the union of the two curves 

( 17.6) and ( 17.7); each of these has a single point at 

q = 2n + 1, <7, = 0. 

The two segments of C ' passing through this point belong to two ana¬ 

lytically distinct curves and consequently are real. 

It has been demonstrated above that changing q: into — qx amounts to 

exactly the same thing as changing t into t + v/2. 

Let us first consider the curve (17.6): 

F(t + it) = F(t). 

We have 

F(t)=F(-t), 

from which it follows that 

v 
F \t -\ ) = F — 1 = F — t 

The function F(/ + 77-/2) is thus even and periodic, with period tt. 

Consequently, if q] is changed into — qx, then F{t) will change into 

F{t + 77-/2) which again is even and periodic. Thus if the point (q,qx ) 

belongs to the curve (17.6) it must be the same for the point (q, — qx). 

Therefore, the curve (17.6) is symmetric with respect to the axis of q. 

Since the curve Cis symmetric on the whole and is composed of ( 17.6) 

and of ( 17.7), we can conclude (which is easy to verify) that the curve 

(17.7) is also symmetric with respect to the axis of q. 

From this, one can conclude that the two curves ( 17.6) and ( 17.7), at 

the point 

q = 2n, q{= 0 

can only have a contact of odd order. 

Let us now consider the curve (17.8): 

F(t + 77-) = — F(t). 



524 CELESTIAL MECHANICS 

Figure 6 

We obtain from this 

Consequently, the function F{t + v/2) is odd and periodic. Thus if the 

point (q,qx) belongs to (17.8), then the point (q, — qx) will belong to 

(17.9). The two curves (17.8) and (17.9) are thus symmetric with re¬ 

spect to each other and with respect to the axis of q. 

From this it follows that these two curves, at the point 

<7 = 2/2+ 1, qx = 0 

can have only a contact of even order. 

Thus, the contact of the two curve segments in q = n, ql — 0, is of zero 

order for n — 1, of first order for n — 2, of second order (at least) for 

n = 3, and of the third order (at least) for n — 4. After this, it will alterna¬ 

tively be of even and odd order and will always be at least of the second 

order. 

This might induce one to believe that the osculation always is of the 

order n — 1; however, we have never been able to prove this. 

Figure 6, contained in the rectangle 

q = 0, qx = 0, qx=e, q = 4 + e, 

can be used for summarizing the above discussion. The hatched region is 
that in which h is imaginary. 

From the equation yielding cos hir as a function of q and qv we can 

derive various series whose convergence is more or less rapid and which 

yield h, arranged in powers of qx. However, we believe it preferable to 

calculate cos hv by means of the preceding formulas and to derive h from 
this via trigonometric tables. 

180. Once h is determined, it will be a question of finding the coeffi¬ 
cients An of the expansion 
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F(t) = y An cos(h + 2n)t. . 

According to the definition of F(t), we must have 

2^ = i- 

On the other hand, it follows that 

„i(h + 2n)t - i(h + 2n)t 

= + 1^^—. 

However, according to what we have seen in no. 29, Eq. ( 17.1 ) must 
admit of two solutions of the form 

2*. 
-i(h — 2n)t 

■ Ie■ 
, — i(,h + 2 n)t 

2 2 

and F(t) must be a linear combination; this can take place only if 

An=Bn= Cn. 

It results from this that 

V An sin(A + 2n)t = Y —— e,( 
^ ^ 2/ 

X- An - — y-e 
^ 2/ 

will also satisfy Eq. ( 17.1 ) and, consequently, that 

y An sin(h + 2n)t 

f(t)=-. 

X An{h + In) 

It is obvious that An is a function of q and qx but that it is no longer an 

entire function of these two variables as had been the case for cos hv. It is 

not even a uniform function. Evidently the only singular points of this 

function are the points of the curves 

cos bin = +1, 

for which the functions F{t) and f{t) can no longer be put in the form 

given to them before. 

How does the function An behave in the neighborhood of one of these 

singular points? 

Let us assume that the point {q,q, ) indefinitely approaches a point M 

belonging to the curve 

F\n)= 0, 

and that h tends toward an integral valuep. Then, F(t) is still periodic at 

the limit. For abbreviation, let us put 

B = '2/An(h + 2 n), 
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so that, on combining in F{t) and f(t) all terms in (A + 2n)t and in 

(A — 2n — 2p)t, we obtain 

F(t) = cos(A + 2n)t + A _ n_p cos(A — 2n — 2p)t ], 

Bf{t) = £[An sin (A + 2n)t + A _n_p sin (A - 2 n — 2p)t ]. 

If we then set 

An+A_n_p = C, An—An_p—D; 

we obtain 

F(t) = ^ [Ceos (A — p)tcos(2n + p)t 

— D sin (A — sin (2« +/?)t ], 

5/(t) = ^[Csin(A — p)t cos(2« + 

+ Z> cos(A — sin(2« + p)t ]. 

When A tends to p, then cos (A — p)t will tend to 1 and sin ( A — p ) t to 

zero. However, if D tends to infinity in such a manner that D(h — p) tends 

to a finite limit, then the product D sin ( A — p ) t will tend to D0t where D0 

is a constant. 

If, then, the point Mbelongs to the curve F'(tt) =0, the expansion of 

F(t) must contain only terms in 

cos(2 n + p)t 

and the expansion off(t), terms in sin(2/7 + p)t and in t cos(2« + p)t. 

Consequently, it is necessary that C tends to a finite limit and D and B, 

to zero. Thus An and A _n_p will tend to finite limits which are mutually 

equal. Ifp is even, then Ap/2 must tend to zero. It is easy to prove that, if 

limT„ = lim A _n_p, 

we will have, as agreed, 

lim B = lim ^ An (A + 2n) = 0. 

If, conversely, the point M belongs to the curve/(tt) = 0, then the 
expansion of F(t) must contain terms in 

cos(2« + p)t and t sin(2n +p)t, 

and the expansion off(t), terms in sin(2« +p)t. 

Thus it is necessary that C tends to a finite limit while D and B tend to 
infinity. 

Consequently, An and A _ n_p tend to infinity but their algebraic sum 
will remain finite. 
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However, no matter whether the point M belongs to the curve 

F'(tt) = 0 or to the curve/(n) = 0, it still will be a singular point for the 

function An. In fact, when the point (q,qt) rotates about M, the function 

An will be exchanged for the function A _ n _p, as is done by two determi¬ 

nations of one and the same algebraic function. 

It follows from this that, if q is not an integer, An could be expanded in 

ascending powers of qx and that the radius of convergence of this series 

will be the modulus of the closest singular point, while the singular points 

themselves will be the points of the curves C and C ' that correspond to the 

value of q being considered. 

This leaves the coefficients of the series to be determined. Let us assume 

that the problem is solved and let 

F{t) = ^ A„ cos(h + 2n)t = An cos(q + 2n -\- h — q)t, 

or, expanding in powers of (h — q), let 

F(t) =^An cos{q + 2n)t — t^An(h — q)sin(q + 2n)t 

~ ^An(h - q)2 cos(q + 2n)t + . 

This series, containing the trigonometric lines of (q + 2n)t multiplied 

by powers of t, must be identical to that obtained above: 

F(t) = ^ q\Fi(t), 

Fi(t) =^P°in [cos(? + 2n)t — cos qt ] + t^/3)n sin(# + 2n)t -f ••• . 

Let us note that An, An (h — q), can be expanded in ascending powers 

oftfi- 

Identifying the two expansions, we then obtain 

and 

This gives us the means for calculating the coefficients of the series. The 

convergence is usually sufficient, provided that q is not close to a whole 

number. If q is close to an integer p, the convergence can be improved in 

the following manner: 

Since An and A _ n _ p are interchanged as one turns about the closest 

singular point, the two functions 
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(An+A_n_p) and (A„-A_„_p)2 

remain uniform in the vicinity of this singular point, but the first of these 

functions will remain finite while the second can become infinite of the 

first order if the singular point belongs to/( v) — 0. However, in that case 

(A„ -An)2f(7T) 

will remain finite. Consequently, the expansions of 

An+A_n_p and (A„ - A _ n_p 

will converge much better than those of A „ and A _ n _ . Therefore, it is of 

advantage to use these and to derive An and A _n_p from this by an 

equation of the second degree. 

Finally, let us note that a discussion of the slopes of the curves C and C ' 
in the vicinity of the points 

q — n, qx= 0 

will be greatly facilitated if the expansion of F'(n) and of/(rr) is used 
instead of that of F(v). 

What we have stated above constitutes the complete theory of Eq. 

(17.1). However, it is necessary to discuss the various methods suggested 

for integration of this equation and based on an application of the theo¬ 

rems by Jacobi, Gyldén, Bruns, Hill, and Lindstedt. 

Jacobi Method 

181. The method discussed in detail in Chap. 9 can be applied to Eq. 

( 17.1 ), with the only difference that the series will definitely be conver¬ 

gent. In fact, Eq. ( 17.1 ) appears as a particular case of Eq. (1.6) of no. 2. 

However, we have seen that this equation from no. 2 can be reduced to the 
canonical form of the Jacobi equations. 

Consequently, if we put 

and 

f~2xï ■ 
-sin j;,, 

V q 

dx 

dt 
V2qxx cos yu y2 = t, q = /iqu 

F — — qxy — x2 + juxx sin2 yx cos 2y 
25 

then the equation 

d2x 

dt 
+ q~x = qxx cos It (17.10) 

can be replaced by the canonical equations 
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dy2 

dt 

dyx _ 
dt ' 

dx-t dF dx, dF . „ 
—r = ~r~> , - = = P sin 2y, cos 2y2, 
dt dy2 dt dyx 

dF • 2 T -= q — /i sin j;, cos 2_y2. 
dx{ 

In that case, the problem reduces to an integration of the partial differ¬ 
ential equation 

dS dS dS . 2 „ 
<1 —-\- —— = F —,— sin yt cos 2j;2, ( 17.11 ) 

ayi dy2 ûfy, 
to which the method of successive approximations of no. 125 is directly 

applicable. 
f 

However, there is no great advantage in using it unless Eq. (17.10) is 

only an approximate expression of the postulated problem and unless, 

after integrating this equation, one wishes to continue this approximation 

further by using the method variation of constants or unless it is to be used 

as verification. 

Let us note, in passing, that an integration of Eq. (17.11) reduces to 

that of a differential equation of the first order 

dy7 . 7 
—- = q + ft sin cos 2_y2. 
dyx 

Be that as it may, let us see what relation might exist between the function 

defined by Eq. (17.11) and the functions F(t) and /(f) defined in the 

foregoing. 

For the general solution we will find canonical equations derived from 

Eq. (17.10) by the change of variables that precedes the subsequent 

expression. We recall that we had put 

F(t) =^An cos(h + 2n)t. 

Using x°,X2,y°i, y° to denote constants of integration, our expression will 

become 

sinjh =x°i ^An cos (ht + hÿ] + 2 nt + lny°2 ), 

yj2qxl cosjq = — x° ^ An (h + 2n)sin(ht + hy°x + 2 nt + 2 ny°2), 

y2 = t + y\, x2 = x°2+( i^-dt. 
J dy2 

If one eliminates the two constants y° and/? between these equations and 

solves them for x, and x2 one obtains xx and x2 as a function of^, y2, x°, 

and x2 ■ Furthermore, 
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xxdyx + x2dy2 — dS 

will be an exact differential (see no. 19, in fine). 

For abbreviation, let us then put 

ht + hy° = cp, 

so that 

sin.Vi = *? cos(^ + ^ny2), 

f2qxx cosjq = — x°x ^ An {h + 2«)sin(<^ + 2ny2), 

and it is now a question of eliminating cp between these two equations. 

To perform this elimination, let us note that these two equations can be 

written as follows: V2x, sin v, . . „ , „ . 
-f1- = 0x(y2)cos<p + d2{y2)s\n <p, 

q x°x 

a/2qxx = 03{y2)cos cp + 04(y2)sin cp, 
x\ 

where 6 are periodic functions of y2 with period it that are readily ex¬ 

pressed by means of F(t) and f(t). Solving these equations for cos cp and 
sin cp, we obtain 

A 
cos <p = 77,(^2)cosyx + 772(^2)siny1, 

V*i 

x°x . 
—— sm cp = ^Cyjcosjh + ri2{y2)s\n yx, 
V*i 

where the four functions y(y2) are periodic, with period it, and are readily 

expressed in terms of 6 and thus also in terms of F{ t) and/( t). On forming 

the sum of squares, we will obtain, if we note that x, must be an even 
function \nyx, 

(jc° )2 

—-— = £o0>2) + £i0>2)cos 2yx + ••• , 
xx 

where the two functions Ç are still periodic with period n, and are readily 
expressed by means of F(t) and f{t). 

Now, we have 

dS 

dyx ’ 

from which we can draw the following conclusion: 
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The quantity dS /dyx is a periodic function, with period n both with 

respect toy, and with respect toy2; its expansion, as one can see on apply¬ 

ing the method of no. 125, contains terms in cos(2m>,1 -f- 2ny2) where m 

and n can assume all possible integral values. However, the reciprocal 
function 

(gr- 
which is also periodic in y, and y2, can obtain only terms in 

cos 2ny2 or cos(2y, + 2ny2), 

since obviously dS /dyx is an even function with respect to y x as well as 

with respect to y2. 

If we put 

then Eq. (17.11) will yield 

du du ( du . 2 , - . » 
q-1-= /r I-sin yx cos ly2 — 2u sin yx cos yx cos 2j>2 

dy i dy2 \dyx 

The procedures of no. 125 are applicable to this equation despite the 

fact that it contains not only the derivatives of u but also the function u 

itself. 

We then find 

u — u0 + fiux + /u2u2 + • • • . 

Here, u0 is a constant and it is easy to prove that u,, u2,. . . have exactly the 

indicated form, i.e., that 

u,=^A cos 2«y2 + ^ B cos(2^, + 2ny2). 

It is also easy to derive the recurrence relations that permit determining 

the constants 

A'n+1 and B'n+\ 

if A‘n and B ‘n are known. 

Gyldén’s Method 

182. Picard demonstrated the following theorem: 

If a linear equation has doubly periodic functions as coefficients and if 

its general integral has no singularity other than poles, then this integral 

can be expressed by means of “doubly periodic functions of the second 
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kind,” i.e., by functions that recur multiplied by a constant factor when 

the variable increases by one period. 

The significance of this theorem is based on the following two facts: 

(a) It is always easy to see from the equation itself whether the general 

integral has no singularity other than poles. 

(b) Any doubly periodic function of the second kind is expressed simply 

by means of Jacobi 6 functions or of Weierstrass a functions. 

Gyldén had the ingenious idea of applying this theorem to the integra¬ 

tion of Eq. (17.10). However, it would be unjust to present matters in this 

form, without mentioning the name of Hermite. What Gyldén applied is 

in reality a theorem by Hermite on the Lamé equation which, in turn, is 

only a particular case of the Picard theorem but predates it by quite some 

time. 

Our equation ( 17.10) can then be written as 

by putting 

(a + b cos2 t)x, (17.12) 

Let us next consider the function 

cos am t = cn ? (mod/:). 

It is obvious, from the definition of this function, that cn t will tend to cos t 

as k tends to zero. Thus, if k is very small, Eq. (17.12) can be replaced by 

d2x 

dt2 
= x(a + b cn21) (17.13) 

and the approximation will be better the smaller is k. 

After this, let us define the conditions for which the general integral of 

Eq. (17.13) will have no singularity other than poles. The only singular 
point of Eq. ( 17.13 ) is the point 

co i 

where co and co'i denote the periods of cn2 t. In fact, for 

co't 
t = 

cn t becomes infinite. It is known that the residue of cn t is - J^l/k so 
that, on expanding cn2 t in powers of 
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we will have a series of the form 

1 2 
TTT + ao + a\u + ••• 
k ~u 

containing only even powers of u. 

The condition stipulating that the expansion of x in ascending powers 

of u start by a term in u '' is readily obtained by equating, on both sides of 

Eq. (17.13), all terms in u~n 2, which then are terms of the lowest 

degree. This condition is written as 

n{n + 1) = 
k 

whence 

k2= +--. (17.14) 
2n(n + 1) 

If this condition is fulfilled and if n is an integer, then Eq. (17.13) admits 

of a particular integral which will have a pole for t = o'i/2. 

How does the other integral behave? We learn from the theory of linear 

equations that this integral can have no singularity other than a pole in 

t = a>'/2 or else a logarithmic point. However, a study of the expansion of 

x in powers of u readily shows that, from the instant at which a + b en21 

becomes an even function of u, one need no longer fear that the expansion 

of the integrals contains a logarithm. For further details, the reader is 

referred to the well-known work by Fuchs on linear equations" and to the 

thesis by Tannery12 where this is continued. Thus if the condition (17.14) 

is satisfied, Eq. ( 17.13) will admit of two particular integrals of the form 

6{t — ax)0{t- ch)"-d(t — an) 
x =-, 

en{t) 

where 6 is that one of the four Jacobi functions 6 which vanishes for 

t = 6)7/2. 
The n quantities ax, a2, . . . , an can be readily determined, as demon¬ 

strated in Hermite’s research on the Lamé equation, which has completely 

exhausted the question. 

We can now select an integer n sufficiently large that the value of k 

which satisfies the condition (17.14) is as small as desired and, conse¬ 

quently, that Eqs. (17.12) and (17.13) differ as little as desired. 

However, since qx generally is very small, Gyldén estimated that one 

could be content in applications with the first approximation and set 

n = 1. 
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Bruns Method 

183. Let us return to the equation 

d2x 2 t , 
-1_ qzx — q {x cos It 
dt2 

and let us set there 

= e*pj z dt. 

The equation then becomes 

dz 

dt 
+ z2 + q2 = qx cos 2t. 

(17.15) 

(17.16) 

Let us assume now that z is expanded in ascending powers of qx and 

that we have 

z = z0 + tf,Zi + q]z2 + 

We will then determine successively 

Z0> Zl> Z2> Z3> 

for the sequence of equations 

zo= ±iq, 

2zoZ, = cos It, 
dt 

~~ + 2zoZ2 = -z?, 
dt 

^- + 2z0z3= —2zxz2, (17.17) 
dt 

—1 + 2zqZ4 = — 2z,z3 —z?2, 
dt 

-i- + 2zqZ5 = — 2zjZ4 — 2z2z3, 
dt 

Equations (17.17) permit calculating the quantities zk by recurrence. If, 

in fact, the first k of these equations have been integrated and if thus 

Z0> Zl> Z2> • • • > Zk - 1 > 

is known, then the ( k + 1 ) th term ( for example, using z0 = + iq ) will be 
written as 

dzk 
— + 2 iqzk = Uk, 
dt 

where Uk is a known function of t. 
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Ifz0, z,,z2,. . . , zk „ , are periodic functions of t, with period v, this will 

be the same for Uk so that we can write 

Uk = X ar,e 
2 nit 

whence 

a e2n“ r„ = Y —--. 
^ 2i(n + q) 

Thus, unless q is an integer, it is possible to equate zk with a periodic 

function of t. 

Then z is a periodic function of t, and we can write 

z = ih + 
du 

~dt 

where ih is the mean value of this periodic function z, while u is another 

periodic function. From this, for a particular integral of Eq. (17.15), we 

derive 

x = e iht -p u 

What we have denoted by F{t) in no. 178 will then be the real part of 

eih'eu. 

This method is the simplest procedure if one wishes to expand h in powers 

oftfi- 

Lindstedt Method 

184. Let us consider the equation 

d X -)- q2x — qxx cos It = 0 (17.18) 
dt2 

and its even solution 

x = F{t) —^An cos{h + 2n)t. 

It is clear that we will have 

An[q2 - ih + In)2] (A„_, +An+1). (17.19) 

Now, the problem consists in determining h and A„ in such a manner 

that Eqs. (17.19) are satisfied and that the series F(t) converges. We can 

also consider the inhomogeneous equation 

d ~ x -) 
-f- q2x — qxx cos 2t — /3 cos At. 
dt2 

(17.20) 
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This equation admits a solution of the form 

* = IB- cos (A +2 n)t. 

It will also be easy ( using the ordinary methods of integration for inhomo¬ 

geneous equations) to calculate the coefficients Bn once h and An are 

known. However, if they are to be calculated directly, the following equa¬ 

tions analogous to Eqs. ( 17.19) will obtain 

Bn[q2-U + 2/7)2] =y(^-, + Bn + l). (17.21) 

For n — 0, this equation should be replaced by 

i?0(<?2-/l2)=^-(iC1+2?1)+# (17.21a) 

which again reduces to Eqs. (17.19) when one sets A = h, 0 =0. Let us 
then put 

Q\ 

2[q2 - (A + In)2] 

where Mn will be a function of A. 

For n > 0, let us put 

= Mn, 

B„ 
a„ = 

B 

and, conversely, for n < 0, 

in such a manner that 

n - 1 

B„ 
a„ = 

B„ 

a, = Bx 
Bn 

a, = A 
«-1 = 

B — i 

Bn 

°n+ 1 + 

1 

whence 

B 

Assuming n > 0, Eqs. ( 17.21 ) will then become 

- 

1 ~Mnan+ i 
= mA i - 

MM, n+ 1 
- 1 

Mn+ l<Xn + 2. 

We are thus led to express al by the continued fraction 

M,_ 

MxM2 

m2m3 

m3m4 
1 _ 
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Is this continued fraction convergent? Let Pn /Qn be its «th convergent, so 
that we will have 

Pn =P„-i -Pn_2MnMn_l, Qn=Qn_x -Qn_2MnMn_x 

and, moreover, 

PnQn-X P n — 1 Qn = M\M \ M\ ’ ‘ M \ _ , M„ . 

(17.22) 

I note first that, when n increases indefinitely, Mn will tend to zero and 

the series 

M, + MxM2 + M2M3 + M3M4 + ■ ■ ■ (17.23) 

will be absolutely convergent (except in the case in which one of the 

quantities Mn is infinite, i.e., in which A is equal to + q to within an 

integer; this case must be excluded from the discussion which follows). In 

addition, starting from a certain order, all terms of this series will be 

positive. 

I now state that Pn tends to a finite limit and that this will be the same 

for Q„. 

In fact, Pn and Qn are defined by the recurrence equations ( 17.22 ). Let 

us determine, by the same equations, two quantities Rn and R ' such that 

Rn — Rn — 1 — Rn - jM.fjMn ~ i , 

R n — P rt - 1 P n —2 ^ n M n _ j . 

We can arbitrarily determine any two of the quantities Rn and also any 

two of the quantities R '. 

Let us consider, in series ( 17.23) the first p terms that follow the «th 

term: 

Mn + , + Mn + j Mn _j_ 2 + ■“ + M„ + p_l Mn + p. 

Let Snp be the sum of these p terms; we can always choose n sufficiently 

large to have Snp be positive and smaller than one. 

Let us next consider the recurrence formula 

Pn+ p P n + p — \ P n + p — 2 M + p _ j Mn + p . 

This equation demonstrates that, if we have 

^ (1 P n p — 1 1 > 

l>/?n+p_2<(l-^,p_2)>0, 

we will also have 

1>R„ + P> (1 — Snp). (17.24) 

Consequently, it is sufficient to choose Rn + , and Rn + 2 such as to satisfy 

the inequality (17.24), to have all terms Rn+p satisfy it. Thus Rn + p is 

always larger than 1 — Snp and therefore positive. In addition, the recur- 
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rence equation shows that Rn + P constantly decreases with increasing 
index n + p. Therefore, R„ + tends to a finite and determined limit. For 

this reason, let us choose Rn + , and Rn + 2, R i and R 'n + 2 such as to 
satisfy the inequality ( 17.24) and such that the determinant 

Rn+ \ R n + 2 P n + 2 R n + 1 

will not be zero 

Then, Rn + P and R ' + p will tend to two finite limits, determined and 
different from zero, namely, R and R '. 

Since Pn and Qn satisfy the same recurrence relations as Rn and R ' 
and since these relations are linear, we will have 

Pn =pRn + f*'R n, 

Qn =H\Rn +V'lR'n> 

wher tfJL,n' ,/ix, and n\ are constant coefficients and where the limit of our 
continued fraction will be 

/uR + iu'R ' 

jutR +/u[R' 

For certain values of qx, q, and A and thus also for certain values of the 
coefficients //, it may happen that this fraction will be zero or infinite; 
however, it will never occur in the indeterminate form 0/0. 

For the case in which q = + (A + In ) and in which consequently Mn 
= oo, almost nothing need be changed in the above statements. For exam¬ 

ple, if we have M2 = oo, our continued fraction would become 

Mx 

! | Mi/M3 

j M}M4 
1 _ 

Since the limit of our continued fraction is a function of A, we can denote it 
by xp(A) and write 

«1 = $(A). 

Similarly, we would find 

«_! = ip{—A), a2 = x)j(A + 2), a3 = ifj(A + 4), 

<*n=ipU + 2n — 2), a_2 = ^(2 — A), a_n = ^(2n — 2 — A), 

which demonstrates the characteristic property of the function xp{A), 
namely, that 

0U)+_1__2{g2~A2) 
^{A~2) q 
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After having calculated rf>(A) and — A), it is easy to calculate all 

ratios an and aIf we then had the value of BQ, it would be easy to 

deduce from it the value of all coefficients Bn. However, it is obvious that 
B() will satisfy the equation 

B0(g2 - A 2) = [tf(A) + - A) ] + 0, 

which determines B0. 

For A = h, the coefficient Bn must reduce to An and (3 must reduce to 

zero. From this, we obtain the following equation which determines h: 

q2-h2 = ^[if,(h) +i/>(-h)]. 

Once h is determined (which is generally easier by using one of the 

methods discussed above), the values of an and An = Bn can be calculat¬ 
ed as we have just described. 

Hill’s Method 

185. Let us return to Eqs. (17.18), (17.19), (17.20), (17.21), and 

(17.21a) of the foregoing number. These equations are linear and, al¬ 

though they are infinite in number, Hill has had the boldness to treat them 

by the conventional processes of solving linear equations of finite number, 

i.e., by determinants. 

Was this unorthodox behavior justified? I tried to prove this in a discus¬ 

sion published earlier13 whose main results I will recall here. 

Let us consider a matrix of indefinite size: 

1 a2 1 «3 1 °4 1 

a\ 2 1 2 a4 2 

<*l 3 °2 3 1 °4 3 

an 1 

(17.25) 

a 1 n 12 n a n — 1 n 1 + 1 n ’ 

In this matrix, the terms of the main diagonal are all equal to one. 

Let A„ be the determinant formed by taking the first n rows and the 

first n columns of the matrix ( 17.25 ). I will say that the matrix (17.25) is 

a determinant of infinite order, and that this determinant converges if A„ 

tends to a finite and determined limit A when n increases indefinitely. 
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To find the conditions of convergence of a determinant, let us use the 

following mode of generation, which is nothing else but the operation 

known as “algebraic keys.” 

Consider the expansion of the determinant 

a\ i a\ 2 

D _ a2 I a2 2 

an\ an2 

Let us expand the product 

n(xv). 
and then let us attach to each term of the expanded product, depending on 

the individual case, one of the coefficients + 1, — 1, or 0; this will yield D. 

It is easy to derive from this the following inequality: On forming the 

product 

n = n(x \aPn l) ’ 

we obtain 

|Z>|<n. (17.26) 

Let us now assume that, in the determinant D, a certain number of 

elements is replaced by zero so that the determinant D will become D ' and 

n will become IT. A certain number of terms will vanish in the expansion 

of n, and the corresponding terms will then also vanish in the expansion of 

D. We will then have 

\D-D'\<n — IT. (17.27) 

These are the two very simple inequalities which will serve us as a starting 
point. 

In order that the determinant A of infinite order converges, it is suffi¬ 

cient that the corresponding product II, which is written as 

(1 + |a2 11 + \ai ,| + • • • -j- \anX \ + • • • ) 

X(l + |fl12| + |o32| + ‘‘‘ + |tf„2| + ''') (17.28) 

O + lai 3I + °2 si + "')•• • > 

also converges or, according to a well-known theorem, that the series 

\°2 il + l°3 il + |û4 ll + + \an\ I 

+ + I<21 21 T IÛ3 21 T T Iüj 3| T 
itself converges. 

a 1 n 

a 2 n 

an 
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In fact, let A„ and A„ + p be the determinants obtained by taking, in the 

matrix (17.15), the n first rows and then the n + p first rows and columns. 

Let n„ and II„ + p be the corresponding values of the above-defined prod¬ 

uct n. 

Since, in the matrix (17.15), the terms of the main diagonal are equal to 

one, we will pass from A„ to A„ by canceling a certain number of 

elements of this determinant A„ + . This will yield 

l^n+p An|<IIn_|_p ü» • 

However, if the product ( 17.28) converges, then the right-hand side of 

this inequality will tend to zero as soon as n and p increase indefinitely. 

This must then also be the case for the left-hand side, which proves that 

A„ tends to a finite and determined limit. 

Thus, if the determinant A is to converge, it is sufficient that the series 

obtained by taking all elements that do not belong to the main diagonal of 

the determinant be absolutely convergent. 

We will now demonstrate that the determinant converges absolutely, 

i.e., that the order of the columns or rows can be modified without chang¬ 

ing the limiting value of the determinant. 

Let there be two matrices analogous to the matrix (17.25), differing 

only by the order of the columns and rows. However, it will be assumed 

that in both of the matrices, the elements equal to unity will occupy the 

main diagonal. Let A„ be the determinant obtained by taking the n first 

rows and columns of the first table. Let A'p be the determinant obtained by 

taking the p first rows and columns of the second table, where p is suffi¬ 

ciently large for having all elements of A „ be located in A^. Let n „ and W'p 
be the products n corresponding to A„ and A'. One can then change from 

A'p to A„ by canceling a certain number of elements in Ap. Thus we can 

write 

I a; - A„|<n; -n„. 

However, since the product ( 17.28) is absolutely convergent, we will 

have 

lim X\'p = lim Yln {n,p= oo). 

Thus we also will have 

lim A' = lim A„. 
Q.E.D. 

Let us now imagine that the matrix ( 17.25) is indefinite in both direc¬ 

tions so that the columns and rows are numbered from — oo to + oo. 

The term belonging simultaneously to the nth row and to the pth col- 
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umn will be denoted by anp. Furthermore, n andp can take all positive or 

negative integral values, including the value of zero. 

We will denote by A„ the determinant formed by taking the 2n + 1 

rows numbered — n, — n + 1, — n + 2,.. . , — 1,0, 1,2,.. . , n — 1, n 
and the 2n + 1 columns bearing the same numerals. The determinant of 

infinite order will converge if A„ tends to a finite and determined limit. 

We will still assume that the terms of the main diagonal are equal to 

one, i.e., that ann = 1. 

Then, using the same method of reasoning as above, we will find that 

the determinant converges absolutely provided that the series 

X \anp\ n,p varying from — oo + oo ) 

is convergent. 

Let us now assume that, in our matrix, i.e., according to the above 

definition in our determinant of infinite order, all elements of a certain 

row are replaced by a sequence of quantities 

• • • ’ X — ni •••> x— 1» X0, Xu X2, ■ . . , Xn, . . . , 

which all are smaller in absolute value than a certain positive number k. 
We state that the determinant will remain convergent if the series 

converges. 

In fact, as mentioned above, let us take In + 1 rows and In + 1 co¬ 

lumns of the matrix, so as to form the determinant A„. Let us assume that 

the sum of the absolute values of the elements in each row be formed, 

except for the row whose elements had been replaced by the quantities x. 
Let us then form the product II „ of the 2n sums obtained in this manner. 

Any term of the determinant A„ will be a term of the product n„, multi¬ 

plied by one of the quantities x or by this quantity with a changed sign. 
Consequently, according to the hypothesis 

I*,-1 < k, 

we must have 

|A„| <k\\n. 

On canceling some of the elements of A„, this determinant will become 

A„ and the product n„ will become II'. Some of the terms of the product 

nn will vanish and the corresponding terms of A„ will also vanish. Thus 
we have 

I A; —a„ I <*(!!„ -n;j. 
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Let us note now that, for passing from the determinant A„ + p to the 

determinant A„, it is sufficient to cancel there certain elements. We will 

find 

I a„+p - a„| <A'(n„+pn„) 
and, as above, we will derive from this that A„ tends to a finite and deter¬ 

mined limit provided that this is also so for II„, namely, precisely when 

the series 

XkJ (”^p) 

converges. 

186. Let us apply these principles to the particular case treated by Hill 

in his paper on the motion of the perigee of the moon.14 

Let us return to Eqs. (17.19) of no. 184: 

An[ q2 —(h + 2 n)2] = 2±(An_1 +An+l) 

We have an infinity of linear equations with an infinity of unknowns. 

To justify their treatment by the conventional rules of calculus and to 

calculate their determinant, we will see to it first that the main diagonal 

has all its elements equal to one; consequently, we will write this equation 

in the form 

A„ - 
2[q2- (h + 2n)2] 

(An_l +An+l) = 0. (17.19a) 

Again denoting by anp the element of the determinant belonging to the 

«th row and to the />th column, we will have 

Qn n 1 > ^ n n — 1 n + 1 

anp= 0 

2[q2 — (h -\- 2/7)2] 

p <n — V 

or p> n + L 

To have this determinant converge, it is thus sufficient that the series 

n = + oo 
Jh_ 

(ft + 2n)2 

converges, a condition that is obviously fulfilled. 

Evidently, this determinant is a function of h which , in agreement with 

Hill, I will call □(/?). 

Then, h will be determined by the equation 

□ (A) = 0, (17.29) 
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to which we will return later. 

Let us next suppose that we replace the elements of the zeroth row in 

this determinant by the unknowns x, so that we replace 

• • • > a0 - p = 0, • • • ) a0 - 1 = 2 / 2 \ ’ a° 0 — 1 ’ 
2{q- — h-) 

uO 1 — 2 u 2 s ’ 

2(<f - h z) 

respectively, by 

x_p, . .., x_„ x0, xp, - 

According to the above statements, the determinant A obtained in this 

manner will still converge, provided that the quantities |x| are smaller 

than a given number k. This will be a linear function of x and can be 

written in the form 

A — ••• + A _px _p + ••• + AqXq + • • • + dpXp + • • • . 

In addition, Ap is obviously obtained by assigning the value 1 to xp and 

the value 0 to the other unknowns x. 

We state that the quantities An, defined in this manner, satisfy Eqs. 

(17.19). In fact, if we assign a value of anp to xp, i.e., a value of 

0, 

depending on whether 

~gi 

2 [q- — (A + In)2] 
or 1, 

\n—p\>\, \n—p\ — \ or n—p, 

then our determinant will become 

A n 
_£i_ 

2[q2 - {h + In)2] 
(An + An+ ! ) 

which must be zero since it has two identical rows. Consequently, Eq. 
(17.19) will be satisfied. 

There exists an exception for n — 0, since the determinant then no 

longer has two identical rows but still is zero because of the fact that it 

reduces to □ ( h ) which is zero in virtue of Eq. (17.29). 

Finally, the series 

XV 
(2 p + h)it 

converges since this is obtained by setting, in A, 

X ~Q('2P+h'>it 

The absolute value of xp is then bounded, which, as demonstrated above, 
is a sufficient condition for convergence of A. 
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Application of the Hadamard Theorem 

187. This leaves Eq. ( 17.29) to be studied: 

□ (A) =0 

For this, we first have to define the determinant, Hill has called V(/z). 

Let us return to our determinant O(h) and let us multiply the zeroth 
row by 

and the n{n*t 0)th row by 

q2 — (h + In)2 

An2 

We state that the resulting determinant V(/z) will still be convergent. 

In fact, recalling the above definition of the limit of a determinant indefin¬ 

ite in both directions, we will find that 

V(A) = D(h)(q2-h2)U, 

where n is the limit toward which tends the product of the 2m factors: 

q2- (h + 2n)2 

An2 

where n = + 1, ±2, , + m when m increases indefinitely. Conse¬ 

quently, n is the limit of the infinite product 

which obviously is convergent. Thus V(A) will converge. 

Let us denote by bnp the element of this determinant that belongs to the 

«th row and to the pth column. This yields 

b0o =q2-h2, b 

box — bo - l 

We will then replace, in V ( h ), the quantity h by x and study the proper¬ 

ties of the function V(x) defined in this manner. 

We state primarily that this is an integral function. 

In fact, we obviously will have, on replacing h by x. 

\b00\<q2 + x2’ I bnn 
q1 + (x + 2 n)2 

An2 
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Consequently, according to the inequality ( 17.23) of no. 185, we will 

have 

7M < (r + x2 + \q,\ ) n [- + l<?l 1 + + 2,<):) • ( 17.30) 

However, putting, for abbreviation, q2 + \qx\ = A and combining all 

product factors corresponding to values of n equal but of opposite sign, we 

can write this infinite product as 

! i x2-A2 x2 (x2—A2)2\ 

2n2 n2 16n4 J 

which evidently is convergent and still finite. Consquently, this must be 

the case also for V(x). 

In this demonstration, we supposed x to be real. However, if x were 

imaginary, no essential changes would be required here and it would be 

sufficient to write 

\q2\ + kil + I* + 2«|2, 

instead of 

q2 + kil + U + 2 n)2. 

Thus V (x) is still finite irrespective of the imaginary value of x; conse¬ 

quently, this represents an integral function. 

If one would wish to demonstrate in detail that V(x) also has the other 

characters of an entire function, i.e., be continuous and have a derivative, 

it would be sufficient to note that the determinant whose limit is V(x) 

converges uniformly. 

Let us call V„(x) the determinant formed by taking, in V(x), the 

2n + 1 rows and the 2n + 1 columns labeled from — n to + n. We then 
have 

V(x) = lim V„ (x). 

In the x-plane let there be some closed contour C. Let z be a point on 

this contour and let x be a point interior to this contour. Since V„ (x) is a 
polynomial, we obviously will have 

V„ (z)dz 

z — X 

where the integral is, of course, taken along the contour C. The function 

2iwfix) = f 
J Z — X 

obviously will be a holomorphic function of x; we state that cp(x) is equal 
to V(x). 

26rV„(x) -J 
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In fact, since it follows from the above demonstration that the conver¬ 

gence of V(x) is uniform, we can take n sufficiently large that 

|VU) — V„(x)| <e, |V(z) — V„(z)| <e 

at the point x and over the entire contour C. Consequently, 

2iv\<p(x) - V„U)| <el, 

where / is the length of the contour C divided by the minimum of |z — x\. 

Thus the differences |<pU) — V„ (jc) | and |V(jc) — V„U)| can be 

made as small as desired, which can take place only if V(x) = <p(x). 

Consequently, V(jc) is holomorphic. Q.E.D. 

We now state that V (jc ) is periodic. 

Let us designate by En (jc) the finite determinant obtained by taking in 

V U) the In -f 1 rows and the 2n + 1 columns labeled — n + 1 to n + 1 

and let us denote by E ' (x) the determinant obtained by taking the corre¬ 

sponding rows and columns in DU). 

Proof of the convergence of a determinant, indefinite in both direc¬ 

tions, has been given in no. 185 when the principal diagonal has all its 

elements equal to unity. This proof does not assume that one is restricted 

to taking as many rows whose numbers are negative as rows whose 

numbers are positive. Thus we have 

lim E ' (x) = □ (*) for n—oo. 

Moreover, it is clear that 

En(x) =E'n(x)(q2-x2)Yl', 

where IT is the product of the factors 

r - 

(jc + 2m)2 

4m2 
(17.31) 

where m takes the values +1, ±2,, ± {n — 1), n, and n + 1. 

In addition, we also have 

V„(x + 2 )=(^-)V(x), 

which is immediately obvious when comparing the determinants. 

We will let n tend to infinity so that the left-hand side will tend to 

VU + 2). As to the right-hand side, it will tend to 

□ U) (q2 — x2)lim IT. 

We found above that 

V(jc) = □(.*) (tf2 — *2)lim ft, 
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where II is the product of the factors ( 17.31 ) in which m is assigned the 

values +1, ±2,..., ± n. 

We thus have 

2 {x T 2/7 + 2)~ 

IT q ~ 4(/7+ l)2 

II ~~ 2 (x-2n)2 

q-tf — 

whence 

lim — = 1, 
n 

from which we finally obtain 

V(jc + 2) = VU). Q.E.D. 

Furthermore, we have 

V„(-*)=VB(x) 

and, consequently, 

VW=V( -X). 

Continuing our investigation of the entire function V(x), we propose 

to prove that it is of genus zero when considering it as a function of x. It is 

known that an entire function is designated as being of genus zero when it 

can be expanded in an infinite product of the form 

More generally, it is said that an integral function is of genus p when it 

is expandable in a product of an infinite number of primary factors of the 

form 

where P is a polynomial of the order p in x. 

To prove this essential point, we must use certain inequalities, which I 
will first establish. 

Let us look for an upper limit of 

|V0> + ix)\. 

Since the function V is periodic, with period 2, we can always assume that 

y lies between — 1 and + 1. We then will have 
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so that, formulating as above, 

A = q2+ \qx\, 

which yields, making use of our fundamental inequality 

|v(^ + «)|<a+/+x2)n(/1+j:2 + (f~2"); 

The second member of this inequality is a function of x2 which will be 
denoted by F(x2). 

Let us put, for the moment, x2 = t3 and let us consider the function 

Fit2). It is easy to see that this function is of genus one. 

In fact, the function F(x) is of genus zero and can be brought to the 
form 

(17.32) 

F(x) = A [] 
n 

We represent by b 3 the roots of the equation F(x) — 0. From this, it 
follows that 

or 

^3>=^n(i 
a2t 

F{t3) =^n(i ea2,/b» 

bj 

It is easy to verify that the three products on the right-hand side are 

absolutely convergent. 

I demonstrated earlier15 that, if a function cp(x) is of genus 1, one will 

have 

lim <p(x)e~ a*2 = 0, 

if x tends to infinity with a fixed argument in such a manner that e ~ ax2 

tends to zero. 

Thus if a and t are real and positive, we will have 

lim F(r3)<?-a,2 = 0. 

As>> varies from — 1 to + 1, the left-hand side will tend to its limit in a 

uniform manner, from which this consequence is obtained: Two positive 

numbers a and K can be found, such that 

|V(j> + A)| <K exp(«|x4/3| ). 

Setting y + ix = z and noting that 
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we find 

|V(z) | < A'exp(a|z4/3| ). 

Let us now consider the expansion of V (z) 

v(z) = 2c"z"’ 

from which we obtain 

2/7tC 
■ = f V(Z)Q 

" j Z" + 1 

)dz 

where the integral is taken along a circle of some radius, having the origin 

as center. 

From this it is concluded that 

, _ . K exp(a|z4/3| ) 
\C„ < ----— , 

|z”| 

no matter what |z| might be. However, the minimum of 

exp(az4/3)z~ " 

is 

/ 3 n\~3n/4 
exp(3«/4)(-^-J 

whence 

Kexp(3«/4) 
|CJ<- 

3n\ 

4 a. 

3n/4 

It will be noted that, since the function V(z) is even, the coefficients 

C2n + , are zero. 

We propose to demonstrate that V, considered as being a function of z2, 

is of genus 0. In view of a theorem developed by Hadamard ( Ref. 16 )R15 it 

is sufficient for this to establish that 

C2n I <KT(n + 1) — 

where /z is larger than one. 

Now, we have 

|c2„|r(« + i)+^<AexP(3«/2) (|£)3,,/2r(/2 + 1 ) 

Replacing T(« + 1 ) by its approximate value, the right-hand side be¬ 
comes 

/ 2 \3n/2 
K e3n/2 - nfi ^___\ ^ - 3«/2 ) tin 
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It is now a question of demonstrating, for a value of fi > 1, that this 
expression remains bounded. Now, if it 

it will tend to zero when n increases indefinitely. 

Therefore, it is sufficient to take 

From this it results that the function V (z) can be expanded in a prod¬ 
uct of the form 

l-—). (17.33) 
bj 

All that remains is to define the zeros of the function V(x); according 

to the very nature of the problem, these zeros will be 

x = ± (h + 2n), 

where n is an integer. In fact, it is for these values and only for these values 

that Eqs. ( 17.19) and ( 17.19a) of no. 186 and thus also Eq. ( 17.20) of no. 

186 can be satisfied. 

Consequently, the zeros of V (x) will be the same as those of 

cos ttx — cos irh. 

Since these two functions are both expandable in infinite products of the 

form (17.33) and since the factors of these two products, except for the 

constant A, are the same, the two functions can differ only by a constant 

factor, so that we will have 

V(x) = A(cos ttx — cos vh). (17.34) 

However, V (x) is not only a function of x but also an integral function 

of q2 and of qx\ it is possible to demonstrate in exactly the same manner 

that this is a function of degree 0 with respect to q2 as well as with respect 

to qx. 

However, there is more to this. For example, let 

V(x) =^Dnq", 

A = ^D'nqï, 

A cos 77-h = ^D „q", 

one finds 

Dn = D ; cos TTX - D 

V(z) = AU 
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It can be demonstrated, in exactly the same manner as above, that 

\Dn\<K'T{n)-^ 

if/x is taken between 1 and Since this inequality must hold irrespective of 

the value of x, the quantity D ' of necessity must satisfy an inequality of 

the same form, so thatT will be a function of genus 0 with respect to qx; in 

the same manner, it can be demonstrated that it is also a function of genus 

0 with respect to q2. 

Now, A can never vanish since V(x) never vanishes identically (no 

matter what* might be). However, a function of genus 0 which does not 

vanish is reduced to a constant. 

Consequently, A is independent of both q2 and qv 

Let us write the equality (17.34) to show the value of q,, in the form of 

V(x,#,) = A(cos 7tx — cos vh). 

For qx = 0, h is equal to q. This yields 

V(x,0) =T(cos ttx — cos 7rq), 

whence, on dividing and setting x = 0, 

1 — cos 77-h _ V(0,qx) _ D(0,g) 

1 — COS 777? V(0,0) □ (O.O) 

or, finally, 

1 — cos 77-h — D(0,^i) ( 1 — cos vq), ( 17.35) 

since 

□ (0,0) = 1. 

It is from the equality (17.35) that Hill derived the value of h. 

In view of the above considerations, the legitimacy of his method can be 

considered as rigorously established. 

Miscellaneous Remarks 

188. In the particular case treated here, some of these results could be 

obtained also without using Hadamard’s theorem. 

In fact, let us note first that, although q2 and qx are imaginary, the 

fundamental equality (17.32) still holds provided that 

^ = k21 + kil- 
If we then recall the known expansion 
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we can derive from this 

cos TTX 
TT 

cos vy = — (y - x2) \ 
{y-2n): 

An2 

whence 

F{x2) = —- (cos TT\I — x2 — A — COS 77j). 
7r 

The inequality ( 17.32) is valid irrespective of the value of q2 and qx, pro¬ 
vided that x and y are real. 

It is known that the ratio 

cos ix 

tends to \ when x increases indefinitely through real values. It follows 

from this that a numerical constant B can be found such that 

F(x2) <Be^ + À; 

from which we deduce 

\V{y + ix)\<Bew^ + L, 

whence 

| V (z) | < Be^I2"'+x < Ben4Zeulz[. 

Let us now consider the ratio 

VU) 
cos 7tz — cos irh 

The numerator vanishes each time the denominator vanishes, from which 

it follows that this ratio is an entire function in z as well as in q2 and in qx 

Since this ratio is a periodic function of z, we can always assume that 

the real part of z remains between — 1 and + 1. Thus let the imaginary 

part tend to infinity and let us define the behavior of our ratio 

V{z) _ V(z) COS 77Z — COS Trh 

cos 7tz — cos vh 

The first factor on the right-hand side, in absolute value, remains below 

Be77^1. The second factor tends to Thus, our ratio remains finite. Conse¬ 

quently, this is an entire function of z remaining constantly below a certain 

limit. This function, according to a known theorem, must reduce to a 

constant independent ofz. 

One still has to return to Hadamard’s theorem for demonstrating that 

this fuction is also independent of q2 and of qx. 



554 CELESTIAL MECHANICS 

Extension of the Preceding Results 

189. All the above methods, except that of Gyldén, can be applied to any 

equation of the form 

*pL + x<p(t)= 0, (17.36) 
dt2 

where q{t) is a periodic function of t, which consequently can be expand¬ 

ed in a trigonometric series. 

There are only minor changes to be made, which the reader can readily 

do himself if he wishes to treat an equation of the form of Eq. (17.36) in 

this manner. Most of the results still hold, except for a few that are valid 

only if the function q is even. 

In the attempt to apply his method to Eq. ( 17.36), Gyldén conceived 

an ingenious trial and error method which need not be discussed here 

since it is used only in extremely rare cases. 

Let us now assume that the function q(t) is not periodic but has the 
form 

<p(t) = 1 + fii/r(t), 

where /u, is a very small numerical coefficient and xp(t) is the sum of n 

terms of the form 

Aj sin(a,t + /?,), 

so that 

^(0 = X A‘ sin(a,f+ /?,). 
i= 1 

Here, A,-, a,, and/?, are constants; however, the terms a, are not mutually 

commensurable unless the function <p is periodic. 

In this case, the above procedures are still applicable, but the resultant 

series, which can be arranged in powers of/t, are no longer convergent, so 

that these methods no longer have any value other than that possessed by 

ordinary methods of formal calculation, according to Chap. 8. 

Thus Eq. (17.36) can be formally satisfied, by setting 

x = ^Bm cos(h + ym)t + ^Cm sin(h + ym)t. (17.37) 

In this formula, h, Bm, and Cm are series arranged in powers of /u and 

whose coefficients are constants. The terms ym are linear combinations of 
«, with integral coefficients of, such that 

ym = N,ax + N2a2 + • • • + Nnan 
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and the summation must be extended over all combinations of integral 
values of Nu N2,. . . , Nn. 

The divergence of series (17.37) may cause surprise. Let us assume 

that the terms a, have the form 

a, = mtA + m'j, 

where m, and m\ are integers and A is a constant which is the same for all 

the a, . , 

Let us vary A, while keeping constant the values ofyz,T,,/?,, m,, and m\. 

For all commensurable values of A, the terms a, are mutually commen¬ 

surable and the function <p will be periodic. From no. 29, we then know 

that Eq. (17.36) admits of a solution of the form (17.37) and that, in 

addition, this solution is not purely formal and the series are convergent. 

Since an infinity of numbers exists in any interval, it is surprising that 

the resultant series, when A varies in as small an interval as one pleases, 

can be an infinite number of times convergent and an infinite number of 

times divergent. 

This paradoxical fact can be better understood if one studies the simple 

example given below. 

Consider the equation of the first order 

(17.38) 

We will assume that cp is a series of the form 

cp = ^ + |n| cos(m/l — n)t. 

Here, m and n take all possible integral values, A is a constant, the terms 

Amn are constant coefficients, and p is a very small parameter in whose 

powers we will expand. 

An integration then yields 

A u M + M 
\ogx = A00t+\——-sin(ra/l — n)t, (17.39) 

^ mA — n 

This solution must be modified when A is rational. Let A — p/q, in whichp 

and q are relatively prime; then, mA — n will be zero when we have 

m = hq, n = hp , 

where h is an integer. 

This yields 

A + 
log x = Bt + V ——-sin(mA — n)t, (17.40) 

„ mA — n 
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where, under the summation sign 2, only values are assigned to m and n 

that do not cause mA — n to vanish and where 

h = -t- oo 

B= X + 
h = — co 

If, inEqs. (17.38) and ( 17.39), we change from logarithms to numbers, it 

will be found in each of the cases that 

x = ec,rp(t) , 

where i[>(t) is a series in powers offx whose coefficients are formed from a 

finite number of terms in 

sin(m/t — n)t 

or 

cos ( mA — n)t. 

However, two differences exist between the two cases: 

(i) If A is rational, the series xjj{t) is convergent; if, conversely, A is 

irrational, the series rp(t) can be divergent and the solution will become 

purely formal. 

( ii ) The value of the exponent C is not the same in the two cases. If A is 

incommensurable, C will be equal to A0 0 while, if A is rational, C will be 

equal to B. Thus C is not a continuous function of A. 

This must be the same for h in the case of Eq. (17.36); this yields an 

explanation for the fact that, for this type of question, one cannot reason 

by continuity. 



CHAPTER 18 

Case of Nonlinear Equations 

Inhomogeneous Equations 

190. We have seen in no. 177 that Eq. ( 16.6c) of no. 169, by a suitable 

change of variables, could be reduced to the form 

d2x 
-— + x{q2 — qt cos It) = cp(t) . (18.1) 
dt 

In this expression, qp ( t ) is a known function of t and the expression itself is 

a sum of terms of the form 

/.3 cos At or /? sin A t. 

In the preceding chapter, we have shown how to integrate the equation 

without a right-hand side, i.e., Eq. (18.1) where we set <p(t) =0; we 

know, on the other hand, that the integration of a linear inhomogeneous 

equation can always be reduced to that of a homogeneous equation. 

This settles the question. In no. 184, we even considered Eq. (18.1) by 

setting there 

<p(t) = /3 cos At, 

and we showed how to satisfy this equation by setting 

x = ^ Bn cos(/l + 2n)t, (18.2) 

and we also proved that the terms Bn were defined by relations (17.21) 

and ( 17.21a) of no. 184. 

Similarly, if we set 

<p{t) = /? sin At, 

Eq. ( 18.1 ) will be satisfied by setting 

x — ^ Bn sin(/l + 2n)t, (18.2a) 

provided that the quantities Bn are still defined by the relations ( 17.21 ) 

and ( 17.21a). 

It is obvious that, if cp(t) is a sum of terms of the form (3 cos At and 

557 
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/? sin At, a particular solution of Eq. (18.1) will be obtained which again 

will be a sum of terms of the form 

Bn cos(A +2n)t or Bn sin(/l + 2n)t, 

which will yield the general solution by adding, to this particular solution, 

the general solution of the equation without second member. 

An exception is the case in which one of the coefficients Bn, defined by 

Eqs. (17.21) and (17.21a) of no. 184, would be infinite. This is what 

happens, as is easy to see, if A is equal to h + In where n is an integer. 

In this case, it is still possible to integrate Eq. ( 18.1 ) but the time t is 

removed from under the sine and cosine signs so that the solution no 

longer retains its purely trigonometric form. 

For example, assuming that 

<p(t) = /3 cos ht, 

the general solution will have the form 

x = t^An sin(h + 2n)t + ^ (Bn + C,T„ )cos(h + 2n)t 

+ C2 ^ An sin{h + 2n)t. 

Thus the necessary and sufficient condition for having the solution retain 

its trigonometric form is that none of the A corresponding to the various 

terms of <p(t) be equal to h + 2n. 

If now A were very close to h + 2n, without being rigorously equal to 

h + 2n, then one of the coefficients Bn, without being infinite, would 

become very large. 

This would constitute no drawback if Eq. (18.1), i.e., Eq. (16.6c) of 

no. 169, were rigorously exact. However, this is not the case: The equation 

is only approximate, as demonstrated in Chap. 16; to have it become 

sufficiently approximate, it would be necessary that p—denoted here by 

x—always remain very small. 

Thus if one of the coefficients Bn were very large, jc would not remain 

very small. The neglected terms could become so large as to render the 

method of approximation illusory. 

Therefore, in the sequence of approximations, one must take care that 

no term whose argument At differs very little from ( h +2 n)t ever appears 

on the right-hand side of Eq. (18.1). 

In a more general manner, let us consider the equation 

^—?r + xf{t)=(p{t), (18.3) 
dt2 

where/ ( t) and cp ( t ) are functions of t expandable in trigonometric series. 
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Let/? cos A tor/? sin At be a term of cp(t) and let a cos [it or a sin /utbe 
a term off (t). 

Let us then consider the homogeneous equation: 

d2x r , .. 
- + xf{t) = 0 . 

dt2 

Let X] and x2 be two independent solutions of this equation and let x\ and 

x'2 be their derivatives with respect to t; we then have 

*1*2 — *2*1 = C, 

where C is a constant which still can be assumed as equal to one. 

The general solution of the inhomogeneous equation will then read: 

x = — x I x2cp{t)dt + x2 xxqp(t)dt J*'< 
(18.4) 

According to no. 188, xx and x2 are a sum of terms of the form 

sin , 
A (h + y)t, 

cos 

where h is a constant which is the same for all terms, while y is a linear 

combination with integral coefficients of the coefficients /z. 

What now is the condition for having the expression (18.4) retain its 

trigonometric form? It is sufficient that, with xxq)(t) and x2q)(t) being 

assumed as expanded in trigonometric series, no wholly known term be 

present; or else that the expansion of Xj or of x2 contain no term having the 

same argument as one of the terms of cp ( t) ; or finally, since At is any one of 

the arguments of the terms <p(t), that A — h be no linear combination with 

integral coefficients of the /z. 

If, specifically, the function f (t) is periodic such that 

ju = na, 

where n is an integer, then the ratio (A — h)/a should not be an integer. 

If f (t) is a periodic function of two arguments at and /3t, in such a 

manner that 

/z = ma + nfd, 

where m and n are integers, then no relations of the form 

A — h — ma + n/3 

should exist. 

These conditions are sufficient but not necessary. If, in fact, a term ofx, 

and a term of cp(t) have the same argument, their product will give a 

wholly known term in the expansion of xxq>{t). Thus we will obtain as 

many wholly known terms in the product xxqp{t) as there are pairs of 
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terms of the same argument contained in the two factors. However, it 

might happen that these terms mutually cancel. 

The necessary and sufficient condition thus is that the completely 

known term of x, cp ( t ) and that of x2q> ( t ) be zero. 

Equation of the Evection 

191. Let us apply the above considerations to the integration by succes¬ 

sive approximations of the equation 

^ x■ -f x(q2 — qx cos It) = acp(x,t) . (18.5) 
dt2 

Here, a is a very small coefficient and cp(x,t) is a known function of* and 

t, whose terms all have the form 

Axp cos At + p , 

where p is an integer while A, A, and p are arbitrary constants. 

We will write this equation in the form 

d 2x 
—— + x[q2 + P + ( — qx + y) cos It] — /3x + yx cos 2t + aap , (18.6) 
dt2 

where /? and y are very small constants whose values will be determined 

below, by modifying them at each approximation. 

As first approximation, we will set 

0 = y = 0, <p = <p(0,t). 

This yields an equation of the same form as Eq. (18.1) furnishing a first 

approximate value of x which will be denoted by The corresponding 

value of the number h will be denoted by A,. 

The function will retain its trigonometric form and will contain no 

secular term since, in general, none of the differences (A — A, )/2 will be 

an integer. 

For the second approximation, it is necessary to write 

<P = <p(ii,t) ■ 

However, if a value of zero is retained for /.3 and y, then the expansions of 

xxp and x2<p will contain wholly known terms and the time, according ot 

our above statements, will be removed from under the trigonometric 
signs. 

Therefore, it is necessary to assign new values /.32 and y2 to /3 and to y, 

which are selected such that the general integral of the equation 
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d2x 

It2 
+ x[q2 + ( — qx + )cos 2t ] 

= fi2ii + 72^1 cos 2/ + cup(Çut) — x/j{ (18.6a) 

contains no secular terms. We know the necessary and sufficient condi¬ 

tion for having this be the case. Let X;1’ and Xj0 be two independent 
integrals of the equation 

d2x 

dt2 
+ x{q2 — q] cos 2t) = 0 . 

It is necessary that the expansions of Xe,0 and of jc£1) xpx contain no 

wholly known term. It is obvious that one can always choose /?2 and y2 to 
have this be the case. 

After this, let us consider the equation 

d2x 
-JJY + x[q2 +P2 + ( - qx + y2)cos It ] = 0. 

Let x[2) and x22) be two integrals of this equation and let h2 be the corre¬ 

sponding value of the number h\ then, x52) and x(2) can be expanded in 

cosines and sines of (h2 + 2n)t, where n is an integer. 

Let us note now that contains terms of two kinds. Those of the first 

kind depend on the sines and cosines of 

(hx -f 2n)t, 

while those of the second kind depend on the sines and cosines of 

(A + 2n)t, 

where At is one of the arguments on which q depends. 

Then, let Ë, [ be what becomes of on replacing there h, by h2 in the 

terms of the first kind. Let fa be what becomes of on replacing there fa 

by H- 
Instead of the equation 

d2x 
——r + x\q2+/32 +(—?, + y2)cos 2t] = fa, 
dt2 

which it would be logical to use since it is obtained by setting, on both sides 

of Eq. ( 18.6), 

P = p2, r = ï2 
and, on the right-hand side, 

x = fa, 

we will consider the equation 

^--^- + x[q2 +/32-f ( -qx + y2)cos 2t ] =fa . 
dt2 

(18.7) 
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In fact, h2 differs very little from h{ so that the difference — xp\ is 

actually of the order of the terms neglected here. Let us consider some 

solution of this equation (18.7). Sincex1,21 and x22) differ little from xj1’ 

and x(2l) and since tf>[ differs little from the wholly known terms of 

x\2)x(j\ and x22)tp\ 

will also differ little from those of 

x\l)rpt and x22)iftl , 

which are zero; consequently, they will be very small. Therefore, in the 

considered solution of Eq. (18.7), the secular terms will be very small and 

can be neglected. I will then call £2 not the solution of Eq. (18.7) itself, but 

rather what becomes of this solution when these secular terms are elimin¬ 

ated. 

Let then 

A = PÂ2 + 7^2 cos It + acp(i2,t) . 

We will determine /?3 and y3 in such a manner that the wholly known 
terms of 

x\2)rp 2 and 

will be zero. 

Let us now form the equation 

—A- + XW +03 + ( — Qi + r3)cos + it ] = o. 
at 

Let xS3) and x^3) be two solutions of this equation and let h3 be the corre¬ 
sponding value of h. 

Let Ë, 2 be what becomes of £2 on replacing there h2 by h3, which means 

that Ë, 2 is derived from £2 as Ë, [ is derived from Let xp2 be what be¬ 

comes of on replacing there £2 by Ç 2 ■ 

Let us then consider the equation 

d2x 
+03 + ( — q\ + r3)cos it] = ip2, ( i8.8) 

and let £3 be what becomes of one of the solutions of this equation on 

deducting there the secular terms, in such a manner that is deduced 

from a solution of Eq. (18.8) by the same rule by which £2 is deduced from 
a solution of Eq. (18.7). 

It is easy to see that these secular terms are of the same order as those 
neglected in this third approximation. 

Having thus defined £3, one can proceed to the next approximation, 
applying the same rule. 
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A few remarks should be made here: 

To form Eq. ( 18.7), we replaced the coefficient /z, in^ and in iffi by h2, 
meaning that we replaced Ë,, and by Ë, [ and xp\, which is done also in the 
subsequent approximations. 

If we had not done this, we would have introduced a much larger 
number of arguments than necessary, which would have constituted a 
serious drawback. 

In return, it seems at first glance that we could have completely avoid¬ 
ed any secular terms; in fact,then x(jx would contain terms of the argument 
{hi -f 2n)t while xj2' and xlf) would contain terms of the argument 

{h2 + 2«)f such that the products xpVi. would contain no wholly 
known terms but only terms in 

cos {hx—h2)t, sin(/îj — h2)t. 

However, this would be an illusion since, because of the fact that the 
difference hx — h2 is very small, these terms would have a very long peri¬ 
od. An integration would introduce very small divisors and the conver¬ 
gence of the approximations would become illusory. 

On the other hand, it seems that the success of the method is contingent 
on the following circumstance: At each approximation, we must satisfy 
two conditions, since we must cancel the wholly known terms of 

x4''+1V; 

and we must fix precisely the values of /?, + , and yi + ,. 

One could be tempted to believe that this was the reason for the fact 
that Gyldén transposed the term 

qxx cos 21, 

to the left-hand side despite the smallness of the coefficient qx, and that he 
merely wished to retain two terms on the left-hand side so as to have two 
indeterminate coefficients available. 

However, this again would be in error. 

The principles of Chap. 9 actually show that, even if qx and y were zero, 
the approximations could be continued without introducing secular 
terms. It is true that we would then have two conditions to satisfy; how¬ 
ever, after one would have disposed of the only remaining arbitrary coeffi¬ 
cient such as to satisfy the first of these conditions, then the second condi¬ 
tion—as demonstrated in no. 127—would be satisfied identically. 

This will be better understood later, after we will have modified the 
method of successive approximations of this number, so as to give it the 
form shown in no. 192. 
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192. Let £ be the value of x obtained in the zth approximation by the 

method used in the preceding number. This will be a sum of terms depend¬ 

ing on the sine or the cosine of angles such as 

q = + lm2 + m3/t3 + m4A4 + • • • + tn„A„ )t, 

where m„m2,. . . ,mn are integers while h, is the zth approximate value of 

the number h, while A3t, A4t, An t are the arguments of the various terms of 

q(x,t). 

Let us put hjt — so that 

q = mxwt + (2m2 + m3A3 + • • • + mnAn)t. 

Then, can be considered as a function of two variables w, and t. In 

addition, this function can be expanded in powers of the small parameter 

a which enters the right-hand side of Eq. (18.5). Similarly, h, can be 

expanded in powers of a. 

Thus the problem discussed in the preceding number can be formulat¬ 

ed as follows: We have attempted to formally satisfy Eq. ( 18.5 ) on replac¬ 

ing there x by a series expandable in powers of a and in sines and cosines of 

multiples of 

ZU, 2t, A3ty A4ty . . * , A fy t . 

The auxiliary variable w must itself be equal to ht, since the number h can 

be expanded in powers of a. 

The solution of this problem can be given in a form more satisfying to 

the mind, by arranging the approximations as done below. 

If we prove the fact that x depends on t in two manners, first directly 

and secondly on the basis that x: is also a function of w and w is a function 

of t, then Eq. (18.5) can be written as 

. 2 d2x „. d2x d2x , , _ . . , ,. „ _ v 
h —— + 2h ——- + —— + x(q~ — qx cos It) = a<p(x,t) . (18.9) 

dw2 dw dt dt2 

Since x: must be expanded in powers of a, we will write 

x = x0 +axx + a2x2+" ' (18.10) 

and, similarly for h, 

h = h0 + ahx + a2h2-\-■ ■ ■ . (18.11) 

(Thus h, no longer has the same meaning as in the preceding number.) 

Let us substitute the expansions (18.10) and ( 18.11 ) into the partial 

differential Eq. (18.9). The two sides of this equation are then expanded 

in powers of a. Let us equate, on both sides of Eq. (18.9), first all terms 

independent of a, then all coefficients of a, and finally those of a2, . .., 

which will yield a sequence of equations which we will denote by E0, Ex, 
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E2,. . . , such that the equation Ex is obtained on equating the coefficients 

of a'. 

The equation E0 should be used for determining h0 and x0, the equation 

Ex for determining hx and xx, . .., and finally the equation Et for deter¬ 

mining h, and xt. 

To facilitate writing our equations, we will agree—as in Chap. 15—to 

represent any known function by 4». 

Then, E0 can be written as 

dw" 
+ 

d 2xr 

dw at dt 
+ xQ(q2 — qx cos 2t) = 0 . 

Similarly, Ex (recalling that h0 and x0 are assumed to have been already 

determined by means of E0) is written in the form 

2h0hx 
d2xn d2Xn , 2 d2xx ^. d2xx d2xx 
77 + lhx 7—T + h 0 -TT + 2/îo 7—ÿ + -TT 
dw2 dw dt dw2 dw dt dt" 

+ xx{q2 — qx cos 2t) — 4>, 

and, in general, E, will be written as 

d2Xr> d2Xn -> d2Xi d2X: d2xt 
lh h 0 I 2h 0 I h2 _-A-2h _— A_- Lnoni , j 1 Ani , , 1 n 0 , 7 + /Lno , , 1 , 2 

dw dw dt dw dw dt dt 

+ x, (q2 — qx cos 2t) = 4>. 

The equation E0 is easy to integrate; in fact, it reduces to Eq. ( 18.1 ) of no. 

190 which has been the topic of Chap. 17. We will obtain an integral by 

setting 

x0 = £An cos(w + 2nt) , 

where the coefficients A n are the same as in no. 178 while h0 is equal to the 

number denoted by h in Chap. 17. 

We will have a further equation of this type by setting 

x0 = ^ An sin(u; + 2nt) . 

Thus if we put 

£ = V An cos(w + 2nt), 77 = ^ An sin(iu + 2nt) 

and if /3 and y are arbitrary constants, we will still have an integral by 

setting 

*0 = + rv ■ 
This, incidentally, is the only integral that is periodic in w and t. 
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Let us then pass to the equation Ex. If ht were known, one could write 

h% ^-y + 2/?0 d X' + ^yy + XM2 — d\ cos 2/) = 4>. (18.12) 
dw~ dw at at 

How would we then integrate Eq. (18.12)? 

Let us put 

aw at 
— ^ A„ (h0 + 2«)sin(u; 4- 2nt) , 

v' = K ^r~ + ~T~ = + y An (h0 + 2n)cos(w + 2nt) . 
dw dt ^ 

The determinant Çrj' — Ë, '77 will be a constant that can still be assumed as 

equal to one since only the ratios of the coefficients A„ are determined and 

since A0 can be arbitrarily chosen. 

Let us now apply the variational method of constants. If, by /?and y, we 

no longer denote two constants but two functions of w and of t, we can 

define these two functions by the equations 

*i=Pi + yv> 
, dxx dxx 
hn —- + -r1 = PÇ +7V 

dw dt 

If, for abbreviation, we put 

P' = hM + *il, 
dw dt 

dw dt 

then Eq. (18.12) can be replaced by 

P 'i + r'v = 0 . 

rr+ rV = <!>; 

whence 

(18.13) 
P' = — T77 , 

/ = <*>£• 

These equations (18.13) are easy to integrate. 

For example, let us take the second of Eq. (18.13); here <Pg can be 
expanded in a series of the form 

<&£ = B0 + ^ B cos(mw +/at + k) ; (18.14) 

where B and k are constants and m is an integer; // is a linear combination 
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with integral coefficients of 2 and of At. The wholly known term B0 has 
thus been derived. 

The equation 

dw dt 

will then yield 

„ n , . v B sm(mw + fit + k) 
y=B0t+\-----|-ip(w-h0t) , 

mhQ+n 

where tp is an arbitrary function of w — h0 t. 

If we wish y to be expandable in a trigonometric series of the same form 

as the series ( 18.14), the following is necessary: 

(i) This function tp must be zero (since we do not assume here that a 

relation of the form mh0 + /r = 0 is in existence). Therefore, we will use 

tp = 0. 

(ii) The term B must be zero. 

If we are to be able to solve the problem postulated here, two conditions 

must be satisfied: 

The wholly known term of d>£, like that of <Pr), must be zero. 

We will choose /z, such as to satisfy one of these conditions while the 

other must be satisfied identically, unless the formulated problem is not 

feasible. 

In a similar manner, the equation Et is used for determining x{ and ht. 

So as to have x, retain the trigonometric form, two conditions are neces¬ 

sary. One is satisfied by properly selecting /z, and the other one must be 

satisfied identically. 

Thus either the proposed problem is impossible; or else our conditions 

must be identities. 

193 . To demonstrate that these conditions are actually satisfied identi¬ 

cally, it remains to establish the feasibility of the problem. In the same way 

the method of no. 127 would not have been legitimate if we had not pre¬ 

viously demonstrated in no. 125 the feasibility of expansion. 

Let us consider a system of canonical equations 

(z = 1,2, ...,«). (18.15) 
d*i__dF_ dy^__ dF 

dt dyt ’ dt dx, 

We assume that Ecan be expanded in powers of a parameter^, in the 

form of 

F= F0 + /uFi + ju2F2 + • • • , 

but we no longer assume, as in no. 125, that F0 is independent of y,. 
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We suppose that Fis periodic, with period In with respect tojv 

Finally, we assume that we were able to integrate the equations 

dx1_dFR dh__ dF0 

dt dyt ’ dt dxt 
(18.16) 

and that the solution satisfies the following conditions: 

(i) The variables x, and^, will be functions of n constants of integration 

-*■ 1 ) -*2 > • ■ • > Xn > 

and of n arguments 

y[, y2> •••. y'n • 

(ii) These n arguments themselves will be functions of time such that 

y'i = * d + û># • 

Here, A,- will be constants that depend on the n first constants of integra¬ 

tion x', while Toi will be n new integration constants. 

(iii) The terms x, and_y, —y\ will be periodic functions ofy[, with period 

2iT. 
(iv) The expression 

X xidyi - X x‘dy'i 

will be an exact differential. 

We obviously then have 

Foixrf,) = const., (18.17) 

meaning that F0 will depend only on the constants of integration x\. 

We recall here the theorem of no. 4 which can also be formulated in this 

manner. 

If a change of variables is performed by passing from one system of 

conjugate variables (x, j>, ) to another system of conjugate variables 

(x',_y'), the condition for keeping the canonical form unaltered is that the 

expression 

X x'idy'i - X x'dy- 

be an exact differential. 

From this it follows that if, in the case under consideration, we use x- 

and_y' as new variables, Eqs. (18.15) will retain their canonical form and 

will become 

dx^_dF_ dtf__ dF 

dt dy\ ’ dt dx\ 
(18.18) 
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It is obvious that 

(i) Twill be periodic with respect to_y'; 

( ii ) F0 will depend only on x' because of Eq. (18.17). 

This means that Eqs. (18.18) thus satisfy the conditions of nos. 125 and 

127 from which it follows that they can be formally satisfied in the manner 
given below: 

The terms x' andj>' can be expanded in powers of fi, in the form 

x' = x'° + nx\1 + F2x’2 + * • • , 

y\ =y?+iiy\x + p2y'2 + 

The terms x'k and_y'* will be functions of n integration constants and of n 

arguments 

u>. = ntt + aJ,', 

where n{ are constants that can be expanded in powers of n while cô' are 

arbitrary constants. 

The terms x'k andj>,,<: will be periodic with respect to wt, except for j>'° 

which reduces to wt. We should mention that x'° is a constant. 

Now, we only have to substitute these values of x\ and y' into the 

equations that yield the old variables as a function of these new variables 

x' and y\\ this shows that Eqs. (18.18) can be formally satisfied in the 

following manner: 

The terms x, and y( can be expanded in powers of /z, in the form 

X,- = + fix) + • • • , 

y, =y°+Fy\ + •” • 

The quantities xf and_yf will be periodic with respect to wt, except for _y°. 

However, y° — wt will be periodic. Nevertheless, it will not happen that x° 

reduces to a constant and y°, to . 

194. Let us apply these principles to Eq. (18.5) of no. 191 which, 

giving it another number, I can write as 

d X + x{q2 — qx cos It) = acp{x,t) . (18.19) 
dt2 

Let us attempt to reduce this equation to the canonical form. 

Let ifj be a function of x and of t such that 

Here, cp just as x(j can be expanded in powers of x and in the sines and 

cosines of multiples of 

21, Ajt, A4t, ..., Ant. 
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For greater symmetry, let us put 

2 =A2. 

Next, let us put 

y = ^~, yi=Ait (i = 2,3,...,/i), 
dt 

and let us assume that, in ç, t[>, and in the term qx cos 21, the quantities A, t 

had everywhere been replaced by yt in such a manner that both sides of 

Eq. (18.19) become functions of x, of d2x/dt2, andofy, which are period¬ 

ic with period 2it with respect to yt. 

Let us introduce n — 1 auxiliary variables 

-X-2> X3’ • • • > Xn » 

and let us put 

F= y - Ctrl’ + y {q2 - q cos^2) - ^ A,x, . 

We can replace Eq. ( 18.19) by the system of canonical equations 

dF dy dF 

dy ’ dt dx 

dF dy, _ dF 

dyt ’ dt dxl 

If we next put (see no. 181) 

x = ~ cos yx, y = q^|2x~x sin_y, , 
q 

then the expression 

(18.20) 

xdy — xxdyx 

will be an exact differential. Consequently, the canonical form of the equa¬ 

tions will not be altered if we use xt, y, (/ = 1, 2,..., n) as variables. 

In addition, Twill be periodic with respect to yx, y2, .. ., yn, so that 

q2x2 +y2 = 2qx, , 

The small parameter a here plays the role of /u, and one can see that Tis 
expanded in powers of a. 

If we set a = 0, Twill reduce to 

T0 = qxx — — X! cos2 yx cos y2 — V Atxt . 
Qi 

We can find a function S dependent on n arbitrary constantsx\ ,x'2,, 

x'n and satisfying the equation 
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dS ( qx 2 
-\q — — cos v, cos Vt 
dyx r q2 '2 

= const. (18.21) 

With slightly different notations, this constitutes the equation of no. 181. 

In no. 181 we had shown that, considering qx a very small coefficient 

analogous to the parameter /i of no. 125, the methods of no. 125 can be 

applied to this equation. The function S — x\yx — x'2y2 — • • • — x'nyn is a 

function of x[,yx, and j>2 which is periodic only in_y, andj>2 (see no 181 ). 

To convince oneself of this, it is merely necessary to apply the method of 

no. 125 to Eq. ( 18.21 ), making qx play the role offi. 

It follows from this that the equations 

d*i_ _ dFo dyj_= dF0 

dt dy, dt dxt 

can be satisfied by setting, as in no. 3, 

(18.22) 

x 

and, furthermore, 

y'i = AJ + o>t . 

Here, A, and <ÿ, are constants of which the second one is arbitrary. 

We will simply have 

xi=x'i and yi=y\, 

for / > 2. 

We also will have y2 — y2 ■ 

So far as y[ is concerned, it will be equal to 

— ht + aJ,, 

such that the coefficient A, will be nothing else but the number h with 

changed sign. 

It is easy to find the function 5 or else the expression of x, and y, as a 

function of xj, y\. These are obtained readily when the number h and the 

coefficients An, determined in the preceding chapter, are known. 

We should note here that, according to the definition of the new vari¬ 

ables x'i and y\, the expression 

dS=^xidyi + ^y'dx’i 

and, consequently, also the expression 

X —x’tdyï) 

will be exact differentials. 
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Moreover, the terms x' and — y- will be periodic functions of.y'. 

Finally, we obtain 

Fq -f- hxj — A ~X2 A2X2 • 

Thus if we take*,' andy' as new variables, then the canonical form of Eqs. 

(18.20) will not be altered and these can be written as 

dx\ _ dF _d]L (18 23) 

dt dy\ ’ dt dx\ 

In addition, Twill be periodic with respect toy\ and, for a = 0, F = F0 will 

depend only on x'. 

This returns us to the conditions of nos. 125 and 127 so that we can 

conclude that the terms x' and y\ and thus also x, and yt can be formally 

expressed as a function of a, of n arbitrary constants, and of n variables 

wk, in such a manner that the functions x', y- — w,-, xt, yt — w, can be 

expanded in powers of a and will be periodic with respect to wk. They will 

then have the form 

wk = nkt + côk , 

where the quantities 75k are new integration constants while nk will be 

constants expandable in powers of a. 

It is also easy to demonstrate that, in the particular case in question 

here, we have the following expression for k > 1 : 

yk=y'k=wk, nk=Ak. 

To satisfy not only eqs. (18.20) but also Eq. (18.19) from which these 

have been deduced, it is necessary to take 

wk=0, wk — Akt. 

It results from all this that the problem proposed in the preceding number 

is feasible and, consequently, that the conditions of which we spoke at the 

end of this number must be satisfied identically. 

195. Since this must take place irrespective of the value of qx and even 

at qx = 0 and since this fact could not have escaped Gyldén’s attention, it 

cannot have been to avoid these secular terms that he transposed the term 

in qxx cos It to the left-hand side despite the fact that the coefficient qx is 

very small: He did this for an entirely different reason which we will 

attempt to explain below. 

If we refer to the preceding chapter, we will see that the coefficients An 

become infinite when the number h is an integer. Thus these coefficients 

are very large when the number h is close to an integer or else, since h 

differs little from q, when the number q is close to an integer. 

Thus if, writing the equation of the preceding chapter in the form 
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d2x 

'dt2 
+ q2x = -f qxx cos 21, 

we had applied the procedures of no. 127 and made qx play the role of /i, 

then the convergence would have been very slow in the case in which q is 
close to a whole number. 

Let us now consider the equation 

+ q2x = cup(x,t) . 

Let 

(18.24) 

Axm cos At or Axm sin At 

be any term of <p(x,t) and let m be a positive integer or zero. If m = 0, this 

term will be independent of x and, without causing inconvenience, could 

stay on the right-hand side. If m> 1, the term will contain a factor x2 

which generally will be very small and cannot have a significant influence. 

This leaves the case in which m = 1. 

According to what we have just seen, the procedures of no. 127 can be 

applied to the equation 

d2x 
-1- q2x = aAx cos At, (18.25) 
dt2 

and, if one makes a play the role of /r, the convergence is slow or rapid 

depending on whether 2q/A is or is not be close to an integer. The conver¬ 

gence will be slow specifically when 2q/A is close to unity; in fact, accord¬ 

ing to what we have seen in no. 179, the expression of F At) contains 

q2 — 1 in the denominator. 

It results from this that the function F{t), expanded as in no. 179 in 

powers of qu contains terms in 

q\ 

The function F{t) which satisfies the equation 

— + q2x = qxx cos 2t (18.26) 
dt2 

is thus very large if q is close to one. However, Eq. ( 18.25) is reduced to 

Eq. (18.26) by changing there t into 2t/A, q into Aq/2, and aA into 

A 2^1/4. 

The integral of Eq. (18.25) can thus become large and its convergence 

will be slow if 2q/A is close to one, as I have just said. 

Consequently, if the right-hand side of Eq. (18.24) contains a term 

such that x enters as a factor at the first power and if its argument At is 
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such that 2q/A is close to one, then one can greatly increase the speed of 

convergence by bringing this term over to the left-hand side. 

Let us see whether this case occurs, when applying Gyldén’s method to 

the three-body problem. 

Let us return to Eq. (16.6a) of no. 168: 

P 

dv o 
+ p = B. 

The terms of B are of the order of magnitude of the perturbing forces; they 

depend on v0 + X’ v'o + x'> P> and P ■ We can assume that we have caused 
X, x'y and p to vanish there by applying the procedures of nos. 170-172 or 

that, by using similar procedures, we had replaced v'Q as a function of u0. 

In that case, B will no longer depend on p and on v0, and its terms will 

have the form 

cos „ 
Apm . Av0. 

sin 

As to A, this will be equal to 

m + pn , 

where m and n are integers while p is the ratio of the mean motions of the 
two planets. 

In B, let us distinguish the two following terms: 

ap and /3p cos 2v0 , 

and let us put 

B = ap + ftp cos 2v0 + B ' . 

It is possible to transpose ap to the left-hand side and to write 

-^7-7- + p( 1 — a) = B ' + [3p cos 2v0 . 
dv a 

This equation has the same form as Eq. (18.24). To know whether it is 

convenient to bring the term /3p cos 2v0 to the left-hand side, it is neces¬ 

sary to define whether the quantity, corresponding to 2q/A, is close to one. 
However, this quantity is equal to 

V1 — a , 

and a is of the order of the perturbing function. Thus the rapidity of 

convergence will be increased greatly by bringing this term to the left- 

hand side, while the same reasons do not exist for transposing the other 
terms of B 

Let us now study this question a little more closely. The difficulty here 

is due to the fact that the coefficient of p is close to one; or else to the fact 
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that this coefficient of p reduces to one as soon as the perturbing masses 
become zero. 

When the perturbing masses are zero, the motion will become Kepler- 
ian and the equations of motion will reduce to 

d 2u 
v — v0, —— f u — 0 . 

dv o 

If, with the perturbing masses remaining zero, the two planets were at¬ 

tracted by a central star but according to a law differing completely from 

the Newtonian law, then these equations would become 

d ~u 
v = v0, —— + <p(u)=0, 

dvo 

where cp{u) is a function of u depending on the law of attraction. 

Next, as in no. 169, let us put 

u = ul+p, 

where «, is a known function of v0 which differs little from u; neglecting all 

powers higher than p, the equation will become 

d2qp ., 
-JT + V (ux)p = A, 
dv g 

where qp ' is the derivative of cp while A is a known function of v0 as well as 

of<p'(«i)- 

For example, if «, were a constant or if <p(u) were a linear function, 

then cp' ( «, ) would be a constant generally differing from one so that the 

difficulty encountered earlier would not occur. 

Thus the difficulty which made us transpose the term in ç, to the left- 

hand side exists with no other law but that of Newton. 

This is due to the fact that, if Newton’s law is adopted and if the per¬ 

turbing masses are still assumed as zero, then the perihelions are fixed 

which is no longer true for any other law of gravitation. 

This is exactly what we emphasized at the beginning of Chap. 11. 

Thus the difficulty which was overcome by Gyldén by transposing the 

term in qx to the left-hand side is exactly the same as that overcome by us 

with the procedures given in Chap. 11. 

Variational Equation 

196. Equation (16.5b) of no. 169, known as the variational equation, is 

written as 
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d 2v 
———Csin(my0 + npv0 + mx + k) — A , (18.27) 
dvl 

where C is a constant and A is a sequence of very small terms, which we 

will assume depend only on x- 

Let us then set 

mv0 + npv0 + mx + k = V, 

the equation will become 

d2V C . A 

m dv20 m 

where A is a very small function of V and of v0. Since A is very small, we 

can write 

A = amcp( V,v0) , 

where a is a very small coefficient; after this, we can expand the expression 

in ascending powers of a. 

We thus have 

d2V C 
—j- — — sin V = cup{ V,v0) . 
dvl m 

In this form, it can be seen that Eq. (18.27) appears as a particular case of 

the following equation: 

-^r +/(*) = a<p(x,t) , ( 18.28) 
dt2 

where/and ç> are arbitrary functions while a is a very small coefficient. 

This is also the case for Eq. ( 16.6d) of no. 169 which can be written in 

the form 

\ + a) — Cp3, = B , 
dv 2 

where B is a sum of very small terms that can be transformed by the 

methods of nos. 170-172 in such a manner that one can assume them to 

contain only p and v0. 

Thus equation (18.28) will be the one to be studied below. 

Before going further, a remark is required here. 

Let us consider Eq. (18.5) of no. 191. We have made an effort to 

expand the solution of this equation in powers of a. In Chap. 16 we did not 

formulate the problem in exactly the same manner; we stated there that, 

on the right-hand side of this equation, the term x first had to be replaced 

by zero and then by its first approximate value, and so on. 

However, it is easy to demonstrate that these two modes of approxima- 
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tion come to the same thing. If, in fact, we set a = 0 in this equation, it will 

reduce to 

d 2x 

'di2 
+ x(q2 — qx cos 21) = 0 

and will then admit x = 0 as a particular solution, which is exactly the 

value of x which we had supposed in first approximation. The same holds 

for Eq. ( 16.6d) of no. 169, which can now be written as 

^rr- + Ap- Cp} = af(p,v0) . 
dir0 

If one sets a — 0, the equation will admit p = 0 as particular solution. 

However, in Chap. 16, we have exactly supposedp = 0 as first approxima¬ 

tion. 

The two methods of approximation thus are still equivalent. 

This is no longer entirely so with respect to Eq. (18.27) of the present 

number, which we had written as 

d2V C . ,r/ . 

dv o m 

Setting a = 0, this equation reduces to 

d2V C 
——— — sin V=0, (18.29) 
dv o m 

and obviously admits of V = 0 as particular solution. However, what we 

supposed in Chap. 16 as first approximation, was not 

V= 0, 

but rather 

x = o> 
whence 

V = mv0 + npv0 + k , 

which obviously is not a solution of Eq. ( 18.29). 

The two methods of approximation are not absolutely equivalent. 

However, because of the smallness of the coefficient C, it is possible to 

take, as first approximation, a solution of Eq. (18.29) instead of setting 

X = 0 without much slowing the rapidity of convergence. This is exactly 

the manner in which Gyldén operated. 

Thus let us return to the Eq. ( 18.28 ) : 

-^r+/U) =acp(x,t) 
dt2 
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As in no. 191, we will assume that cp{x,t) is a periodic function, with 

period 2v with respect to the arguments 

A2t9 A^t, • • • 3 An ^ 3 

and we will put 

dx . dip 
y = — ' h = V- ^ = dt dx 

Similarly, we will put 

If, next, we put 

de 

dx 

F=^- + d-aip-^Aixi , 

then Eq. (18.28) can be replaced by the canonical equations 

dx dF dy = dF 

dt dy ’ dt dx 

dXj dF dyt _ dF 

dt dyt ’ dt dXj 

(18.30) 

We propose to integrate these equations formally as follows: Our variables 

must be expanded in powers of a and the coefficients will be periodic 

functions, with period 2it, of n parameters 

w, w2, w3, Wn . 

with 

w = ht + cl>u Wj = h(t cOj . 

Obviously, as in no. 194, it is necessary to set 

/z, = A,-, Tôt = 0, yt = W; . 

As to the number h, this can be expanded in powers of a. 

The results of no. 193 can be recapitulated as follows: If a similar 

problem is feasible for a = 0, it will still be feasible if a is no longer as¬ 

sumed as zero. 

Now, if we set a = 0, our equation reduces to 

4^+/(*)=0. (18.31) 
dt2 

This equation is readily integrated by quadrature, yielding 

x = co(w), y = hco'(w), w = ht-\-côu 

y. = wt = Ajt. 
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Here, co and co' are functions of w and of an integration constant /?; they 

are periodic, with period 2tt with respect to w. The number A is a function 
of/?, and co, is a new constant of integration. 

Since the problem postulated above is feasible for a = 0, it will still be 
feasible for «50. 

It now remains to solve this problem effectively. 

For this, we rewrite Eq. ( 18.28 ) to show explicitly that x depends on t 

first directly and then through the intermediary of w. Thus we follow a 
method wholly similar to that of no. 192. 

This will yield 

2 d~X + 2/*-^ + ^+/(x) =a<p(x,t) . (18.32) 
dw2 dw dt dt 

We will replace the quantities x and h by their expansions in powers a 

x = x0 + ax, + a2x2 + • • • , 

h — h0 + ah, + a2h 2 +■■■ , 

and will then equate the coefficients of like powers of a. This yields the 
equations 

u 2 drxo 

0 dw2 

d2x, 

2 hr 
d2xn d 2x, 

+ 
dw dt dt2 

2+/(xo)=0 

2 hJi O'M 
dw" 

? + 2 h, 
d2xn , , d2x. 

dw dt 
+ h o 

dw2 

,, d2x, d2x, . 
2hn-1—- — +/ (x0)x, — , 

dw dt dt2 

2hoh2^+2h24^+hl 
dw-, 

+ 2/î0 
d2x-, 

dw dt 

d2x 

d 2x2 

~dw2 

+ 
dw dt dt2 

T f (xq)x2 = d> 

(18.33) 

(18.34) 

(18.35) 

We will use 4> to denote any known function of t and of w. The right-hand 

side Eq. (18.34) is known since h0 and x0 had been determined by means 

ofEq. ( 18.33). The right-hand side of Eq. ( 18.35) is known since h0, h„ 

x0, x, had been determined by means of Eqs. ( 18.33) and ( 18.34), and so 

on. 

Equation (18.33) reduces to Eq. ( 18.31 ), so that we have 

xQ = a{w,P) , 

where co is a function of w and of the constant /? and is periodic with 

respect to w. 
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Let us now consider Eq. ( 18.34); if hx were known, this equation would 

be written as 

>d2x'+2h0 4^5- + ^ +/'(*,)*,= 4> ■ (18.34a) 
dw2 " dw dt dt2 

This is an equation linear on the right-hand side. Consequently, we have 

to consider the homogeneous equation: 

^2. 
h\ 

2 dlz .. d2z d2z r, „ 
+ 2h0-—- + —-+/ (xo)z = 0. 

dw2 " dw dt dt2 

Obviously, this equation admits of the following particular solution: 

z = z, = 
d(o 

~d/3 
Z = Zo = 

dco 

dw 

As in no. 192, let us now put 

z; =h0^-+dz' z^=hn^i + dz2 
dw dt dw dt 

The determinant z,z2 — z2z\ will be a constant which we will denote by k. 

Let us note, in passing, that we wrote the equations as though x0, zx,z2,z\, 

z2 depended simultaneously on w and on t whereas these functions, in 

reality, depend only on w so that many of the terms of these equations are 

actually zero. 

Then, let y and Ô be two quantities defined by the equations 

*i = yzi + ôz2, 

, dxx dxx , _ , 
K -j1 + —r = rz\ + ôz2 ■ 

dw dt 

For abbreviation, let us put 

y = KÉL + ÈL, 
dw dt 

s, .dô dô 
° — “o ~: f ~r • 

dw dt 

Equation ( 18.34a) can then be replaced by the two following expressions: 

/z, + <5'z2 = 0 , 

ŸA + <5'z2 = 0 , 

whence 

/= - <hz2, 

8' = <Pzt . 

These equations can be integrated by the same procedure as used for the 



CHAPTER 18 § 196 581 

analogous equations of no. 192, and no difficulty will be encountered here 

provided that the mean values of 4>z, and 4>z2 are zero. 

One can then choose /?, such that one of these mean values will vanish 

while the other will vanish identically since we already know that the 
problem is feasible. 

Equation (18.35) and all subsequent equations can be treated in the 
same manner. 

In certain specific cases, the integration of Eq. ( 18.31 ) reduces to ellip¬ 

tic functions. This happens, for example, when / (x) is a polynomial of the 

third degree in x or when/ {x) reduces to a constant factor multiplied by 

sin x, i.e., in the case of Eqs. ( 16.6d) and ( 16.5b) of no. 169. 

Summary 

197. Above, we have made an attempt to interpret the essence of the 

Gyldén methods rather than follow scrupulously his mode of presenta¬ 

tion. It remains to state what, in our opinion, one should think of these 

methods. 

Each time that the ratio of the mean motions is not very close to being 

rational, the methods by Newcomb discussed in Chaps. 9-15 will appear 

simpler—specifically with the improvements made by us—and more sat¬ 

isfactory than those by Gyldén. 

Nevertheless, a study of Gyldén’s methods retains its full usefulness. In 

fact, numerous cases exist in which the ratio of the mean motions is too 

close to being rational for having the methods of Chaps. 9-15 still remain 

applicable. To treat these cases, Gyldén applied procedures analogous to 

those which he used successfully in simpler cases and, again, has obtained 

the same success. 

Therefore, it seems worthwhile to penetrate further into the spirit of 

these methods, whether one either wishes to apply them directly or merely 

to use them as a means for developing new theories that might be more 

satisfactory for some reason. 

The essence of these methods can be expressed in a single statement: If 

any term becomes very large and slows down the convergence, one takes 

account of it from the first approximation on. 
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Generalization of Periodic Solutions 

198. The theory of equations studied in this chapter is connected with a 

proposition which Gyldén used to some extent without specifically for¬ 

mulating it. We cannot just disregard it here. 

Let us consider the equation 

— ax — /z/, (18.35) 
dt2 

where a is some constant and [i is a very small parameter;/is a function of 

x, t, and ji which can be expanded in powers of x and /1 as well as in sines 

and cosines of multiples of n arguments 

A^t, A2t, • • • > ' 

If there were only a single argument A, t, the function/would be a periodic 

function of t with period 2tt/Av In that case, Eq. (18.35) would admit of a 

periodic solution with the same period. In fact, for /z = 0, this equation, no 

matter what the constant a might be, obviously will admit of a periodic 

solution which will be 

x — 0 . 

Thus in view of the principles exposed in Chap. 3, the equation will also 

admit of a solution for small values of /z. 

Can this result be generalized for the case in which /contains n differ¬ 

ent arguments 

A,t, A2t, ..., Antl 

Does Eq. ( 18.35) then admit of a solution of the form 

jc = x, /z + x2fi2 + x3/z3 + • • • , (18.36) 

where xv x2, x3,... can be expanded in sines and cosines of multiples of 

A^? 

To check on this point, we will use a method resembling that given in 

no. 45 and which, although more general, will also be simpler since, by 

assuming a = 0, we had intentionally introduced in no. 45 a difficulty 

which does not occur in the general case. 

Let us assume the problem as solved and let us substitute for x in/ the 

series (18.36). After this substitution,/can be expanded in powers of ytz, 

first because this function had already been expandable in powers of this 

variable before the substitution and secondly because the value of x given 

by Eq. ( 18.36) can itself be expanded in powers of /z. We thus will have 

f=<Po+MPi +H2<Pi+ 

where <p0 will depend only on t\ q>x on t and x^; ap2 on t, xx, and x2, and so 
forth. 
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Then, Eq. ( 18.35), upon equating the coefficients of the various pow¬ 
ers of /n, will yield 

d 2x, 
— -axx = q>0, 

d 2x2 
— -ax2 = <px, 

d 2x3 
—± - ax3 - <p2 , 

(18.37) 

which will permit us to determine by recurrence the various functions xt, 

x2, x3,... . 

Equations ( 18.37) have the form 

d2xt 

If <pj _ , can be expanded in sines and cosines of multiples of At and can be 

written in the form 

<Pi-i = ^ A cos[ (m,A, + m2A2 + ••• + mnAn )t + k ] , 

where w, are integers while k and A are any constants, then we can take 

■x. <= - X 
A cos[ (mxAx + m2A2 + *•• + m„A„)t + k ] 

a + + m2A2 + • • • + m„A„ )2 
(18.38) 

and x, will be of the wanted form. 

This leaves us to determine whether series ( 18.36) is convergent. This 

will be the case whenever a is positive. 

Let us now assume that a is positive; in that case, we will have 

J_ _1_ 

a a + (m,Aj + m2A2+ ■■■ + mnAn)2 

Let us return to the notations of Chap. 2 and introduce a new function of t 

of the same form as <p,-_ x, which we will designate as cp ,. Let us assume 

that this function is such that 

<Pi-i 4<Pi-i (arg e±a’t, 

Let us then define x' by the equation 

,e±A"‘) . 

ax; =<pi_1 

and xi by Eq. ( 18.38), obviously yielding 

xt <x;. 
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Let there then be a function f'(x,t,iu) of the same form as/ (x,t,/j) such 

that 

f<f' ( arg x,n,e± u’‘, e±iÀ2‘,...,e± lÀ"‘) . 

Let us consider Eq. (18.39) which will define a new function x' 

ax'=/nf'(x',t,/2) . (18.39) 

From this equation, x' can be derived as a convergent series expanded in 

powers of/n: 

x' = x\n + x'2n2 + x'3/u3 + • • • ; 

whose coefficients are arranged in sines and cosines of multiples of At t. 

On substituting this series for x' in/', we obtain 

/' = <Po +H<P \ +H2(p'2 + ••• , 

where cp Ô depends only on t\cp\ on t and on x[ ; cp '2 on t, on x[, and on x2 ; 

We will also have 

<Pk (xi>x2,. .. ,xk,t)4<p’k(xi,x2,. .. ,xk,t) , 

arg(x„;c2. . . ,xk,e±u‘) . 

For abbreviation, we will write e±Ut for the n arguments e±a,t, e±Ult, 

• •. ,e 
Equation (18.39) will give 

ax[ =cp'0 , ax2 = cp [, 

from which we find successively 

<Po<<Po (arg e±Ut) , 

(arg e±Ut) , 

<Pi(xittX<p\ (x„0 (argxue±Ut) . 

<Pi(xut)4<p[(xl,t) (arg e±Ut) , 

*2^X2 (arg e±Ut) , 

cp2(xux2,t) 4cp [ (xux2,t) (argxl,x2,e±Ut), 

<p2(xvx2,t)^(p'2(x\,x'2,t) (arg e±iXt) , 

x3<x; (arge±Ut), 
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and finally, 

(arg fj,,e± a‘) , 

which proves that series ( 18.36) converges well. 

Thus this series converges in two cases: 

(i) irrespective of the value of a, when only a single argument A{t exists; 

(ii) irrespective of the number of the arguments when a is positive. 



CHAPTER 19 

Bohlin Methods 

Delaunay Method 

199. Let us return to the hypotheses and notations of no. 125. We have 

shown that in the application of the method of no. 125 divisors of the form 

«?m, + n°2m2 + ••• + n°nmn, 

are introduced, where mi are integers. 

It results from this that the method becomes illusory as soon as one of 

these divisors becomes very small. 

Among the methods conceived for overcoming this difficulty, that by 

Delaunay was chronologically the first; its presentation will facilitate un¬ 

derstanding all others. 

Let us first consider a system of canonical equations 

dxi dF dy : dF 
— = — , —= - —, (19.1) 
dt dy, dt dxl 

and assume that Fis exclusively a function of xx, x2,... ,xn and of 

mlyl + m2y2 + ■•• +mnyn, 

and that it is periodic, with period 2v with respect to this latter quantity. 

We also assume that m, are integers. 

Integration of system ( 19.1 ) then reduces to that of the partial differ¬ 
ential equation 

„fdS dS dS \ „ 
F\-r- ’T~’•••>-)— ’m\yi + m2y2+ ••• +m„yn ) = c, 

\dyi dy2 dyn ) 

where C is an arbitrary constant. This integration is easy to perform. 

In fact, let us put 

S = x°lyl +X2T2+ •" yn +<p(mlyl + m2y2+ ■■■ +mnyn), 

so that the equation becomes 

F(x°x +ml<p',x°2 +m2<p',... ,x°n +mn<p', m1yl + • • • + mn yn) = C. 

Let us solve this equation for cp ', so that 

<P ' = function of £ m, yit of x°x,x°2,... ,x°n, and of C. 

586 
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This expression is then integrated with respect to I m, yi by consider¬ 

ing C and x°k as constants; then, q> and thus also S' will be obtained as a 

function of Im, y„ of x°k, and of C. 

It is necessary to go into more details here; for this, we will consider a 
simple particular case by setting 

mx — 1, m2 — m3 = • • • = mn = 0, 

F = x\ + /x cosy,, 

where fx is very small. 

Our equation then becomes 

(dsy 
\d^) +/i cos-Vi = C’ 

whence 

dS ^- 
-= yjC — /X COSy,. 

dy 1 

Several cases must be considered here: 

(i) We have 

C>\f*\. 

In this case, the radical yjC — fx cos^, is always real and never vanishes. 

Two values are possible for it: one that is positive for all values of^j and 

another that is negative for all values ofyx. For example, let us take the 

first value; it can be expanded in cosines of multiples of yx, in such a 

manner as to yield 

dS 

dyx A + X B"cos 

I have separated out the wholly known term and denoted it by x?. 

Clearly, x° is a function of C so that also C will be a function of x°x. 

Moreover, the quantities Bn will be functions of C and thus also of x°x. 

We then have 

S = x°xyx + V — sin nyx, 
n 

which gives S as a function of yx and of the arbitrary constant x°x. 

(ii) We have 

- \n\<C<\fi\. 

In this case, the quantity under the radical sign 

C — ix cosy, 
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is not always positive so that one cannot assign all possible values toyt but 
only those for which the root is real. 

It then becomes possible to introduce an auxiliary variable e by putting, 
for example, 

// cosj>, — C cos e, 

from which it follows that 
JO 

— - V2Csin(e/2), 
dy i 

or 

dS _ I ju2 — C2 cos2 e 

~d7~yj C~ 

Since C2 is smaller than /r2, the root on the right-hand side will always 
be real and can be expanded in a trigonometric series of the form 

dS _ „ _ 
— = Bo + y Bn cos ne, 
de ^ 

whence 

S = B0e + V —— sin ne, 
^ n 

which yields S as a function of the auxiliary variable e and of the const¬ 
ant C. 

(iii) We have 

c=H- 

Let, for example, 

jU > 0, C = /i. 

We then obtain 

= yfru Vl — cosy, = V2/u sin — 
dyx 2 

or 

S' = — yj2n COS — . 
2 

Here, S is expressed as a function ofyx and again will be a periodic function 
of yi9 except that the period no longer will be 2v but 4tt. 

We should add to this that, if C< | — fi\, then the root will always be 
imaginary and, if C = | — n \, it will cease being imaginary only for y, = 0. 
The above statements can be interpreted in two ways: 
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(a) First, by consideration of elliptic functions. 

It is obvious that 

S = f VC — // cos dyt 

is an elliptic integral and that, if we put 

dy{ 
_ y 

— ji cos y i 

then the expressions 

sinj>,, cosy1!, yJC — /z cosy1! 

will be doubly periodic functions of u. 

The various cases investigated above then correspond to various hy¬ 

potheses that can be made with respect to the discriminant of elliptic 

functions. 

(b) By geometry. 

In fact, we can plot curves by adopting the polar coordinates and by 

taking A + dS /dyx as radius vector, where A is any constant for a polar 

angleyx. This yields a pattern as given in Fig. 7. 

The solid lines correspond to the hypotheses C> \ju\ while the broken 

line represents the hypotheses 

- \v\ <C<\/t\, 

while the dot-dash curve, which has a double point in B, corresponds to 

the case of C = |/z | ; finally, the curve corresponding to C = — \/i \ refers 

to a single point A. 

Figure 7 
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If the methods of no. 125 were applied to the above problem, one would 

have arrived at an expansion of S in powers of /z. In fact, the radical 

VC — /z cos_y, 

is actually expandable in powers of /z, which thus also is the case for S. 
However, the series is convergent only if 

C<\[i\. 

If this condition is not satisfied, the methods of no. 125 become illusory 

and it is then necessary to apply Delaunay’s method, i.e., the method just 

discussed. This method can also be advantageously used as soon as C is of 

the same order of magnitude as /z, since the convergence of the series given 

in no. 125 will then be very slow. 

Let us note that the expansion of the radical has the form 

from which it can be seen that, if C is small, the convergence becomes very 

slow and may even stop entirely. 

If we set C = Cxn, the expansion becomes 

C i 

and all its terms will be of the same degree in /z. It is also obvious that 

VC —/z cosy, = V^t VC, — cos^p 

200. Let us now pass to a somewhat more general case and let us 

assume that F is exclusively a function ofx, = dS /dyx and ofy,, periodic 

injV 
The partial differential equation becomes 

<IH=C 
and must first be solved with respect to C. 

Let us assume that we have 

F=F0 + Fiju + F2fi2 + ••• 

and that F0 depends only on dS/dyl = xv 

Then, several cases are in question. 

Let us assume that F, which already can be expanded in powers of /z, 

will be also holomorphous in which incidentally will happen in all 
applications. 
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In that case, according to the methods of nos. 30 et seq., the equation 

F(xi,yl) = C (19.2) 

can be solved for x,. 

For n = 0, the equation is written as 

F0(xl) = C. (19.3) 

Let x° be a value satisfying this Eq. (19.3). If the derivative of F0 is 

denoted by Fq and if 

F'otf)* 0, 
then x, can be deduced from Eq. ( 19.2) in the form of a series arranged in 

powers of /u,, where the coefficients are functions of_y,. 

If, conversely, 

E'(x?)=0, F''(x°)%0, 

we still will havex, in the form of a series but now this series is expandable 

in powers of V/7 rather than in powers of /i. 

Let us examine these two cases in succession. 

First, let F’0 (x° ) ^0. 

We then put, since x, and thus also S can be expanded in powers of/i, 

S = Sq -\- /xS j + n 2S2 + 

and we assume, in addition, that dS0/dyx reduces to the constant x°. Next, 

the other functions S',, S2, ■ ■ ■ are calculated by recursion, with the compu¬ 

tational procedure being exactly the same as that of no. 125. 

Let us now pass to the second hypothesis where F’Q (x° ) =0. 

In that case, 5 can be expanded in powers of yf/ü and we can write 

s — S0 -f- V/7 Sx + fjS2 + 

We still assume that 

^ = x?, *So = x° JY 
dy i 

We then have 

„ ,dS\ „ , FS ( rdS. dS. 

On the right-hand side, we assume that x, in F0, Fq, Fq, .. ., has been 

replaced by x°. 
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Similarly, let us put 

C = C0 + CxJix + C2 [x + • • ■, 

thus demonstrating that the constant on the right-hand side can depend 

on /i. 

Consequently, equating on both sides of 

F— C 

all coefficients of like powers of /i, we obtain 

-Eo = C0, 
0 = C„ 

iFS (^)2 = -F,(x';,y,)+C2, 

FldS1dS1 = ^ + Cj, <19.4, 

dyi dyx 

F''dS1dS1 = <$) + c4, 
dyx dyx 

In the third equation of system ( 19.4), we assume S0 as known; in the 

fourth equation, we assume S') as known; in the fifth equation, we assume 

S0, Sx, S2 as known, and so on. 

I continue to use 4> to designate any known function. 

The third equation of system (19.4) will permit calculating dSx/dyx; 
since F q is a constant, we obtain 

frV^[C2~F|0O',]' 
Various circumstances may occur that correspond to the diverse cases 

treated in the simpler example discussed above. 

It may happen that C2 remains larger than Fx irrespective of the value 

attributed to j>i. Then, dSx/dyx is a periodic function of jq whose period 
is 2v. 

Or else it can happen that the condition 

C2 > Fx 

is satisfied only for certain values of Then, the function .S^ also will be 
real only for certain values ofyx. 

Once Sj is determined, the fourth equation of system (19.4) will yield 
S2, the fifth will yield S3, and so on. 

The solution is entirely satisfactory in the first case, namely, when Sx is 
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always real. However, in the opposite case, there is one point to be empha¬ 
sized: 

The values ofy,, for which the various functions Su S2, S3, . . . pass 

from the real to the imaginary are given by the equation 

C2 = Fx(x°x,yx). 

One could believe that it is for these very values that S passes from the 

real to the imaginary. However, this is not so; the values for which S passes 

from the real to the imaginary are given by the equations 

F = CQ -f C2 /i + C3 [lyf/A + ' ■ • , —— = 0. 
dxx 

It is true that these are very close to the former values iffi is very small but 

they are not identical with them. 

To overcome this difficulty, various means exist. For example, since 

C2, C3,. . . are arbitrary, it is possible to set C3 = 0 and do this also for all 

other C with odd subscript. 

Next, we will successively calculate 

S i, S2, s3. 

which will yield 

dS dS0 dS\ dS, dS* 

dy i dy, dy, ay dy, 

Since nothing distinguishes V/7 from — yfjü, we again have a solution 

by setting 

dS dSn dS ] t— dS2 dS3 I— 
Vju + —An -3-+ 

dy 1 dyx dyx dyx dyx 

These two solutions are either both real or both conjugate imaginary. It 

follows from this that 

•,o> S2, 5, 4> 

are always real. 

In addition, the expression 

dSx 
~7-^ F , 
dy 1 dy, 

dS3 2 dS5 
+ H -7^ + 

dy 1 

(19.5) 

is always real or purely imaginary from which it follows that, to obtain the 

equation yielding the values of yx for which 5 passes from the real to the 

imaginary, it is sufficient to equate the expression (19.5) to zero. 

How does the passage from the case in which S is always real to the case 

in which S is sometimes real and sometimes imaginary take place? 
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This can be better explained by constructing a pattern similar to that 

given in Fig. 7. 

As radius vector, we will usedS/dyx and, as polar angle,yx, after which 

we plot the curves 

or at least those among them for which dS /dyx differs little from x°x. 

These curves will differ very little from those where the radius vector is 

equal to 

and where dSx/dyx is given by the formula 

For plotting these curves, a hypothesis is necessary as to the manner in 

which the function Fx varies when yx varies from zero to 2n. For example, 

let us assume that Fx passes through a maximum, then through a mini¬ 

mum, then through another maximum larger than the first, and then 

through a minimum smaller than the first. This will yield a pattern of the 

type shown in Fig. 8. 

One can see that as C2 diminishes one obtains successively: 

if C2 is larger than the largest maximum, two concentric curves, shown in 

Fig. 8 as dashed lines (-); 

if C2 is equal to the large maximum, a curve with a double point, shown as 

a solid line (—); 

if C2 falls between the two maxima, a curve analogous to that shown as a 

dot-dash line (-); 

if C2 is equal to the small maximum, a curve with a double point shown as 

a dotted line (•••)■ 

If C2 becomes smaller than the smallest maximum, the curve is decom¬ 

posed into two other curves which are shown by the line ( + + + ). One 

of these curves reduces to a point and vanishes when C2 becomes equal to 

the largest maximum. The other curve reduces to a point and then vanish¬ 

es as soon as C2 becomes equal to the smallest minimum. 

It is obvious that passing from one case to the other takes place via a 

curve with a double point, which necessitates a closer study of these curves 

and, specifically, of the first curve which is represented by the solid line. 

If we assume a moving body traveling along this curve in a continuous 

motion, this body will—for example—start from the double point, circu¬ 

late around one of the loops of the curve, return to the double point, move 



CHAPTER 19 § 200 595 

Figure 8 

along the second loop, and finally return to its starting point. It is obvious 

that the motion will still be periodic but that the period is doubled, such 

that dS /dyx is a periodic function of_y, but with a period which now is An 
instead of 2tt as before. 

Let us now return to Eqs. (19.4). 

It will be found that, if the value corresponding to the maximum of Fl is 

assigned to C2, then the radical 

— (C2 — Fx) , 
7" 

0 

which is equal to dS1/dyl, will be a periodic function ofy,, with period An, 
and thus will be expandable in sines and cosines of multiples of_y,/2. 

As soon as_g, increases by 2n, the root will change sign so that the series 

will contain only odd multiples of_y,/2. The function vanishes twice. 

If, in fact, y° is the value ofj, that corresponds to the maximum of Fu 
then the function dSx/dyx will vanish for = y° and for;^ = y° + 2n. In 

that case, irrespective of the value of the constants C3, C4,. . . , Eqs. ( 19.4) 

show that 

dS2 dS3 

dyx ’ dyx ’ 

are periodic functions of>>,, with period 2n\ however, these functions can 

become infinite for 
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yi=A or yx=y°x+2ir. 

Nevertheless, we know that we can select the constants C3,... in such a 

manner that this case will not occur. The existence of the solid-line curve 

in Fig. 8 proves this sufficiently. Let us see how to make this choice. 

If we assume that the constants with odd subscripts 

C3, C5, ..., 

are zero, then Eqs. (19.4) will not change on changing yjjt into — yfjx. 

It follows from this that, if the function 

dS, dSx dS2 
+ VÂ* -j2^ , 

dy 1 dyl dyx 
+ W/* 

dS3 

dyx 
+ • 

satisfies our equation, this will be the same for the function 

dSo 

dyx 

These are the two solutions of Eqs. (19.4), and it is obvious that pas¬ 

sage from one to the other is done by changing JJi into — v7l- However, 

Eqs. ( 19.4) will also remain unaltered on changing^, into^ + 2ir. Thus 

it is also possible to pass from one solution to the other by changing yx into 

yi + 2^- 

This leads to the following consequence: 

On changing yx into yx + 2n, the functions with even subscripts 

dS2n/dyx will not change and the functions with odd subscripts 

dS2n + ! /dy2 will change sign. 

Nevertheless, since dSx/dyx vanishes for_y, and for 

yx =y°x + 2tt 

I— dS ! dS2 I— dS3 
+ —Mu — + ••• • 

dyx dyx dyx 

and since this derivative enters as a factor on the left-hand side of Eqs. 
( 19.4), it might happen that 

dS2 dS3 

dyx dyx ’ 

becomes infinite for -f Ikir, which actually takes place if the con¬ 
stants C4,. . . are not properly chosen. 

However, it is possible to make this choice in such a manner that the 
functions dSp/dyx still remain finite. 

To demonstrate this, let us consider the equation 

F 
dS 

dyx 

which can be written in the form 

= C, 

= c. 
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If we consider x, and yx as the coordinates of a point, this equation repre¬ 

sents a curve. Let us postulate that this curve has a double point; this 
results in 

dF 

dxx 

which can also be written as 

dF 

dy>\ 
= 0, 

dFn dF i i ..2 dF2 
+ F ~rJ' +11 

dxx dxx 

dF, dF, 
—- + fi—- + 

dxx 

dF3 

dyx 

+ ■ ■ ' — 0, 

+ ' ■ ' — 0, 

(19.5a) 

dy i dyx 

since F0 does not depend on_y,. 

Let us solve Eqs. ( 19.5a) for xx and yx. At ^ = 0, we find 

"l * y i "fx- 

The functional determinant of Eqs. (19.5a), for /x = 0, xx =x°x, yx 

= y°x, can be written as 

d2F0 d2Fx 

dx\ dy\ 

and, in general, is not zero. Therefore, one can solve Eqs. (19.5a) and one 

will find that xx and yx can be expanded in powers of fi. Let, then, 

xx=a, y | = /?, 

be the series obtained in this fashion. The expression 

F{a,/3) 

obviously can be expanded in powers of /*. Let then 

F(a, P) = C0 + C2 + C4 fi~ + (19.6) 

be this expansion. We state that, if the constants C2p in Eqs. (19.4) are 

assigned the values derived from series ( 19.6), the functions dSp/dyx will 

remain finite. 

To demonstrate this, let us put 

xx=a + x', yx=0 + y. 

F{xx,yx) =F(a,/3) + F' 

and consider the equation 

F\x',y’)= 0, 

which has the same form as Eq. (19.2). Consequently, we can treat it in 

the same manner, meaning that we can put 
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dS' ,-dS\ 
— + ■ 

+ ... 
dy' dÿ 

and determine the functions dS'p/dy' by Eqs. ( 19.4') analogous to Eqs. 

( 19.4) which will differ from the latter only by the fact that the symbols 

are primed. However, the constants Cp will all be zero and, for 

x' =y' = 0 

we will have 

F' = 
dF' dF' 

dx' dy' 
= 0. 

Thus if F' is considered as being expandable in powers of x' and/, the 

series will start with terms of the second degree in x' and /, no matter 

what p might be. The expansion of F'0, F\, .. . will thus also start with 

second-degree terms. It follows from this that, if one considers the func¬ 

tions d> on the right-hand side of Eqs. ( 19.4a) as being expandable in the 

vicinity of/ = 0 in powers of/ and of dS'p/dÿ, then the series will always 

start with second-degree terms. 

One sees immediately that dS [ /dy' vanishes for / = 0. Thus it could 

be feared that dSp/dy' might become infinite for / = 0. Far from this, 

however, we can actually state that for this value of / the function 

dS'p/dy' is zero. 

In fact, let us assume that this holds for 

dS[ dS 2 dSp-i 

dy' dy' dy' 

I now say that this will be valid also for dS'p/dÿ. 

Let us consider the equation 

„ ds\ ds: 
Fq—-—^ = 

dy' dy' 

where Fq denotes the second derivative of F'0. Here, d> can be expanded in 

powers of / and of dS [ /dy', ...,dS'p_1 /dy'. Since / = 0 is a single zero 

for these various quantities and since the expansion of <t> starts with sec¬ 

ond-degree terms, / = 0 will be a double zero for d>. 

This will be a single zero for dS [ /dp'. 

Thus it will be a single zero for dS'p/dy'. 

We thus find 

x' = 
dS' 

dy' 

S — S o + yf/ü, S \ + pS 2 + S 0=0. 

Q.E.D. 
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We deduce from this 

*i = a + 
dS'{ yx — p) 

dyx 
(19.7) 

Here, S'{ yx — /3) represents the function S' where the argument^' has 

been replaced by the argument yx — p. Let 

a = a0 + pax + p2a2 + •••, 

P — Po + l^P\ + fJ-2p " + • • •, 

dy i dyl 

be the expansions of a, /3, and xx, so that, on equating the two sides of Eq. 

( 19.7), we obtain 

dSo 

dyx 
= a, 

dS, dS[(yx-/30) dS7 
0* 

dS3 _ dS 3 

dyx 

d2S[ 

dyx 

dS, 

= «i + 

dy i ‘ dyx 
, — a2 + , 

«Vi 
Pi 

d2s; 
(19.8) 

In the derivatives of 5^, the term / must be replaced by the argument 

y[ -P°- 
It is thus obvious that the function dSp/dyx remain finite. 

Once we have demonstrated the feasibility of determining the con¬ 

stants Cp in such a manner as to prevent the functions dSp/dyx from 

becoming infinite, this determination can actually be performed without 

having to search first for the expansions of a and of /3. 

It is sufficient to make use of Eqs. ( 19.4) here. 

Let us consider one of these equations 

dSx dSp_ | 

dyx dyx 
= <& + Cp. 

If p is even, we will take 

-o(tf), 
and, since <î> is a periodic function with period 2tt, we will also have 

Cp= -a>(y?+ 277), 

such that dSp_ x/dyx will become infinite neither for yx = y°x nor for yx 

= y°i + 2tt- 

If p is odd, it is necessary to set Cp — 0, and the condition 

<P(y°x) =0 
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which entrains the condition 

<t>( y°x + 2n) = 0 

since changes sign when y, increases by 2v] will be satisfied identically. 

From this it also follows that dSp_ x/dyx never becomes infinite. 

Finally, it results from this that dSp/dyx can be expanded in sines and 

cosines of multiples of yx if /? is even and in sines and cosines of odd 

multiples of yx/2 if p is odd. 

We have dwelled at some length on several points that are rather self- 

evident since we wish to discuss a similar but much more difficult problem 

later in the text, of which we attempted to demonstrate the analogies here. 

201. Let us see now how to pass from the first case, namely, from the 

case in which 

F'0{x°x)^ 0 

and in which the methods of no. 125 are applicable, to the second case in 

which 

F'q (x? ) = 0 

and which will be studied here in some detail. 

Let us note first that F'Q (x° ) is the same term that we had denoted by 

— n° in no. 125 and in other portions of this book. Now, putting 

dS dS0 dSx , 2 dS2 

dyx dyx dyx ^ dyx 

we find a series of equations of the form 

+ ••• 

n dSD 
n°x —= O + C . (19.9) 

dyx 

As already explained in no. 125, Cp can be determined arbitrarily. We 

assume that this is done in such a manner that the mean value of <I> + Cp is 

zero, and consequently that Sp will be a periodic function of j>j. 

It is obvious that, in the expansion of dSp/dyx, various powers of n°x 
enter the denominator such that, if n°x is small, certain terms of dSp/dyx 
may become perceptible. We must first of all consider the maximum expo¬ 

nent that n°x might have in the denominator of the various terms of 

dSp/tdyx. 

I say that this maximum exponent is equal to 2p — 1. 

In fact, Sis a function ofy, on the one hand and of the parameter p and 

of the integration constant x° on the other hand. We are disregarding the 

constants Cp, which are wholly determined by the conditions 

Fq(x°\ ) = C0, 
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which is the mean value of 

(<*> + Cp) =0. 

Instead of x°x, we can also take rt°x as constant of integration. In that 

case, S will be a function of , of/z, and of n°x. Let us expand this in powers 

of/x and «°. The series will contain negative powers of n°x. 

The equation 

= > + c, 
dy i 

demonstrates that the expansion of dSx/dyx in ascending powers of n°x will 

start with a term in \/n°x. 

Let us now pass to the equation 

o dS2 
M , 

dy i 
<I> + C2. 

Here, d> will depend on dSx/dyx. However, d> is obtained by replacing the 

variable xx = dS /dyx in F by the expansion 

dSn dS, 
-- dy i dy i 

and retaining in the expansion all terms in /x2, one thus finds that 4> can 

contain dSx/dyx to, at most, the second power since the cube of dSx/dyx 

would have to be accompanied by the factor yd and thus could not yield a 

term in /z2. 

Consequently, the expansion of d> and thus also of C2 will start with a 

term in 

and, finally, that of dS2/dyx, with a term in 

The rule is clear: The expansion of dSp/dyx starts with a term in 

In fact, let us assume that this holds for 

dSx dS2 dSp_ i 

dyx ’ dyx dyx 

I say that it then also holds for dSp/dyx. 
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Let us now consider the equation 

»? 
dSp 

dyx 

Here, d> is a polynomial in 

dSt dS2 

dyx ’ dyx 

= <1> + CD. 

dSn 

dyx 

Let us consider any term u of this polynomial and let us attempt to 

evaluate the sum of the indices q of various factors of the form dSq/dyx 

that enter into u. 

Since this term u is derived from a term in ju2 in the expansion of 

r(dS0 , dSx 
I + --h 
\dyx dyx 

this sum can at most be equal to p. In addition, if this sum is equal to p and 

since none of the indices q is equal to p, the considered term u will contain 

at least two factors. 

The expansion of u in powers of n°x will start with a term in 

1 

However, 

If 

2 (2q- 1 )<2p — 2; 

and if 

we will also have 

£ (2?-l)<2p-2, 

since at least two factors are present here. 

Thus, the expansion of and consequently also that of Cp will start 
with a term in 



CHAPTER 19 § 201 603 

(ir 
while the expansion of dSp/dyx will start with a term in 

_LYP~1 

»? J 
Q.E.D. 

However, since n'? is an arbitrary constant, let us replace it by some 

expansion 

n°i =a0+jual + fi2a2 + ••• . 

Then, 5 will be expanded in positive powers of //, as well as in negative 

and positive powers of 

a0 + /iax +ju2a2 + 

If a0 is not zero, these positive and negative powers can themselves be 

expanded in positive powers of /z such that, finally, S will have been ex¬ 

panded in positive powers of /z. 

These expansions, according to the statements made in no. 125, are the 

same as those one obtains by starting from Eqs. ( 19.1 ) but assigning, to 

the constants Cp values differing from those given them above. 

Now, instead of this, let us assume n°x to be very small and let us replace 

«° by a series of the form 

n° = aqV/7 + a2fi + + •• • . (19.10) 

This time, the negative powers of 

ax4ti + a2ju + ••• 

can no longer be expanded in positive powers of V/7, whereas 

(n°x)2p-1 

can be expanded in positive powers of V/7 and the series will start with a 

term in V/7. 

If, according to our above discussions, we now note that S can be 

expanded in powers of 

»? («?)3 («?) 
2p- 1 

11 > 

it can be concluded that S is expandable in positive powers of V/7. 

The series obtained in this manner do not differ from those obtained in 

the preceding number by means of Eqs. ( 19.4) and by assigning diverse 

values to the constants Cp. 
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To avoid confusion, we will use 

S' = S,0+/z5’1 +/j,2S2+ ••• (19.11) 

for representing the series obtained when starting from Eqs. (19.9), in 

which the constants Cp—as mentioned above—are determined in such a 

manner that the mean value of 4> + Cp becomes zero. 

For the moment, let us represent by 

S — T() -\r \IJï T] }xT2 + T3 + (19.12) 

what one obtains on replacing n° in Eq. ( 19.11 ) by its expansion ( 19.10) 

and by arranging the series in powers of y[Jx. 

What do the terms To, Tu etc. then represent? 

The term T0 will be obtained on replacing the constant «° in S0 by zero. 

The term Tx will be obtained in the following manner: To show expli¬ 

citly that S0 depends on «° we write S0(n°). We have found 

S0(n°) =x°x yu 

So(0) = To. 

This yields 

S'oint ) = S0(a^ + oc2 + ■ ■ ■ ) = T0 -or, + • • • 

dn\ 

or 

dx° I— 
S0(n°) = T0 + a'yi^+--- = T0-^yl + ---, 

dn\ Fq 

where Fq has the same significance as in Eqs. (19.4) of the preceding 
number. 

On the other hand, in T, we will have terms arising from Su S2,... ; 
these are obtained in the following manner: 

In series ( 19.11 ), we will take all terms in 

FP 
(„0)2p-i • 

Let 

s\ Ar + s; 
(«?): 

+ ^3 
F 

(n°y 
+ 

be the collection of these terms. 

We will then have 

Tx 
a\y\ s 1 ^2 

Fq ax a3x a\ 
+ ... 

(19.13) 
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From this it follows that, if one groups all terms in // p/(n°x )2/>~ 1 in 

series ( 19.11 ), i.e., all those terms belonging to expansion ( 19.13), and if 
one forms the square of 

dT a, 1 dS\ l dS'2 
-=-L _|-L _|-L + • • • , 
dyi F'q ax dyx a\ dyx 

then this square will reduce to two terms 

/ dTx y _ _al_2_ dSj_ 

V dyi / F"2 F'q dyx 

This result is even more remarkable in that it can be extended, as will be 

demonstrated below, to all equations of dynamics. 

To obtain T2, it is necessary to consider not only S0 and all terms in 

FP 

(tj° )lp~ 1 ’ 

but also terms in 

FP 
(n°)2p-2’ 

To summarize, in passing from the case where the methods of no. 125 

are applicable to the case where they no longer are applicable one proceeds 

as follows: When n°x is very small, the order of magnitude of a given term 

no longer depends only on the exponent of /z but also on that of «°. If one 

supposes that n°x is of the same order as V/7, one combines all terms which 

thus become of the same order and sums them. 

202. All these results can be extrapolated directly to the more general 

case which we had considered at the beginning of no. 199. 

Let us first assume that F depends on xx, x2,... ,xn, and>q. We next 

will have to consider the equation 

^(dS dS dS \ ^ M(n,. 
F — ,y, = const. (19.14) 

\dy i dy2 dyn ) 

For integrating this equation, we will assign to 

dS dS 

dy2 ’ ’ dyn 

any constant values 

X°n,y\ = C, 

yielding an equation 
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of the same form as that discussed in the two preceding numbers. 

However, the solution S, instead of containing only one arbitrary con¬ 

stant , will contain n such constants, which will be x°{, x2,..., x°n. 

If now the fundamental equation is written as 

^(dS dS dS , , . \ r nQK, 
F[ — , miyl -f m2y2 + ••• + m„ yn = C, (19.15) 

\dy i dy2 dyn ) 

it will be easy to restore it to the form of Eq. ( 19.14). In fact, let us put 

mji + m2y2 + ■■■ +mnyn =y[, 

m\ yx + m\ y2 + ••• + m2n yn =y'2, 
(19.16) 

m" yx + mn2y2 + ■ • • + mnnyn =y’„, 

where are integers chosen in such a manner that the determinant of the 

coefficients of Eqs. (19.16) becomes equal to 1. This is always possible 

provided that m„ m2, . . ., mn are relatively prime, which it is always 

permissible to assume. 

The partial differential equation ( 19.15) will then become 

r(dS dS dS ,\ _ 

\dy\ dy2 dy'n ) 

and thus is reduced to the form of Eq. ( 19.14). 

All statements made with respect to equations of the form ( 19.14) can 

be applied also to equations of the form (19.15). 

We can find solutions of Eq. (19.15) which are expandable, like those 

of Eq. ( 19.14), at times in powers of [x and at times in powers of yf/u. 

For fx = 0, S reduces to 

So = A yt + A y2 + ■ ■ ■ + y„. 

The complete solution of the partial differential equation (19.15) must 

contain n arbitrary constants. As arbitrary constants, we could take , 

x°,.. ., x°n or else n°, n2,..., n°„ by putting 

However, it is more convenient to introduce an infinite number of 

arbitrary constants among which only n distinct constants will exist. 
These constants will be 

ni’ n2* • • • > nni C0, Cj, C2, . . . , Cp, 

by equating the right-hand side of Eq. ( 19.15 ) to 

C = C0 T Cj fx -(- C2 /x~ -f- • • • . 
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If 

"*i«? + m2n°2 + • • • + mnn°n ^0, 

then 5 can be expanded in powers of n\ if, conversely, 

"*i«i +m2n°2 + ••• + m„«° =0, 

then 5 can be expanded in powers of yf/ü. 

Specifically, let us assume that, assigning any values to n°x, n°2,.. ., n°„, 
one chooses the constants Cp such that 

s - «1 y\ - «° y2 - • • • - n°„ y„ 

becomes a periodic function of y. This returns us to an expansion that 

corresponds to that of the beginning of the preceding numbers, derived 
from Eqs. ( 19.14) of the present number. 

In this expansion, various powers of 

mxn°x + m2n°2 + ••• + mnrt°n, 

will enter the denominator. 

Let us next replace the constants of integration n° by various expan¬ 

sions in powers of yfji. 

For example, let 

n°i = «° + yf/ii a) + ixa] + • • • . 

We assume that 

mxa° + m2a°2 + ■ • ■ + mna° = 0. 

From this it results that the expansion of 

mxn°x + m2n°2 + • • • + mnn°n 

will start with a term in yfji. 

If the terms of S are then arranged in positive and ascending powers of 

V/7, we obtain various series analogous to those studied in detail in no. 201. 

203. It is now easy to understand the basic principle of the Delaunay 

method. 

Let us return to the general case of the equations of dynamics. Conse¬ 

quently, let us assume that our function 

F= F0 + nFx + /u2F2 + ■ • ■ 

no longer depends only on mx yx + m2y2 + " ' + rnn y„ but also on n 

arguments yx, y2, .. ., yn and that it is periodic with respect to these 

arguments. 

If none of the linear combinations with integer coefficients 
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m,«° + m2n°2 -f • • • + m„n°n 

is very small, the methods of no. 125 can be applied without difficulty. 

However, if one of these combinations is very small, one separates in F the 

terms depending on the argument 

mxyx + m2y2 + + m„ yn . 

Here, F is assumed as expanded in a trigonometric series, i.e., in a se¬ 

quence of terms each of which is the product of 

cos(+p2y2 + ••• +Pn yn) 

or 

sin( px y\ +p2yi+ ••• +pn yn) 

{p being integers) and coefficients that are functions ofx„ x2, . . ., xn. 

Let us consider the terms that are such that 

Pi _ P2 _ . . . _ Pn 

m, m2 mn 

and let 

F' — F'q +pF\ + ••• 

be the ensemble of these terms. 

These terms will specifically comprise all terms of F that are indepen¬ 

dent of^!, y2,. .., y„ and, for example, all terms of F0, such that 

F'o = F0. 

Let us now consider the equation 

r,(dS dS dS , , \ ^ 

\dyx dy2 dyn ) 

This can be readily integrated with the aid of the procedures discussed 

in the first portions of this chapter. 

Let 

S = x[ yl + x'2y2+ ••• +x'nyn +5" 

be one of the solutions of this equation. The coefficients x[,x2,. . ., x'n are 

the constants of integration which had been denoted until now by x° but 

which will here be denoted by x[ since they will later be used as new 
independent variables. 

So far as S' is concerned, this is a periodic function of 

™\yi + m2y2+ ••• +mnyn , 

which, in addition, depends on x[, x2,.. ., x'n, in such a manner that the 

mean-square value of dS /dyx is nothing else but x[ and that the expression 
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of S considered here does not differ from that obtained from Eqs. ( 19.14) 
of no. 202. 

Let us now put 

dS , dS 
X‘=~T> ^=T7- dyt dx\ 

Let us take x- andy' as new variables. The canonical form of the equa¬ 

tions will not be altered. The function F, expressed as a function of x- and 

of_y' will retain its form; only the coefficients of the terms in 

mxy[ +m2y'2 + ••• +mHy'n 

will be much smaller than those of the corresponding terms in 

mxyx + m2y2+ ••• + mnyn. 

The long-period inequalities will have vanished since, in all, they have 

been taken into consideration ever since the first approximation. 

Bohlin Method 

204 The drawback of the Delaunay method is the fact that it requires 

numerous changes of variables. This inconvenience can be avoided by a 

process devised by Bohlin, which I had also suggested, but a few days after 

Bohlin. 

Let us return to our general equations 

dx, _ dF dyt _ dF 

dt dyt ’ dt dxt 

and let us assume that the expression 

mxn° + m2n2 + • • • + mnti°n 

(19.17) 

is very small. 

It is now a question of integrating the equation 

^(dS dS dS 

\dyt dy2 dy„ 
yn) = c. (19.18) 

Let us put 

•S' = S0 + S1^[JÏ + S2 fu, + S3 [Ayljï + ■ ■ ■, 

C = C0 + C2 fi + C4 fj? 

Let us substitute these values into Eq. ( 19.18 ), arrange it in powers of yfjü, 

and equate the coefficients of all similar powers of yf/ü. From this we 

obtain 
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Fn(dSodSo ^dSo\ = Co. 
dy>\ dy2 dyn 

^ dF0dSl _ 

^ dx, dy, 

y dFodS2 + j_Y d2F0 dS\ dSt = ^ + q 

^ dx, dyi 2 ^ dx,dxk dy, dyk 

ydFodS3 + ]_y d2F0 dSl dS2 = ^ 

^ dxt dy, 2 ^ dx,dxk dy, dyk 

dF0dS4 | 1 ^ d2F0 dSx dS3 _^ | 

^ dXj dyt 2 ^ dx,dxk dy, dyk 

(19.19) 

The meaning of these equations is as follows: 

I still denote by $ any known function, and I assume: in the third 

equation of system (19.19) that S0 is known; in the fourth equation of 

system (19.19) that S0 and S', are known; in the fifth equation of system 

( 19.19) that S0, S„ and S2 are known. 

The right-hand side contains sometimes <I> and sometimes 4> + C2p 

since we had assumed that the constants C with odd subscripts, i.e., the 

coefficients of odd powers of yf/u in the expansion of C, are zero. 

It is then necessary to define the meaning of the sign 1 in the second 

term on the left-hand side of the various equations of system (19.19). This 

sign extends over both indices i and k. It must be agreed that, in the third 

equation of system (19.19), the combination (i,k) appears twice if i*tk 

and once if i — k and that, in the other equations of system ( 19.19), this 

combination appears twice in all cases. 

As above, we will assume 

dS, o _ vo 
— Ai> 

dy, 

where x° are constants. In the derivatives of F0 appearing in the equations 

of the system ( 19.19 ), it has been assumed that x, have been replaced by x° 
in such a manner that 

dFo 

dx, 
= - «7 

We will assume in addition that x° can be chosen such that 

X min°i = 0 (19.20) 

and that no other linear combination with integral coefficients exists 
among the n°. 
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Let us try to determine S' in such a manner that 

dSn 

dy, 

will be periodic functions of_y, . 

The first equation of system (19.19) simply determines C0; the second 

equation is written as 

X»?^=o, 
dy, 

(19.21) 

and can be satisfied only if the dSx/dyt are functions of 

m, y\ + ”*2 Pi + ' ' ' + rnn yn alone. If S„ for example, were to contain a 
term 

A cos ( P \ y \ + ••• +p„ yn), 

then the left-hand side of Eq. ( 19.21 ) would contain a term 

— A( pxn°x + ••• +/>„H°)sin( pxyx + ••• +pn y„) 

which could not vanish unless 

m, 
Pi 

m, 

Pn 

m„ n m2 

Consequently, we will have 

Sl=alyl+a2y2 + ■■■ +anyn +f(mlyl + m2y2 + • ■ • + m„ yn), 

where the derivative of/is periodic. 

Let us now pass to the third equation of system (19.19) and, let us 

equate all terms on the two sides of this equation that depend on the sines 

and cosines of multiples of 

mxyx + m2y2 + •■■ +mnyn. 

The first term on the left-hand side, which can be written as 

dy, 

will not contain such terms; if S2 contained a term 

A cos(P \y\ + ••• +pn yn), 

where 

'i __ Pi _ _ Pn 

m, m2 mn 

then the corresponding term of the expression 

O ds2 
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would be written as 

^A(pxn°x + ••• + pnn°n ) sin ( px yx + + p„ yn) 

and would vanish because of relation ( 19.21 ). 

The second term on the left-hand side, conversely, depends only on Sx 

and is a function of m, yx + • • • + mn yn alone. Thus all these terms con¬ 

tain only sines or cosines of multiples of 

mxyx + m2y2 + ••• +mnyn. 

Let us now introduce a new notation: 

Let U be some function whose derivatives dU/dyt are periodic func¬ 

tions of U. This can be expanded in a series all of whose terms will have one 

of the following forms: 

a,y„ acos(pxyx + p2y2 + ••• +Pnyn), 

a sin( px yx +p2y2+ ••• + p„ yn)- 

Let us eliminate, in this series, all trigonometric terms except those for 
which 

£l = I^=_Pn 
mx m2 mn 

The remaining ensemble of terms could be denoted by [ U] and could be 

called the mean-square value of U. 

Then, we will have 

dU _d[U] 

. dyt dyx 

d[U] 

dyt 
— const. 

and, if V is some periodic function, 

Thus we obtain 

[ V] 
dir 

-dyt. ' 

o dS2 

dy. 

dSx dSx 

= const., 

_dSx dSx 

dy< dyk dyt dyk 

[*]= -W. 

(19.22) 

In Fx, we assume that the terms x, have been replaced by x°t. The 

function <I> entering the third equation of system (19.22) is that of the 
third equation of system (19.19). 

The constant on the right-hand side of the first equation of system 

(19.22) can be denoted by C2 — C2. 
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Then, equating the mean values on both sides of the third equation of 
system ( 19.19 ), we will find 

i 
5 2 

d 2F0 dSl dSt 

dx,dxk dy, dyk 
= C^-[Fl]. (19.23) 

This equation has the same form as those studied in nos. 199-202 and, 
specifically, the same form as the second equation of system ( 19.4) in no. 
200. 

Therefore, as in the case of this second equation of system ( 19.4), we 
will obtain three different cases. 

Let us recall that 5, is of the form 

Si =«1^1 + a2y2 + ••• +an yn +Arnly1 + m2y2+ ••• +mnyn), 

whence 

dSt 

dyt 
= <*i + mif. 

Let us substitute this value of dSl/dyj into Eq. ( 19.23). This equation 
then becomes an equation of the second degree with respect to/', so that 
we can write 

Af'2 — 2Bf + 2) = C 2 — [iq ], (19.24) 

where A, B, and D are constants depending on the constants a,. These 
latter constants a can be arbitrarily chosen. 

So that /' and thus also dSx/dy may be periodic functions of mxyx 
+ m2^2 + ‘ ‘ ‘ + mn yn> it is necessary and sufficient that Eq. ( 19.24) 

always have its roots real, i.e., that the inequality 

B2-AD + AC'2 -A [E,] >0, 

be satisfied for all values of 

mji +m2y2+ ••• +mnyn. 

Since the constants a, are arbitrary, we will take 

«I = «2 =•••=«„= 0. ( 19.25) 

This does not restrict the generality, as will be shown below. 

Incidentally, we could obtain exactly the same result by assuming 

a\ _ a2 _ _ an 

m, m2 mn 

since, if this condition is satisfied, the expression 

«1^1 +«2^2+ ‘ " + an yn 

becomes a function of m, yx + ■ " + mn y„ alone, which can be included 

in/ 
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However this might be, if the conditions ( 19.25) are assumed as satis¬ 

fied, Eq. ( 19.24) is simplified and can be written as 

Af'2 — C2— [F,]. (19.24a) 

Let us then assume that one constructs curves for various values of the 

constant C 2 by taking as radius vector/' plus any constant and as polar 

angle 

mxyx + m2y2 + * • • + mn y„ ; 

one obtains a pattern completely similar to that in Fig. 3. 

To be specific let us assume that^l is positive. Then, if/' is to be period¬ 

ic, it must it remain real, meaning that C 2 must be larger than the maxi¬ 

mum of [FJ. 

In this case,/' and thus also dSx/dyi is a periodic function of mxyx 

+ m2y2 + • • • + m„ yn which never vanishes. 

Having thus determined Sx it is now a question of determining S2. This 

function must be of the form 

«î y i + «2 y2 + ’ • • + a2„ yn + cp, 

where cp is periodic; in general, Sp must be of the form 

« \ y i + « 2 y2 + ■ • • + « n yn + <p, 

where q> is periodic. For simplification, we will assume 

_a/ 

m, m2 mn 

which, as demonstrated below, will not restrict the generality. 

We have 

(19.26) 

y «?— 
^ dyt 

— c ' — c (19.27) 

which is an equation analogous to the first equation of system (19.22). If 

conditions (19.26) are satisfied, we will have C'p — Cp and, specifically, 
C'2 - C2. 

After this, let us return to the third equation of system ( 19.19) which, 

now that we have C2 and that is wholly determined, can be written in 
the form 

.o dS2 

dy< 
= o. 

The known function 4> is periodic in yx,y2,. . 

Thus let 
• ,yn- 

= cost pxyx +p2y2+ ••• +p„ yn +P), 
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so that Eq. ( 19.27) will yield 

5 = y A *in(P\y\ +p2y2+ ••• +pn yn + ff) 

^ Pin0, +p2n°2 + ••• + p„n°n 

+ + m2y2 +•••+«„ y„), 

where \p is an arbitrary function of m, yx + m2y2 + • • • + m„ yn. This 

solution will become illusory if, for any term of 4>, we had 

Pl»°l + ^2«2 + ••• + Pn*°n =0, 

i.e., 

Pi   Pi  ...  Pn 
m, m2 mn 

However, this cannot happen since 

[4>] = 0. 

In fact, we have exactly determined S', in such a manner that the mean 

values of both sides of the third equation of system ( 19.19) are equal. This 

must thus be the same for both sides of Eq. (19.27) which differs from the 

third equation of system (19.19) only by the fact that certain terms have 

been transposed from one side to the other. 

However, 

2>? 

o dS2 

dy>i 
= 0, 

since C 2 = C2. 

Consequently, 

m =o. Q.E.D. 

To find the value of S2, it is necessary to determine the arbitrary func¬ 

tion 

rP= [<S2], 

For this purpose, let us equate the mean values on both sides of the 

fourth equation of system (19.19). Because of relations ( 19.26), we ob¬ 

tain 

0 dS. 

dyt 
= o, 

and, in addition, 

d2F0 dSt dS2 d2F0 dSi d[S2] 

dx,dxk dy, dyk dx,dxk dy, dyk 
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since depends only on m, _y, + m2y2 + " ' + mn y„. Thus we have 

1 V d2fo d [S*2] = 

2 ^ dx,dxk dyt dyk 

If, by [S'2 ], we denote the derivative of [S'2] with respect to 

mly] + -• + m„ yn, 

we obtain 

and can write 

dSi ,, 

dy, 

d[S2] 

dyk 
= mk[S'2], 

1 ^ d2F0 

2 ^ dxtdxk 
m,mk[S'2] 

[O] 

/' 

Since /' does not vanish, [ST ] is a periodic function of mxyl + ••• 

+ mn yn which does not become infinite, while [S^] will have the form 

a{mxyx + • • • + m„ yn ) + ip, 

where a is a constant coefficient and ip is a series developed in sines and 

cosines of multiples of mxyl + m2y2+ • • • + mn yn. 

Since S2 is thus wholly determined, the fourth equation of system 

(19.19) can be written as 

dy, 

it takes a form completely analogous to that of Eq. ( 19.27) and can be 

treated in exactly the same manner; and so on. 

We stated above that the hypotheses ( 19.25) and ( 19.26) do not re¬ 

strict the generality. 

In fact, let us consider a solution of our fundamental equation con¬ 

forming to these hypotheses ( 19.25) and ( 19.26). Let Sbe this solution 
and let 

S — S0 -|- T /^S2 T ‘ ' ' • 

Moreover, let 

S0 = A yx + x°2 y2 + • • • + x°n yn, 

and 

SP = aPi y\ + aP2 y2 + ' " + ah yn + periodic function. 

By virtue of the hypotheses (19.25) and (19.26), the terms a satisfy 
the condition 
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m, m2 mn 

and, in addition, are functions of the integration constants x° and Cp. 

Since the x° are arbitrary constants, they can be replaced by any expan¬ 
sions 

x°i = + 'JJ1 P ! + M P / + ' ‘ ‘ . 

where (3 f are new arbitrary constants. 

If, in S, we replace the x° by these expansions and then again arrange 

the series with respect to powers of V/7, we obtain 

S = S o + V/7S [ T jiS 2 + ■ ■ ■, 

where 

S’p = a\pyx + a’2py2 + • • • + a’npyn + periodic function, 

which means that we will have been able to select/3 pt in such a manner that 

the constants a\p are any constants. 

Consequently, our hypotheses have produced no basic restriction of 

the generality. Q.E.D. 

Case of Libration 

205 . What will happen now if C2 is not larger than the maximum of [E, ] 
and if, consequently, aS, is not always real? In these cases, in which one 

says that there is libration, certain difficulties occur which can be over¬ 

come by an artifice analogous to that used for the elliptic functions in no. 

199. To simplify the presentation somewhat, we will assume that 

ml = 1, m2 = m3 = ■ • • = mn = 0. 

We are entitled to do so since, if this were not the case, a change of 

variable analogous to the change [Eq. ( 19.16) ] in no. 202 could be made. 

It is no longer possible to arrange matters such that dSp/dyt are period¬ 

ic functions ofyx, y2, ... ,y„. However, we can at least attempt to find a 

function S such that the terms dSp/dy, be periodic functions of 

y2> y3> ■■■> yn- 

Then, what we denoted by [ U] in the foregoing number is nothing else 

but the mean value of U, considered as a periodic function of y2, y2,..., 

yn- 
This will yield 
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Zn‘ 
0 dSp 

dyt . 
= const, (19.28) 

and, in fact, 

1
-

 

frf 
^
3

 \dSp 1 

^
3

 
1
_

 -
1

 (N 

> 
■ dy3 . 

, ... y 

. dyn . 

will reduce to constants, while, on the other hand, the relation 

Xm</,? = o 

reduces here to 

n i o = 0, 

such that the left-hand side of Eq. (19.28) contains no term in [dSp/dyx ]. 

It can be assumed that not only the terms dSp/dyx but also the Sp (at 

least forp > 0) are periodic funcitons ofy2,y3,... ,y„. This is a hypothesis 

identical to the hypotheses ( 19.25) and ( 19.26) of the preceding number 

which, as we have seen, do not restrict the generality. If this is admitted, 

the constant on the right-hand side of Eq. ( 19.28) will be zero. 

After this, let us return to Eqs. (19.19) of the foregoing number. The 

second equation of this system indicates that 5, depends only on while 

the first equation, on equating the mean values on both sides, yields 

1 d2F0 

2 dx\ 
= C2 — [F,], (19.29) 

which determines Sv 

Taking Eq. (19.29) into consideration, the third equation of system 
(19.19) will become 

~ln°~r=[ Fi]-Ft. (19.30) 
dyt 

Since the right-hand side is a function of yx, y3, ..., yn whose mean 

value is zero, the application of an integration process, a procedure we 

have often made use of, will yield S2 to within an arbitrary function of 
meaning that Eq. (19.30) will define 

S2-[S2]. 

For determining [S2], let us take the fourth equation of system (19.19) 

and let us equate the mean values on both sides, so that 

d2F0 d[S2] dSx 

dx] dyx dyx 

From this, we will derive the value of [S2]. 

(19.31) 
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Knowing S2 and taking Eq. ( 19.31 ) into consideration, we can then 

write the fourth equation of the system ( 19.19) in the form 

_ V n° = q> 
^ dy, 

Since the mean value of <t> is zero, this equation, which is of the same 

form as Eq. (19.30), can be treated in the same manner, yielding 

S3-[S3] 

and so on. 

It is obvious that the functions dSp/dy, determined in this manner are 

uniform functions of.y, and of \IC2— [.F,] . 

206 To study our functions more fully, a change of variables must be 

made. For this, let us introduce an auxiliary function T, defined in the 
following manner: We will have 

T — T0 + Tly[JI + T2/-i 

and 

T0 = yx + x°2 y2 + • • • + x°n yn, 

where x° will be constants that satisfy the conditions 

F0 = C0, n\ = 0. 

In other words, T0 will be nothing else but what we had previously 

called S0. 

To define Tx, we will start from the same equation that had served for 

defining Sx, namely, Eq. ( 19.23) of no. 204 in which we will replace Sx by 

Tx and C 2 by C2, which yields 

— V d ^0 dTx aTx _ ç _ n 

2 Z dx^dxl dy,: dyk~ 2 
(19.23a) 

To this, we will add the following equations (where x\ are constants): 

dT\ , (■ 0 -, s 

—-— = x- (i = 2,3,...,«). 
dy, 

It should be noted here that, in postulating this latter hypothesis, Tx is 

defined in the same manner as that used for defining Sx above but deviat¬ 

ing from the hypotheses (19.25) which stipulated that the constants x' 

must be zero. 

Since the coefficients d 2F0/dx°i dx°k depend only on x°, they must be 

constants. Thus, if we replace the terms dTx/dyt by x', then Eq. ( 19.23a) 

will become 
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A +2b4L- + D=C2-[F1], ( 19.24b) 
\ dyi / dyx 

where A is a constant while B and D are two polynomials homogeneous 

with respect to x', with the first one being of the first degree and the second 

one of the second degree. From this, we derive 

dTx B + B2 . D c2 [BA 

dy, A A A + A A 

We will then put 

B2 D C2 

tt_7 + T 
= X 1 » 

and, for abbreviation, 

[BA =Ax/j, 

whence 

T\ = xi y2 + *3 y3 + • • • + <yn 

Next, we determine T2 by the equation 

2«?-^L = F,— [F,], 
dy, 

analogous to Eq. ( 19.27) of no. 204. 

This equation determines T2, as indicated above, to within an arbitrary 

function of .y,. Without inconvenience, we could make any choice here. 
For example, let us assume 

[T2] =0. 

We will put 

X = - ci- 

From this, the following will result: 

( i ) T2 is a periodic function of>,• which does not depend on x', since this is 

the case for Fx and for [iq ] where we simply had assumed that the x, were 

replaced by the constants x°. 

(ii) If, on the left-hand side of Eq. (19.18) of no. 204, the term 5 is 
replaced by T, this side will reduce to 

Q> + C,VyU + C2 fl, 

to within terms containing /uV/7 as factor; this is so since the functions T0, 

T\, and T2 satisfy the first three equations of system ( 19.19) except that, 
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in the second of these equations, the zero on the right-hand side must be 
replaced by C,. 

Let us now put 

_ dT _ o r ( B , r~>-A , dT2 
x\ — — xi + vAH-7 + v*! — $ ) + T ~— > 

dyx \ A ) dyx 

y i 
, _ dT _ V/7 

dx 

dT 

r_ = f dy, 

: 2 J ,rzrz - xp 
dT, 

xi = — = x° + x'Jn +T , - 

dy, dy, 

, dT r— yxy]Ji dB 
y\= — = ydt* ~zllrL— (; = 2,3, 

ax, T ax' 

(19.32) 

If x- and _y' as new variables are used instead of x, and _y, , then the 

canonical form of the equations will not be altered. 

Let us first study the third equation of system (19.32) in which y\, yx, 

and x\ enter. If x[ is considered as a constant and if we only vary_y|, I say 

that yx is a periodic function ofy[. 

It is here that the analogy with the use of the elliptic functions of no. 

199 becomes evident. In the specific case treated there, we had 

A = 1, \F, ] = cos yx, 

such that our third equation of system ( 19.32) becomes 

2 J ^JC2 — cos_g, 

The integral on the right-hand side is an elliptic integral so that cosjq 

and sin yx are doubly periodic functions of y[. However, two cases must be 

distinguished depending on whether 

C2 > 1 or C2 < 1. 

If C2 > 1, the real period will be equal to 

and if 

æ r 
2 Jo ^C2 — cos yx 

C2 = cos a < 1 

then the real period will be equal to 
4- a 

dy 



622 CELESTIAL MECHANICS 

In this particular case, y, is a uniform function of y\ for the imaginary 

values as well as for the real values of y\. However, in the general case, y, is 

a uniform function ofyj for only the real values, and, furthermore, cosy, 

and sin y, admit of a real period which is 

if x[ is above to the maximum of [iff]', and 

if x[ is below this maximum and if x[ — iff vanishes for y, = a and for 

yi = 13, remaining positive for a <y, </?. We should add here that, in the 

first case, y, increases by 2n when y\ increases by one period, whereas in 

the second case, i.e., in the case of libration, y, resumes its original value 

when y\ increases by one period. 

In the specific case of no. 199, not only are cosy, and siny, doubly 

periodic functions ofy\ but also yjC2 — cosy,. As for 

5, = J VC2 - cosy, dyv 

this expression increases by a constant quantity when y\ increases by one 

period. 

Similarly, in the general case 

Jx[ — xfr (and, consequently, M 
V dyx ) 

is a periodic function ofyj. This function, just asy,, also depends on x[ 

which plays a role analogous to that of the modulus in the case of elliptic 

functions. 

Before going further, let us note that the period of these various period¬ 

ic functions ofy, is proportional to yfji. 

It results from this that, in the case of libration, *,, x,,yv andy' — yi yf/x 

are periodic functions of y\. In addition, xx and x, depend ony, , but these 

are periodic functions, with period 2v, of these n — 1 variables. 

Thus, if we express the old variables x, andy, as a function of the new 

variables x' andy', it is evident that the terms x,, cos y,, and sin y, will be 

periodic functions of y'. The same will thus also hold for F, which is 

periodic, with period 2v with respect toy,. 

The period will be equal to 
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dy1 

^ 

for and for;;'. For abbreviation, we will put the period relative to 

y\ equal to P V/Î- It is obvious that Pis a function ofx\, just as the period of 

the elliptic functions is a function of the modulus. 

If we put 

y'i = 

whence 

2 
I 

dy i 

~ $ 
*i =yt - 

y i dB 

A dx\ 
(19.32a) 

then F will be a periodic function of z, ; the period will be P for zl and 2tt for 

the other z,; in addition, F will be a function of x\. This function will be 

expandable in powers of y[/ü. The first three terms of the series 

C0 + C | \[Ji + C2 f-i 

will be independent of z, and will be functions only of x'. The first term C0 

is an absolute constant; by definition, C{ is a linear function of x', indepen¬ 

dent of x[. Finally, we have 

D 2 

C2 = Ax[ + D-, 
A 

from which it follows that C2 is a polynomial of the first order with respect 

to the other x'. 

Let us now put 

F= C0 + F*4f, 

so that our equations become 

dx\ _dF* dzt _ dF* 

dt dzt ’ dt dx\ 
(19.33) 

Like the function Pin no. 125, the function P* is periodic with respect 

to the variables of the second series which here are the z, . 

However, two obstacles prevent the methods of no. 125 from being 

directly applicable to Eqs. (19.33). 

(a) The function P* actually is periodic with respect to z, except that, 

with respect to z„ the period no longer is Itt but P. 

To overcome this first difficulty, it is sufficient to make a minor change 

of variables. Setting 
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Ul=J 
P dx[ 

v, - 
2lTZ, 

2 TT ' P 

the equations remain canonical and are written as 

dux dF* dnx dF* 

dt dux dt dux 

dx\ dF* dzx dF* 

dt dZj dt dx' 

and this time F* is periodic, with period 2v with respect to 

(19.34) 

(19.35) 

Z2> Z3> • • • > Zn• 

(b) If we set /r = 0, then F* reduces to C„ and C, does not depend on 

all variables of the first series but only on 

X2 > X3 , • • • > Xn > 

since n°x is zero. Consquently, we do not have the conditions of no. 125 but 

rather with those of no. 134. We will demonstrate that the conclusions of 

that number are applicable. 

Indeed, the function corresponding to the function denoted by R in no. 

134 is here designated by C2. It is easy to see that C2 depends on x[, and 

thus also onW|, and depends only on variables of the first series. 

The conditions to render the theorem of no. 134 applicable here are 

thus fulfilled so that we can conclude that n functions 

w„ x'2, x'3, ..., x'n 

exist which depend on n variables 

vx, z2, z2, . . ., zn 

and on n arbitrary constants, and which satisfy the following conditions: 

(i) On substituting these in F*, the function reduces to a constant. 

(ii) The expression 

uxdv i + x'2dz2 + x3 dz2 + • • • + x'n dzn = dV 

is an exact deferential 

(iii) These n functions are periodic, with period 2tt with respect to 

z2t 23, . . • , Zn. 

Thus let us consider ux and x- as functions of vx and of z, , resulting in n 

relations between these 2n variables; let us then return to the old variables 

xt and yt over the intermediary of Eqs. (19.32), (19.32a), and (19.34). In 

this manner, we will obtain n relations between x, and y,. Solving these 

relations for x, will yield the termsx, as a function of^, , and it is clear that: 

(A) If, in F, the terms x, are replaced by their values as a function ofy,, 
then F will reduce to a constant. 
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(B) The expression 

X xidyi = dS (19.36) 

is an exact differential. 

This is so since, according to the form ofEqs. (19.32), (19.32a), and 
(19.34), the difference 

dS-indV 

always is an exact differential. 

(C) If the terms x, are expressed as functions of v, and of z,, then the x,- 

will be periodic functions of these variables. Similarly, if the x,- are ex¬ 

pressed as functions ofyt, these functions will be periodic, with period 2v 

with respect to y2, y3,...,yn. 

It results from this that the functions S, defined by Eq. ( 19.36), do not 

differ from those discussed in the preceding number since, in their defini¬ 

tion, we only used Eq. (19.18) of no. 204 and only the condition that the 

quantities dS/dyt be periodic with respect toy2, y3,... ,y„. 

Thus the two systems of equations 

u, = 
dV 

dvx 

xt 

and 

dT 

dyk 
Zv = 

dV _ f 

' dzt ’ U ' ) 

dT, 

P dx[ 

2lT 
V1 = 

2irzl 

(19.37) 

dxl 
(/ = 2,3,...,«), (/c = 1,2, ...,«) 

xt = 
dS 

dyk 
(19.38) 

are identical, provided that V satisfies the partial differential equation 

F* = const. (19.39) 
\dvl dzt ) 

and the condition that its derivatives are periodic with respect to y, and z, 

and that 5 is defined as in the preceding number. 

Here, V can be expanded in powers of V// and can be written as 

V— Vq yjjl Vx + /J. V2 + ■ ■ ■ • 

Each of the functions Vt can be written in the form 

Vj = I3)vx + I3]z2 + • • • +/7"z„ + V ', 

where V' is periodic and where the n constants /3 f, analogous to the 

constants at.k of no. 125, can be arbitrarily selected. Similarly, we have 

S = Sq T yfJlSx + 
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and we have seen that Sp still depends on arbitrary constants, which we 

have previously called a f. 

So that the two systems (19.37) and ( 19.38) be identical, it is naturally 

necessary—if determinate values are assigned to the constants /? f—that 

corresponding values must be assigned to the constants a f and vice versa. 

Thus to each function V there corresponds a function S and vice versa. 

However, in the previous numbers, we have subjected our constants a 1 

and thus also S to certain conditions, which are hypotheses ( 19.25) and 

( 19.26). If one wishes to remain restricted to this, it is necessary that the 

constants /? f also satisfy certain conditions which are easy to formulate. 

We will state here only that the terms x' must vanish with yfjü. 

Equations (19.37) and (19.38) permit us to express all our variables as 

functions of any n of these, so that we can assume that yx and xk are 

expressed as functions of 

vu yy* • • • > yn ■ 

Consequently, let 

y\ = 0(vvy2,y3,. .. ,yn ), 

*k =Ck(vvy2,y3,... ,yn). 

It is quite obvious that the functions 6 and Çk are periodic, with period 2tt 

with respect to each of the n variables on which they depend. 

Considering, for the moment,y2,y3,... ,y„ as constants and xx and_y, 

as coordinates of a point in a plane, we can visualize the equations 

yx = 0(vx), xl=^- = Çl(vl). 
dyi 

As we vary vu the point xu y1 will describe a closed curve, since the 

functions 6 and resume their original values when y, increases by Itt. 

Thus, ify2,y3,... ,yn are regarded as constants, the equation 

dS 

will be that of a closed curve. 

This is exactly the result at which we wished to arrive. However, it is of 

importance to define its significance. Indeed, we must not forget that all 

preceding theorems are valid, but only from the viewpoint of formal cal¬ 
culus. 

The functions 6 and Çk can be expanded in powers of such that we 
can write 
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y\ — @o(v\) + -\-n62{vi) •••, 

*i = C°\ (vi ) + ! (Ui) + A*£ 7(^i) + ■ ■ ■ » 

and all functions 6p{vx) and Çpx (vx ) are periodic, with period 2-ir. 

The right-hand-side of Eqs. ( 19.40) are series developed in powers of 

yffi but which, in general, do not converge. Equations (19.40) thus are 

valid only from the viewpoint of formal calculus. Therefore, let us rewrite 

these equations but terminate the series at the terms in // p/2. This yields 

y\ = 00{vx) +^1/20,(y,) + ••• + jup/2dp(vx), 
n . .. (19.40a) 

*1 = £?(”i) + A* Ç ! (üi) + ••• + np/2Çpx(vx). 

Obviously, Eqs. ( 19.40a) define a closed curve. Let us assume that, elimi¬ 

nating vx between these two equations, one solves them for xx, so that 

xx = P0 + fil/2Px + • • • + ^/2Pq + • • • ( 19.41 ) 

where Po, P\, ■ • ■ , Pq, ■ ■ . are functions of yx. The right-hand-side of Eq. 
( 19.41 ) is an indefinite but convergent series, and Eq. ( 19.41 ) is that of a 

closed curve. 

In virtue of the principles of formal calculus, the value of xx obtained in 

this manner can differ from dS /dyx only by quantities of the order of 

fi (p+ 1)/2. Consequently, we will have 

^0 = 
dSp 

dyx 
T, = 

dS ! 

dyx 

but we will not have 

P + 1 

dSp+x 

dyx 

Now, it is a question whether the curve 

Xl=^o + ^ndS1+... +/tlp/2^P_ (1942) 

dy 1 dyx dyx 

is a closed curve. 

Let us return to Eq. (19.31). Since, in the case of libration, dSx/dyx 

vanishes for two different values ofy„ it can be asked whether d[S2]/dyx 

and thus also dS2/dyx might not become infinite. This question must be 

answered in the negative since [d>] vanishes at the same time as dSx/dyx. 

However, let us continue the approximation further. 

For defining d[S3\/dyx, we will find an equation analogous to Eq. 

(19.31): 

d2F0 d[S3] dSx_ [(p]+C4 

dx\ dyx dyx 

Will d[S3]/dyx become infinite this time? 
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It is true that we can have a constant C4 arranged such that dS3/dyx 

does not become infinite for one of the values of that cancel dSx/dyx; 
however, in general, [4>] -f- C4 will not vanish for the other value ofjq that 

cancels dSx/dyx. Consequently, dS3/dyx will become infinite no matter 

what the constant C4 might be. 

Thus Eq. ( 19.42) will not represent a closed curve since the right-hand 

side will become infinite. 

Therefore, the above statement that the curve 

dS 
x, =- 

dy i 

is closed can have no meaning by itself since the series S is divergent. 

It has the following meaning: 

The statement means that one can always find a function d>p of jq and 

of /z that can be expanded in powers of V/7 such that the equation 

dS0 
+ ^ 

1/2 dSx 
+ d 

dS, 
+ ' ' ' + /U 

dyx ' ‘ dyx dyx 

becomes that of a closed curve. 

A simple example will illustrate the above point: 

Let there be the curve 

TO 

p/2 ! (p+D/2^ 

dyi 

* = V i -y2 + ny2 ■ 

This curve is an ellipse. Let us expand the right-hand side in powers of 

/x: and let us terminate the series, for example, at the terms in /x1, so that 

= VT^r + r 
2 8 O -/)3/2 ’ 

which is not the equation of a closed curve since the right-hand side be¬ 

comes infinite for y = + 1. 

All these difficulties, which are purely artificial, can be avoided by the 

change of variables ( 19.32). 

Limiting Case 

207. Let us finally pass to the case in which C2 is equal to the maximum of 

[iq], which is intermediate between the ordinary case and the case of 
libration. 

Let us return to Eqs. (19.19) of no. 204andtoEqs. (19.29), (19.30), 

and (19.31) of no. 205. We still are assuming mx — 1, m, = 0 (for /> 1) 

and, consequently, n°x = 0. In this case, the radical 
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ylC2-[Ft] 

and consequently {dSx/dyx ), as shown in no. 200, is a periodic function of 

yx whose period, however, is no longer 2tt but \tt. This function will 

change sign when y, is changed into + 2tt. The function vanishes for a 

single value of_y, which lies between zero and 2tt and which is exactly the 

value at which the function [i7, ] reaches its maximum. Without restrict¬ 

ing the generality, it can be assumed that this value is equal to zero. Then, 

we will have 

for 

dS, 

dy\ 

yl = 2kn 

no matter what the integer k might be. 

All this has been explained in detail in no. 200. 

Let us now consider Eqs. ( 19.19) as well as the equations analogous to 

Eqs. (19.29) and ( 19.31 ), which are obtained by equating the mean val¬ 

ues on both sides of Eqs. (19.19). These equations, as we have seen, allow 

us to determine the functions Sp by recurrence and, immediately show 

that the terms dSp/dyx will be periodic functions of thej>, where the period 

is 2v with respect to y2, y3, ■.., yn and 4tt with respect to yv 

If the constants Cp are zero for an odd index p, which already had been 

assumed when writing Eqs. (19.19), then these equations (19.19) will not 

change on changing yt into yx + 2tt and also not on changing yfjü into 

-ip. 

From this, we can conclude, by a reasoning similar to that given in no. 

200, that dSp/dyi will change into 

dS 
( _ ly—L. 

dy, 

when^, changes into^ + 2tt. 

Thus dSp/dyt is a periodic function with period 2tt with respect to yv if 

p is even. 

Ifp is odd, this function will change sign as soon asy, increases by 2v. 

This raises the following question: 

Are the functions dSp/dy, finite? 

For determining [S2],we have Eq. (19.31): 

d2F0 d[S2] 

dx\ dyx dy, 

and, more generally, for determining [Sp ] 
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d2_F± d[S£]_dSL = [0] +C (19.43) 

dx\ dyx dyx 

where Cp + , is zero when -f 1 is odd. 

Since the function [d>] on the right-hand side of Eq. ( 19.43) depends 

only on_y,, we will set it equal to <pp + , (jq). 

It is easy to demonstrate by recurrence that 

<?/?+ i Oh + 277) = ( — 1) p + Vp+ i Oh)- 

It could happen that d [5p ]/dyx becomes infinite, since dSx/dyx might 

vanish for j>) = 2kn and since it could occur that, for this value of>>,, the 

right-hand side of Eq. ( 19.43) does not vanish. 

Therefore, if we want the terms d [5p ] /dyx to remain finite, it is neces¬ 

sary that 

<PP+X{0)+Cp+X — (pp+\ (2ir) + Cp+ j =0. (19.44) 

If the conditions (19.44) are satisfied by all values of p, then 

d [Sp]/dyx and thus also dSp/dyt will remain finite. 

If p + 1 is even, it is easy to satisfy Eqs. ( 19.44). In fact, the constant 

Cp + , is arbitrary and it is sufficient to take it as equal to 

— <pp+x (0) = -<pp+x(2tt). 

However, if p + 1 is odd, then Cp+X is zero and the following condition 

must be satisfied: 

<pp+ i (0) = 0 , (19.45) 

which automatically entails the condition 

<PP+i (2tt) =0. 

Since we no longer have an arbitrary constant, the condition ( 19.45) 

must be satisfied identically. In fact this is exactly what happens but it still 

is necessary to prove the point, which I will do in the following numbers. 

208. Let us first assume that there are only two degrees of freedom and 

thus only four variables xx, x2, yx, andj>2. 

Let us refer to nos. 42, 43, and 44. There we showed that, to each 

system of values of the mean motions 

n°x, «°, ..., «° 

which are mutually commensurable, there corresponds a function [E,] 

and that, to each maximum or to each minimum of this function, there 

corresponds a periodic solution. 

However, in the case in question here, the mean motions are two in 
number 
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one of which, namely, «°, is zero. The values of the two mean motions thus 

are mutually commensurable. In addition, the function [F,] admits of an 

absolute maximum which it reaches fory, = 0 and which is equal to C2. 

Therefore, a periodic solution must correspond to this maximum. Let 

*1 = ^1 (t), x2 = if>2(t), yx = xfj\{t), y 2 = (/) (19.46) 

be this solution. Since n° is zero, rp{, ip2, and if>[ will resume their original 

values when t increases by one period while y2 increases by 2n. 

On eliminating t between Eqs. ( 19.46), we obtain 

*i = 0i(y2)> x2 = 02(y2), yj = <93(y2), (19.47) 

where the functions 0 are periodic, with period 2ir. 

The characteristic exponents are two in number and, according to 

Chap. 4, must be equal but of opposite sign. In addition, since the periodic 

solution corresponds to a maximum but not to a minimum of [F, ], these 

exponents must be real by virtue of no. 79, and the periodic solution must 

be unstable. 

After this, we will perform a change of variables analogous to that 

made in no. 145. 

Let 

S * = x2y2 + 0 + x\ y, + y,0, — x\ 03, 

where 0 is a function of y2, defined by the condition 

^ = e,-e 
dy2 2 3 dy2 

The canonical form of the equations will not be altered if, as new vari¬ 

ables, we take x\ and y\ by putting 

dS* , dS* 
x. =-, y, 

dy, dy'i 

We thus find 

, „ , de , dd{ , dd3 
xi — x\ + d\\ X2 — X2 + — h ki — *1 — 

dy2 dy2 dy2 

y\=yx + o?,\ y'2=y2. 

(19.48) 

whence 

, , d0 ! , dd3 
x2 = x2 + 02 + y 1 — x, — . 

dy2 dy2 

What will be the form of the function F, expressed by means of the new 

variables? 
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Let us note first that (9,, 02, and 03, in virtue of nos. 42^44, can be 

expanded in ascending powers of /x and that, for /x = 0, they reduce to 

constants 

x°, x2, and 0. 

This shows that xx, yv and x2 are functions of x[, x2, y\, and y'2, and /x, 

expandable in powers of /x and periodic with respect to y2 . For /x — 0 they 

reduce to 

x2 = x’2+x°2, y, =y[. 

Thus F retains the same form when expressed as a function of the new 

variables: We state that Fean be expanded in powers of /x and is periodic 

with respect to^ but that Lis not periodic with respect to y\. 

The new canonical equations 

dx\ _ dF dy\ _ dF 

dt dy\ ’ dt dx\ 

obviously admit a solution 

x\ =0, x2 — 0, y\ = 0, 

since the old equations admitted 

xt = 6 x2 = 02, yx = 02. 

It can be concluded from this that the three derivatives 

dF dF dF 

dy\ dy2 dx\ 

simultaneously vanish when we set 

x[ =x'2 =y[ =0. 

Moreover, on setting x[ = x2 = y\ =0, the function F reduces to a 

constant which will be denoted here by A and which, in addition, can be 

expanded in powers of [x. 

Let us put 

F’ = F — A. 

Here, F’ can be expanded in powers of x[, x2, and y\ for small values of 

these variables. The series will contain no terms of degree zero and will 

contain no terms of the first degree other than one in x2. The coefficients 

of the expansion are functions of ^x and of y2. 

Let us then consider the equation 

dS’ 

dy2 
>y[ >y2 = o, F' 
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and let us attempt to satisfy this by setting 

S = S g + yff^S \ -f- fiS 2 + ' ' ' . (19.49) 

We will determine the functions S'p by recurrence, using equations 

completely analogous to Eqs. ( 19.19) of no. 204 and differing from these 

only by the fact that the symbols are primed and that the constants Cp are 
all zero. 

Let us replace, in F the function S1 by its value ( 19.49 ) and let us then 

expand F' in ascending powers of V/z. 

Let 

F' = xf}0 + y[jufjx +/Lup 2+ ••• 

be this expansion. Then, for small values ofy[, x\, andx'2, the term xjjp will 

be expandable in powers of y\, dS 'q/dy\ , and dS 'q/dy'2 . 

The coefficients of the series will be periodic functions of j>2 • However, 

the point to be emphasized here is the fact that the series will contain no 

zero-degree terms and that the only first-degree terms will be terms in 

19.50) 

analogous to Eq. ( 19.30), and to determine [S' ' ] by equations 

19.51) 
dx\2 dy[ dy[ 

analogous to Eq. (19.31), where the constants analogous to Cp all are 

zero. 

The functions and d>', entering the right-hand side of Eqs. (19.50) 

and ( 19.51 ), can be expanded in powers of y[, dS\/dy\, dS '/dy'2, and the 

only first-degree terms will be terms in dS’/dy'2. 

We state that dS \/dy2 and dS \/dy\ do not assume an infinite value for 

y\ — 0, but that this point is actually a zero, namely, a simple zero for 

dS\/dy\ and a double zero for dS \/dy2. 

In fact, let us demonstrate this theorem by recurrence and let us assume 

that it holds for the already known functions. 
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Then, the function 0 of Eq. (19.50) will admit the value ofy\ = 0 as a 

double zero. In fact, this value is a simple zero for each of the factors of 

terms of a degree higher than 1 of the expansion of <f> in powers of y\, 

dSj/dy[, and dS'/dy2. On the other hand, the first-degree terms in this 

series depend on the derivatives dS\/dy2 for which y\ = 0 is a double 

zero. 

It results from this and from Eq. ( 19.50) that jZj = 0 is a double zero 

for 

dS' 

and thus also for 

and, finally, a simple zero for 

dS'q d[S'q] 

dy\ dy\ 

One could then apply the same reasoning to the function d>' of Eq. 

( 19.51) as had been used for the function 4>, showing that y\ = 0 is a 

double zero for 4>' and thus also for [<!>']. 

Since, on the other hand, this is a single zero for dS \/dy\, it will also be 
a single zero for 

d[S'q] 

dy[ 
Q.E.D. 

Thus the functions defined by Eqs. ( 19.50) and ( 19.51 ) are finite. 

What relation exists between the function S defined in the preceding 
number and the function S ' to be determined here? 

We have 

dS = xxdyx + x2dy2, 

dS' =x[ dy[ + x'2 dy'2, 

from which, taking Eqs. ( 19.48) into consideration, it follows that 

dS' — dS = dQ — d( y,0 x ), 

whence 

S' -S=®-yl0v (19.52) 

Since S ©, and 6X as well as their derivatives are always finite, this will 
also be the case for S and its derivatives. 

By equating, in Eq. (19.52), the coefficients of like powers of V/7, it is 
easy to calculate the functions Sp. 
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In fact, as we wrote above in Eq. ( 19.49): 

S = S $ 4ÏS [ + [iS 2 -+■ • • • , 

but this series is obtained by assuming that the terms S ' are expressed as 

functions of the new variables x' and y'. If we return to the old variables xt 

and yt, the series will change in form and will become 

S' = S'' + V/ISr+/mS’"+ ••• 

[see Eqs. ( 19.8) of no. 200], 

Similarly, let 

© = ^>p/2©/), Gl = jj^p/2epx. 

We will then have 

Sp=Si;-®p +yldp1, (19.49a) 

which is an equation showing that the constants Cp + x can be chosen in 

such a manner that the terms dSp/dyi remain constantly finite. 

From this, we must conclude that the conditions ( 19.45) are satisfied 

identically. 

We have shown in the preceding number that the terms dSp/dyx are 

periodic functions, with period Av with respect toy,. This is not the case 

here for dS p/dy ' or for dS "/dyt since F, as mentioned above, is no longer 

periodic in>>[. Nevertheless, Eq. ( 19.49a) has shown that (a) dS”/dyx is 

periodic; (b) dS p/dy2 increases by — Ait6px when increases by Av. 

Let us consider the equations 

dS dS 
-, x2 =- 
dyx dy2 

(19.53) 

which yield xx and x2 as functions of and_y2- These have an interesting 

significance. 

Let us return to Eqs. ( 19.46). These define the periodic solution which 

we used as starting point. We have shown that this solution is unstable. 

Thus, based on the principles of Chap. 7, the solution gives rise to two 

series of asymptotic solutions whose general equations can be given the 

form 

xx = cox(t,A), x2 = o)2(t,A), yx= co'x(t,A), y2 = (o'2 (t, A) ( 19.54) 

for the first series, or 

xx = yx(t,B), x2 = r] 2(t,B), yx=j][(t,B), y2 = r}2(t,B) (19.55) 

for the second series. 

Here A and B are arbitrary constants. 
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If t and A are eliminated among Eqs. ( 19.54 ) as one solves for x, and x2, 

Eqs. (19.53) will be obtained; the same result is found (in which only the 

sign of the radical \] C2— [ Fx ] is changed ) if t and B are eliminated among 

Eqs. (19.55). 

It may be of interest to compare the above demonstration with other 

proofs I have given earlier (Ref. 16, pp. 211-216 and 217—219).R16 

209. Let us now extend this proof to the case in which there are several 

degrees of freedom, and, for this, let us first attempt to generalize the 

notion used as our starting point, namely, that of the periodic solution 

(19.46). 

Therefore, let us search for n + 1 functions of n — 1 variables 

y2> y3, •••, yn> 
functions that we denote here by 

V’ !?2> • • • > 

and which are such that the relations 

= Li=£, x,=it (/> 1) 

will be invariant relations in the sense given in no. 19. This entails the 
following conditions: 

I 
k 

I 

dr] dF 

dyk dxk 

dF 

dyk dxh 

dÇ dF 

dyk dxk 

dF 

dx, 

dF 

dyx ’ 

dF 

dyt ’ 

(i,k = 2,3, 

(19.56) 

,«). 

There is no need to add here that, in the derivatives of F, the variables jc„ 

yx, and xt are all assumed as replaced by 77, £, and 

In addition, the functions 77, £, and must be periodic in y2, y3,... ,yn. 

They must reduce to constants rj0, £0, and for ]i = 0. 

Finally, we will postulate one more condition here, namely that 

xxdyx + x2dy2 + ■ ■ ■ + xndyn = d6 + 770 dÇ 

be the exact differential of a function 6 + r]0Ç of y2, y3,... ,yn. From this 
we derive 

êi=~~(V-Vo)^- (19.57) 
dy, dyt 

and conclude that the derivatives of 6 are periodic functions. We will 
have, in addition, 
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F(v>êi>Ç>yi) = const, (19.58) 

that is, by replacing the variables xu x, , and_y, in F by the functions 77, 

and £, one reduces the function F to a constant. 

It is easy to verify, by a calculation similar to some of those given in 

Chap. 15, that the second equation of system ( 19.56) is a necessary conse¬ 

quence of the two others as well as of Eqs. (19.57) and (19.58). 

In fact, if Eq. (19.58) is differentiated with respect toj^ and if it is then 

transformed under consideration of the first and third equation ( 19.56 ) as 

well as of the relations 

dyx dxx _ dxk + dyx dxx 

dyk dyk dyt dyt dyt dyk 

derived from the relations (19.57) by differentiation, then the second 

equation of the system (19.56) will be found. 

For defining the functions rj, Ç, and 0, we will retain the first and 

third equation of system ( 19.56) as well as Eqs. ( 19.57) and ( 19.58). 

We will attempt to expand the functions 77, £, and 0 in powers of /x, in 

the form of 

0 = 00+0*01 +0202 + ’ 

£ = £0 + 0^\ + 0~Ç>2 + ‘ " > 

0 = 0o + 001 + 0~02 + ■ ' ■ ; ii = X 0 Pi- 

(19.59) 

First, setting /z = 0 in the first equation of system ( 1 ) , WC Will 

I «°* 
d00 _ 

dyk 
0, 

first of all proving that tj0 does not depend on y2, y3, 

written in the form 

., yn ; this can be 

0o= [0O], 

since [7/0] denotes the mean value of tj0 considered as a periodic function 

ofy2,y3, ■ ■ .,yn. 

Setting ix = 0 in the third equation of the system ( 19.56), we find 

_ v n° 
^ k dyk dxx 

On the right-hand side, the terms xx and x, must be replaced by rj0 and 

£ 9 respectively, and these quantities must be constants such that we have 

dfo 

dxx 
- »? = 0, 

d_Fo 

dxt 
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Let us consider n° as given in the problem, so that these equations will 

determine and 

Vo= iVo]- 

Then, our equation becomes 

2" 
o dÇ0 

dyk 
= 0, 

whence 

£o=i£o\- 

Since rj0 is an absolute constant and since dÇ0/dyk must be zero, Eqs. 
(19.57) will yield 

f-o __ dQo 

dyt 

If, on the other hand, the constant of the right-hand side of Eq. (19.58) 
is expanded in ascending powers of // and we write it as 

C0 + C] [x + C2 + ■ ' ' , 

then Eq. ( 19.58), setting therefi — 0, will yield 

This equation simply determines the constant C0, and it can be shown 
in addition that 

0o = tty2 + tty, + ---+Z°nyn- 

We now have defined rj0 and 60. However, with respect to £0 we only 
know that £0 is a constant and that, consequently, 

£o= [&], 

but we do not know [£0]. 

Let us equate the coefficients of /x in the first equation of system 
( 19.56), so that, recalling that r]0 is a constant, we obtain 

y n°k = *E±. 
dyk dy i 

On the right-hand side, j;,, xv and x, are assumed as being replaced by 

Ç0, Vo* and ê °■ This right-hand side will be a periodic function of y2, y3, 
.. ., y„, and, since g0, 7]°0, are constants, its mean value will be 

dFy 

idy j 

d[F,] 

dyx 

This mean value must be zero, which yields an equation 
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d[Fx) 

dy>\ 

that determines the constant £0. 

This leaves 

y n°k -^L _ (P 
A dyk 

where d> is a known periodic function whose mean value is zero, an equa¬ 

tion from which one easily can derive 

Vi ~ iVi] ■ 

Let us now equate the coefficients of // in Eq. (19.58), taking Eqs. 

(19.57) into consideration, which yields 

11 _ ddx dÇ0 _ ddx 
S ' — d\ ~T~ — ~T~ > 

dy, dy, dy, 

from which we find 

dyk 
<L-C,. 

Here, <ï> is a known periodic function whose mean value need not be zero 

since we have not subjected 0X itself but only its derivatives to being peri¬ 

odic. This equation will yield 9X, which will depend on n — 1 constants 

that can be arbitrarily selected. 

Let us next equate the coefficients n in the third equation of system 

( 19.56), so that 

dÇi 
2 nl 4>_^o 

Vu 
dyk dx\ 

The mean value of the right-hand side must be zero, whence 

d 2Fn 

(19.60) 

dx] 

which yields [77J; Eq. (19.60) then furnishes 

£,-[&]. 

Let us continue in the same manner and assume that we have found 

Vo> Vu ■■■> VP-1» d0, du ..., dp_i, 

£o’ tsu • • • > Cp — 2 > Cp — 1 p — 1 ] 

and that we wish to find 

M- V p’ dp and {âp— 1, Cp 
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Let us first equate the coefficients /z p in the third equation of system 

( 19.56), so that 

^ rTo dVP * d2Fx 
2.nk-— = <i)-—£p-1- 

dyk dy\ 

The right-hand side must have a zero mean value, whence 

d2Fx 

(19.61) 

dy\ 
= [4>] 

or 

d2[Fx] 

dy\ [£p- ] = [<*>]- 
' d2Fx 

. dy\ 
(£P-1 [&-1]) 

from which we will derive [ Çp _ i ], since Çp _ x — [ Çp _ x ] is known. Thus 

Çp_ , will also be known, and Eq. (19.61) will yield 

VP ~[VP]‘ 

On equating the coefficients of /i p in Eq. (19.58), and taking Eq. 

( 19.57) into consideration, we obtain 

dyk 

from which we derive 6p. 

Finally, equating the coefficients of p in the third equation of system 

(19.56), we find an equation analogous to Eq. (19.60): 

X” 
o dCP 

= <L 
d2F0 

VP (19.62) 
dyk dxi 

The right-hand side must have a zero mean value, and this condition 

d2F 

*= 

determines [ rip ] and thus also T)p. 

Next, Eq. (19.62) determines 

&-[£,] 

and so on. 

Consequently, we have been able to determine functions that satisfy the 

conditions stipulated here and we have realized a real generalization of the 

periodic solutions. However, whereas the series defining the periodic solu¬ 

tions are convergent the series of which we just demonstrated the exis¬ 

tence is no longer convergent, so that this generalization has value only 
from the viewpoint of formal calculus. 
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210. Let us now attempt to apply the results of the preceding number 

to demonstrate, in the general case, that relations (19.45) are satisfied 
identically. 

For this, let us put 

S * = *2 y2 + *3 y3 + ' • ' + K y„ 

+ 6»- (y-y0)£ + x[yl +yiy-x[{; 

and let us change variables by putting 

x, — 
dS1 

y: = 
dS' 

dy, ' ' dx'i 

The canonical form of the equations will not be altered and we will find 

*i = + y* y[=yi-£, y'i=yi (/> D 

and, finally, 

A = x' + 
dy, dyt dy, dyt dy, 

or, taking Eq. (19.57) into consideration 

x, =xï+it +y\ 
dy , dÇ 

A i 

dy, dy 

The function Fretains the same form with the new variables, except that it 

will no longer be periodic with respect to^p 

The new canonical equations will admit of the following, as invariant 

relations, 

x[ =x;=y[ =0, 

which proves that, for x[ — x' =y\ =0, we have 

dF _ dF _ dF _ 

dy\ dy' dx[ 

and that, in addition, Fis reduced to a constant A. I thus set 

F’ = F-A 

and I will see that, on expanding F ’ in powers of x [, x', and y [, there will be 

no terms of degree zero, and that the only first-degree terms will be terms 

in x'2, Xj, . . . , x'n. 

Let us next consider the equation 

and let us attempt to satisfy this expression by setting 
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s' = Zvp/2s'P 

and then determine the functions S’p by recurrence. 

The calculation proceeds exactly as in no. 208. 

Here again, the functions S ' and their derivatives will be functions of 

y\, and one sees again that these functions do not become infinite for y\ 

— 0. On the contrary, y\ = 0 is a double zero for 

dy'i 

and a single zero for dS 'q/dy[. 

The reasoning proceeds by recurrence as in no. 208; indeed, the equa¬ 

tions retain their form. The details will not be given here. Let us note 

merely that the equation analogous to Eq. ( 19.50) is written as 

where 

dS'q 

dy'k 
= <*>, 

<t> = ^A cos(m2j>2 + •• • + mn y'n + co) 

is a periodic function of y2, y3, ■ ■ ■, y„ whose mean value is zero. The 

coefficients A and co are functions of>q which, naturally, are not the same 

for the various terms. We derive from this 

dS^ 

dy'k 
i 

Am, 

n2m2 + ■ • • + «>„ 
cos(m2^ + • • • + mn y'n + co). 

To state that_yj = 0 is a double zero for 4> is obviously to state that it 

also will be a double zero for each of the coefficients A and thus also for 

dS 'q/dy'k. 

The remainder of the reasoning is exactly as that given in no. 208. 

Consequently, the functions S ' are finite and, as in no. 208, one can 

conclude that this is also the case for the functions Sg and thus that rela¬ 

tions ( 19.45) are satisfied identically. 

Correlation with the Series of No. 125 

211 . In no. 125 we defined certain series S whose first terms converge in a 

sufficiently rapid manner if none of the combinations 

mxn°x + m2n°2 + ••• + mnn°n 
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is very small. In no. 204 et seq., we defined still other series S whose 

convergence remains sufficient even if one of these combinations is very 
small. 

How can one pass from one to the others? The statements made in no. 

201 already predict the procedure to be followed. 

The function S, defined in no. 125, depends [see the discussion follow¬ 

ing Eq. (9.7) ] on an infinity of series of n arbitrary constants, namely, on 

A1 > JC° X1 > 

«11. «12. 

«2 1. «22. 

x o 
n 9 

a 1 n 9 

However, we do not restrict the generality by assuming that all aik are 
zero. 

In fact, let 

S*=S$+iiSf +li2SÏ+ ••• (19.63) 

be that of the functions S' obtained on canceling all aik. This function will 

now contain only n arbitrary constants 

v0 0 0 
A1 9 A2 9 • * * 9 * 

Since are arbitrary constants, these terms can be replaced by any 

expansions in powers of 

Thus we will replace by 

x° + P>P\ i + 2 ; + ‘ * 

where /3 are some constants. The function S obtained from this substitu¬ 

tion satisfies Eq. (9.4) ofno. 12 5, just like S*. However, the terms a,k are 

no longer zero and it is obvious that the arbitrary constants /3 can be 

selected such that the values of a are whatever we please. The resultant 

function therefore will be the most general function S'. 

Let us return to S *. This function depends on n constants x°. However, 

on the other hand, the n mean motions n° are also functions of x°, and, 

inversely, the terms x° are functions of «° so that we can consider S * as 

being dependent on n arbitrary constants 

n°t, «°, •••, n°„. 

How do the functions S* depend on these constants? Each term of S* 

contains the sine or cosine of an angle of the following form as factor: 

P\y I +P2}>2 + ■ ■ ■ +Pn yn (with p as integers) 

and the coefficient of this sine or cosine is equal to a holomorphic function 

of n°, divided by a product of factors of the form 
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qxn°x + q2n2 + ••• + qnn°n (with q as integers). 

These are factors known as “small divisors.” 

By using the method of reasoning of no. 201, one can demonstrate that 

none of the terms of S * can contain more than 2p — 1 small divisors in the 

denominator. 

If one of these small divisors, for example, 

mxn°x + m2n°2 + • • • + m„n°n, 

were very small, then the convergence of the series S* would become 

illusory. Therefore, as done in no. 202, let us replace the constants of 

integration «° by various expansions which no longer proceed in powers of 

/z but in powers of yfjï. For example, let 

n°i = a® + ^a) + tia] + • • • . (19.64) 

We assume that 

mxa°x + m2«° + • • • + mna°n — 0. 

From this it follows that the expansion of 

mxn°x + m2n°2 + ••• + ra„n° 

starts with a term in y[jl. 

Then, let 

N cos 
— . (PnJ'i +^2^2+ +Pn yn) (19.65) 
P sin 

be any term of S* where P represents the product of the small divisors. 

In this case, N and P can be expanded in ascending powers of V/z and 

the exponent of /z in the first term of the expansion of P will at most be 

equal to p — 

It follows from this that, after substituting for the «° their values 

( 19.64), one can expand 5 *in positive powers of Vÿü. 

Let then 

S* = S^ +yfcS[ +nS’2 + ••• (19.66) 

be this expansion. It is obvious that the various series ( 19.66) obtainable 

in this manner do not differ from the series discussed in this chapter and 

which we have learned how to form in nos. 204-207. Specifically, let us 

study the first terms 5” '0 and S [. 

We will find 

So = s* = x? ki + x2 yi + ■ ■ ■ 

The terms are constants. These constants are themselves known 
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functions of «°, and the terms «° in S q must be replaced by since, for 

P- — 0, the expansion ( 19.64) of «° reduces to its first term, i.e., to a°. 

On the other hand, we find 

*^i — ^\ y\ + £2 ^2 + ■ ■ ■ + £n yn + u, 

where 

dx°i 
^• = 1-^4- 09.67) 

dnl 

Since the quantities x°t are known functions of n°k, this will also be the 

case for their derivatives dx°/dn°k and one must replace there the n° by the 

«°*. 

As to U, this is obtained in the following manner: 

In S*, let us take all terms of the form of Eq. (19.65), where the 
denominator P contains the small divisor 

m,«° + m2n°2 + • • • + m„n°„ 

to the power 2p — 1. 

In the numerator N, let us replace the terms n°k by a°k and, in the 

denominator, let us replace 

m,«° + m2n°2 + • • • + mnn°n (19.68) 

by 

mxa\ + m2a\ + • • • + mna\ = y. (19.69) 

This term will become 

7 . (AJh +^2^2+ •" +pnyn)f (19.70) 
jdp -1 sin 

where N0 is what becomes of N on replacing there the terms «° by a°. 

Let us proceed in the same manner for all terms of S * that contain the 

small divisor ( 19.68) to the power 2p — 1, and let 

UP 

fp-' 

be the sum of all terms of the form ( 19.70) obtained in this manner. 

Let us again operate similarly on all functions which will 

successively yield 

r f ’ 

We will then have 
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El 
r r3 r5 

Assuming now that the hypothesis ( 19.25) of no. 204 is satisfied, we 

must have 

ii 
m, m, 

L_ 

m„ ll "*2 

On combining these relations with Eq. ( 19.67) and with Eq. (19.69), 

we can write 

ii = miAY’ 

where A is a coefficient easy to calculate and depends on the integers m, 

and on the derivatives dx°/dn°k. 

From this we derive 

dS[ l dUx , 1 dU2 
= mxAy H-r-1-+ — —-b •" (19.71) 

dyx y dyx f dyx 

and we conclude that the square of the series on the right-hand side of Eq. 

(19.71), which just like the series itself must proceed in decreasing powers 

of y, will reduce to its two first terms 

m\A 2yl + mxA . 
dy i 

This results in a series of identities 

lmxA 
dU2 

dyx 
+ 

2 mxA —+ 2 
dyx 

dUx dU2 _ 

dyx dy2 

which, even independent of the applications in view of which this chapter 

has been written, are peculiar and unexpected properties of expansion 
(19.63). 

Divergence of the Series 

212 The series obtained in this chapter are divergent, just as those devel¬ 

oped by Newcomb and Lindstedt. 

Let us consider one of the series 5 defined in no. 204. This series will 

depend on a certain number of arbitrary constants. 

In the first place, we have 
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These constants are connected by the relation 

+ m2n°2 + ••• + m„«° = 0. 

As in nos. 205 et seq., let us assume that 

m, = 1, m2 — m3 = • • ■ — mn = 0. 

We have shown that this is always permissible. Our relation becomes 

This equation can be solved for x°, yielding 

x° = <p(x2,x' .0 
3> • (19.72) 

and, in addition, these n constants are linked to C0 via the relation 

We next have, besides C0, 

Finally, we have 

However, without restricting the generality, we can assume that these 

quantities are interconnected by relations ( 19.25) and ( 19.26) of no. 204 

or, even better, we can assume without restriction of generality that all 

these quantities a, and a ? are zero. 

The constants C4, C6, .. . are connected by certain relations with the 

arbitrary constants ai and a Thus assuming that a, and a f are zero, C4, 

C6, . . . become wholly determined functions of x° and of C2. 

Consequently, a total of n arbitrary constants 

remains, since x° is connected with the other by a relation. 

Let us now consider the relations 

dS dS 
(19.73) •*1 — , ’ X2 — . > • • • » Xn *1 = — 

dy i dy2 dy, 

The right-hand sides are functions of 

y i. y2. yn, *°> • * 9 
jr° C 
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Let us then solve Eqs. ( 19.73) for 

v° r° r° C 
*■21 A3 > • • • > -^n > '“'2> 

so that 

*? = i//i(x1,x2,... ,xn,y1,y2,... ,y„ ) (/ = 2,3,.. .n), 

C2 = Û(x1,x2,.. .,xn,yuy2,... ,yn). 
(19.74) 

If the series S were convergent, then and 6 would be integrals of 

differential equations. 

Let us define their form. 

Let us first return to the case of no. 204 and, consequently, assume that 

C2 is larger than the maximum of [F, ] .From this it follows that 

a/C2 — [F,] , 
1 

a/C2 — [F] ’ 

will be holomorphic functions of C2,yvy2,... ,yn for all real values ofj>, 

and for values of C2 close to the value considered here. 

Above, we have assumed that Fis a holomorphic function of xt and^, 

for all real values of and for values of x, close to jc°. 

In addition, the second derivative of F0 with respect to x° will generally 

not be zero, so that x° will be a holomorphic function of the other x°. 

From all this, it follows that the terms dSp/dy, will be holomorphic 

functions for all real values of yt and for values of 

x 0 
2 y x° x3, c2 

close to those considered here. 

Consequently, let 

A2, Aj, ..., An, y 

be values of these constants close to those considered here. Let us put 

A\ = <p(A2, A3,..., An). 

The two sides of Eqs. ( 19.73) can be expanded in powers of 

A|, x2 A2, • • • > xn — An, Xj Aj, x2 A2, ..., 

x°n-An, C2 — y, 

and in sines and cosines of multiples of yi. 

However, before applying the theorem of no. 30 to Eqs. ( 19.73), we 

will transform one of these equations. For this purpose, let us put 

*1 = <P(X2,X3, . . . ,xn ) + y[jix\ . 

Then, the first equation of system ( 19.73) becomes 
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cp(x2,x3, . . . ,x„) + y[jux[ = (p(x0,x03, . .. —+ //^+ •••, 
dy i dyx 

or, taking the other equations of system ( 19.73) into consideration 

I— , ( dS 
v/*x, =(p\ — , 

\dy2 
dS dS..*:> 

dy3 dyn) 

I dS2 
+ V/W 1 + // —^ . 

«y, dy, 

However, we know that dSx/dS2, dSx/dy3, 

which means that the differences 

—x? ( / > 1 ), 
dy, 

and, consequently, the difference 

<P 

are divisible by fx. Therefore, we can put 

<P 
dS dS dS\ ,00 
"7“ )-<p(x2,x3, 
dy2 dy3 dyj 

whence 

dSx/dyn are zero, 

,x°n ) = ycH, 

xj + + + + ••• . (19.75) 
Ofl dy, dy, 

Let us add the n — 1 last equations of system ( 19.73) to Eq. ( 19.75). 

This will yield a system of n equations whose sides can be expanded in 

powers of 

V/L x'u x2 A2, ..., xn An, x°2-A2, ..., x°n-An, C2 — y 

and in sines and cosines of multiples of_y,. 

For /x = 0, this system reduces to 

, _dS i _ o 
X | — > X, — Xj. 

dy i 

Therefore, we must prove that, for 

xj = 0, x, = x° = Aj, 

the functional determinant of x° — x, and of dSx/dyx — xj with respect to 

x° and with respect to C2 does not vanish. However, this determinant 

reduces to the derivative of dSx/dyx with respect to C2, or, if 

^1 = A^C2-[Fx] , 
dyx 
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to 

2VC2- [F,] 

Thus, this determinant is not zero and the theorem of no. 30 becomes 

applicable. Consequently, if our series were convergent, our differential 

equations would admit of n integrals xfji and 6 uniform with respect to x 

and y and periodic with respect to y. However, this is impossible, which 

means that the series diverge. Q.E.D. 

The same result exists in the case of libration. To prove this, it is only 

necessary to recall that, in no. 206, we reduced our equations, by a suitable 

change of variables, to the form of the equations in no. 134. Using the same 

method of reasoning as in Chap. 13, we can again demonstrate that the 

convergence of the series will entail the existence of uniform integrals, in 

contradiction to the theorem of Chap. 5. 

Even in the limiting case, the series are still divergent; but I will be able 

to prove this rigorously only later. 

One can then ask, by what mechanism, so to say, are the terms of these 

series are susceptible to increase such as to prevent convergence. 

In the particular case in which there are only two degrees of freedom, 

no small divisors are introduced. 

In fact, the equations to be integrated then have one of two forms: 

.o dSp 

dy2 

dS{d[Sp] 

dyx dyx 

= <t>, 

= 4> 

and the only divisors introduced here, namely, n2m2 and dSx/dyx are not 
very small. 

In exchange, however, one must perform differentiations and, in differ¬ 
entiating a term containing the sine or cosine of 

P\y\ +Piy\ + +pn yn> 

one of the integers which might be very large, is introduced into the 
multiplier. 

Consequently, what prevents convergence from taking place is not the 

presence of small divisors introduced by the integration but the presence 

of large multipliers introduced by the differentiation. 

This can also be presented in a different manner. 

In the case of no. 125 and in the presence of only two degrees of free¬ 
dom, we have small divisors of the form 
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m,n“ + m2n2. 

Let us replace there n° and n2 by expansions analogous to series ( 19.64) 

of the previous number. For example, let 

n° - a2, n°{ = 

Our small divisors then become 

The expression 

m2a2 + filai4jü. 

1 

m2a2 + 

can be expanded in powers of V/z, yielding 

—+ + 09.76, 
m2a2 (m2a2) (m2a2) 

None of the terms of this series contains a very small divisor in the 
denominator, since m2a2 never is very small. 

It is obvious, however, that no matter how small /z might be, whole 

numbers m, and m2 can be found such that 

^m1aL> i 

m2a2 

and such that, consequently, series (19.76) diverges. This furnishes an 

explanation for the fact that, on replacing—as I did in the preceding num¬ 

ber—the mean motions by their expansions (19.73) and developing the 

series in powers of yjji, one will arrive at divergent series. 

One can connect what I have just said with what I said in nos. 109 

et seq. 
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Bohlin Series 
213. In the preceding chapter, we demonstrated a procedure for con¬ 

structing the function S'. To derive from this the coordinates as a function 

of time, it is sufficient to apply the Jacobi method. 

To simplify matters somewhat, let us assume that the integer denoted 

by w, is equal to 1 and that the other integers m, are zero. This had been 

done by us in nos. 205 and 206, and we also know that the general case can 

be reduced to this particular case by the change of variables given in Eq. 

(19.16) of no. 202. 

The function S, defined in nos. 204 etseq. depends on n variables^, and, 

in addition, contains n arbitrary constants x2, x°, ..., x°n and C2. Other 

constants could be introduced into our calculations, namely, x °, Cp, af. 

However, we will assume that 

(a) x° is connected to the other x° by relation ( 19.20) of no. 204; 

(b) af satisfies the condition ( 19.26) of no. 204; 

(c) Cp is expressed in some manner and is arbitrary up to a new order, as a 
function of the other constants. 

Thus S will be a function of 

yi. y* • • • > y„; c2, x°2, x° 2> -*3’ 
x° 

> An • 

Let us then put 

X: = 
ds 

i —-, U>, =-, 
dyt dC2 

dS 
w, = 

dS 

dxi (20.1) 

(/= 1,2, . . . ,n;K= 2,3, ...,«). 

From this, the quantities x, and^, are derived as functions of w, x°, and 

C2; if, in the resultant expressions, the terms x°k and C2 are considered 

arbitrary constants while the terms w are considered linear functions of 

time, then we will have the coordinates x, andyt expressed as a function of 

time. This is actually what the theorem of no. 3 teaches us. 

However, it is preferable to modify the form of Eqs. (20.1 ) somewhat 
and to write 

x,. = 
dS 

dy, 
dxwx = 

ds 

dC, 
w. + 0kwx 

dS 

dx°k 
(20.2) 

where 9 are arbitrary functions of C2 and x°. 

It is obvious that, on replacing Eqs. ( 20.1 ) by Eqs. (20.2 ), the terms w 

652 
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will remain linear functions of time since the quantities 0, depending only 

on C2 and on x°k, will be constants. 

Let us see what use we will make of these arbitrary functions 0; they 

will be chosen such that the quantities xt, cos yt, and sin yt will be periodic 

functions of w, with period 2n. 

Let us first place ourselves in the first case, namely, that in which 

dSx/dyx is always real and never vanishes; let us then see what is the form 

of the series obtained in this fashion. 

In this case, the quantities dSq /dy, are periodic functions of y, with 

period 2v. As to S, this will be a function of the form 

*5” = S ' + /?,_>>, +13^2 + " ' + Pnyn > 

where 5 ' is a periodic function of y while /? are functions of C2 and of x°k. 

In addition, S' ' and /? can be expanded in powers of Vÿü. 

Since, according to the hypotheses made with respect to the integers 

m, , the conditions ( 19.26) of no. 204 reduce to 

«? = 0 (/ = 2,3,, 

we will simply have 

P2 = X°2, ft=*3> •••> 0n=X°n- 

If one expands /3X in powers of V/7, the first term similary reduces to . 

We stipulate that, when 

wu w2, w n 

change into 

u;, + 2klir, w2 + 2k2ir, . . ., wn + 2knv , 

where the terms kt are integers, the quantities and yt will change into 

xt and yt + 2kt it . 

This result is obtained by setting 

d§_L. 

dC2 ’ 
Ok 

d/3x 

dx°k 

From this it follows that (9, and 0k can be expanded in powers of V/Z. For 

fi — 0, the quantity /?, reduces to . However, x° is connected with the 

other x°k by relation ( 19.20) of no. 204, which, in the case in question here, 

reduces to 

n°x = 0. 

Thus, for n =0, the quantities 6X and 0k reduce to 

dx(\ 
0X = 

dx°x 

Hc2 
= 0, ek = 

dxï 
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From Eqs. (20.2) we derive first the termsyt and then the terms x, in the 

form of functions of w, x°k, C2, and // that can be expanded in powers of . 

For /u — 0, the first and third equation of system (20.2) become 

o , , dA 
x,=A> wi-\--r7rwk=yl+^ryk . 

dx(l dx°. 

So far as the second equation is concerned, it reduces to 0 = 0. However, if 

one first divides this equation by yf/u and then sets ^ = 0, it will change 

into 

dS, 
d\wx = 

dC, 

where 0[yfiu is the first term of the expansion of 6X. Returning to the 

notations of the previous chapter, we can write 

e\wx = 
dC, 

C2- [Fx] 
dyx 

1T J 
dyx 

A 2{A J VQ- [F,] 

The right-hand side can be expanded in the form 

m + i/>(yi), 
where y is a constant depending on C2 and on x°k, while ip is a periodic 

function. 

We then determine 6 [ in accordance with the convention made above, 

by setting 

0[ =y, 

whence 

r(u> i-y i) = ^- 

On the other hand, we obtain 

dwx _ q 1 _ 1 

dyi 2rVZ Vc2- [Fx] 2yA — ' 

dyx 

Since dSx/dyx always has the same sign, dwx/dyx will always be positive so 

that wx will be a monotonically increasing function of jq which increases 

by 2tt when yx increases by 2v. 

Inversely, it follows from this that yx is a monotonically increasing 

function of a»,, increasing by 2tt when y x increases by 2tt. 

Consequently, we can write 

yx = Wi + y, 

where 77 is a function of wx, with period 2tt. 



CHAPTER 20 § 213 655 

Thus if we no longer assume /z = 0, the first terms of the expansion of 

xi> yu yk 

will be, respectively, 

dx° o UA1 
XI, W{ + V, wk-——TI. 

dxk 

The next terms will be periodic with respect to w, such that xt and yt — wt 

will be periodic functions of wr 

We have seen above that the quantities w must be linear functions of 
time, such that 

u>,. = rift + cOj , 

where 75, are arbitrary constants of integration. 

This leaves the quantities «, to be determined. 

For this, let us return to Eq. ( 19.18 ) of no. 204. The right-hand side C is 

equal to 

C = C0 C2 fi C4 -\- • • • . 

Here, C0 is a function f x°k while C4, C6,. . . are functions of C2 and of xk, 

which were selected arbitrarily, but once and for all. 

It results from this that C is a function of our constants C2 and x°k. 

Now, the Jacobi method indicates that we have 

d\tix 
dC 

dC2 ’ 

nk + 0knx 
dC 

dx°k 

(20.3) 

Since the quantities 0 and C are given as functions of C2 and of xk, these 

equations will yield the terms «, as a function of these same variables. 

Let us note first that, since C and 6 can be expanded in powers of yf/u, 

this must be the same for 

The first term of the expansion of 0X is yyfjü. The first term of the 

expansion of dC /dC2 is The first term of the expansion of nx will be 

Vÿü 
r 

such that n x vanishes for /z = 0, as was to be expected. On the other hand, 

for fi = 0 the second equation of system (20.3) yields 

«/c 
dCp 

dx°k 

The first term of the expansion of nk will thus be n°k. 
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Case of Libration 

214. Let us now pass to the second case, namely the case in which dSx/dyx 

may vanish and is not always real. 

Let us first see what might be the form of the function S, a point that 

will be especially useful in the next number. I say that the derivatives 

dSp_ dSp_ dSp_ 

dy>\ dy2 ’ dyn 

will have the form 

X /laCOS(fth+ft},3+ ••• +pnyn) , (20.4) 
^ {dSx\q sin 

\dyj 

where ç,/>2,/>3,. . . ,pn are integers while A is a periodic function ofyx that 

does not become infinite. 

First, it is obvious that 

(a) the sum or the product of two functions of the form (20.4) will again 

be of the form (20.4); 

( b ) the derivative of a function of the form ( 20.4 ), either with respect to y x 

or with respect to y2, y3,... ,y„, will again be of the form (20.4). 

Therefore, let us assume that the derivatives 

dSx dS2 dSp _ t 

dyt ’ dyt ’ ’ dyt 

all have the form (20.4) and let us attempt to prove that this will be the 

same for dSp /dyt. 

In fact, these derivatives are given by an equation of the form 

(20.5) 

where 4>, being a combination of functions of the form (20.4), will also 

have the same form. From this equation, we deduce 

dSn dSn dSn 

dy2 dy3 dyn 

showing that all these functions are of the form (20.4). 

Next, we have 

[SP]> 

d [AJ dS„ —Lü!_-2L= m t 
dyx dyx 

(20.6) 

where [4>] has the form (20.4). It will be the same for ^[5^\/dyx and thus 
also for dSp/dyx. 
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Despite the complexity of the form of S, one could directly construct 

Eqs. ( 20.2 ) of the foregoing number and derive from these the quantities x 

and yasa function of however, it is simpler to proceed in a different 
manner. 

We have actually shown in no. 206 that, by making a change of vari¬ 

ables and by passing from the variables x, and_y, to the variables ux,vx,xk, 

and zk, we obtain equations that have entirely the same form as those in 

no. 134. Consequently, the conclusions of this number are applicable, 

which also holds for all statements made in Chaps. 14 and 15 with respect 
to the problem of no. 134. 

It follows from this that one can solve these equations by equating ux, 

vx, x', and z, with functions of n integration constants and n linear func¬ 

tions of time 

wx, w2, . . . , wn . 

Ths can be done in such a manner that 

ux, vx — wx, xk and zk — wk 

become periodic functions of w which, in addition, can be expanded in 

powers of y[JI. 

Returning to the original variables, we see that 

x,, yx, and yk - wk (k> 1) 

are periodic functions of w. 

Further, we will have 

wx =ntv + côi , 

where <ÿ, are constants of integration while can be expanded in powers 

of 4J1. 

The first term of the expansion of «, is «° and, since n°x is zero, the 

expansion of n, will start with a term in yjji. 

All these series are deduced from the function V, defined in no. 206. 

This function V itself depends on the variables of the second series 

Vx, Z2, 23, . . • , Zn , 

and, in addition, on n constants of integration 

Ax, A2, ...» An , 

in such a manner that 

V — AXVX A2Z2 ' ' ' ^nZn ’ 

becomes a periodic function of vx and of zk. 

This will yield the variables ux, vx, xk, and zk as a function of A and w, 

by means of the equations 
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u, = 
dV 

du. 
Xl — 

dV 

dzk 
w, 

dV 

dA. 
(20.7) 

The manner of deducing Eqs. (20.7) from Eqs. (20.2) of the preceding 

number is sufficiently complicated to warrant a more detailed discussion. 

We have 

dV = uxdvx + X x'kdzk + X w,dAl . 

We still agree that the subscript k varies from 2 to « and the subscript i, 
from 1 to n. 

On the other hand, 

and 

whence 

dT =X xidyi + 4/1 X z^x] , 

vxdui = z,<7xj , 

dT=X X **<*** + ivv\du\ • 

Putting 

5= TV/! + T-Jn (^zkx'k + , 

we obtain, by an easy computation, 

(20.8) 

dS=^ xtdyt + V/7 X WidA, , 

such that, expressing 5 as a function of .y, and /l,, we will have 

dS j- dS 
wiW= — - (20.9) 

dyt dA, 

Since these continual changes of variables may lead to some confusion, we 
will define this in some detail: 

Vis expressed as a function of vx, zk, A,-; 

Tis expressed as a function of ux, x'k, yy, 

S is expressed as a function of A,- and y,. 

Thus we have 6n variables, namely, 

i ytf ^1) ^k> ^ i i • 

However, since these variables are connected by the An relations 
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dT I— dl I— 

Xj — , \JfIZk - , \fJ-V [ 

dy, dx'k 

dT 

dux ’ 

u i 
dV , dV 
-» xk —-» 

dvx dzk 
wt = 

we have in reality only 2n independent variables, which permits express¬ 

ing each of our functions S, V, Tby means of 2n properly chosen variables. 

The function V exhibits the following characteristic property: 

When one of the quantities zk increases by 2v, the other variables vvz, and 

A remain unchanged while V increases by 2vAk. 

We actually know that the derivatives of Vwith respect to vx and zk are 

periodic with respect to these variables. 

Now, when zk thus changes into zk + 2v, the other z, v„ and A do not 

change; what happens here? 

Since the derivatives of V are periodic as stated above, w, and x'k will 

not change. 

To see what becomes ofyt, we will use the following equations: 

dT r- dT 

17t’ = 

These equations, which are nothing else but Eqs. (19.32) of no. 206, 

demonstrate that, if zk increases by 2tt, then yk increases by 2n while the 

other y, do not change. 

Under the same conditions, T increases by 2n{x°k + yfjüxk ) and zkxk 

increases by 2vxk, so that S will increase by 

2TT(X°k + ) . 

It follows from this that the derivatives of S with respect to y are periodic 

with respect to_y2. J>3,..., yn ■ 

The function S, defined by Eq. (20.8), thus exhibits the characteristic 

property of the functions studied in nos. 204, 205, and 207. 

Nevertheless, it differs from those in one important point: 

The function S of the foregoing number depends not only on the vari¬ 

ables yi but also on n constants 

r° r° v-° r 
•^2 ’ -x2> > • • • 9 n > ^2 * 

In addition, the analysis of nos. 204 and 205 proves that all functions 5 

whose derivatives are periodic can be derived from this, on replacing these 

n constants by arbitrary functions of n other constants. 

The function S defined by Eq. (20.8) depends on the variables^, and 

on the n constants A, ; but it also depends on the constants xf, since the x° 

are contained in the function T and, consequently, in the change of vari- 
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ables of no. 206. However, in no. 206 as well as in the above calculation, we 

treated the quantities as absolute constants. This is the reason why the 

differentials dAt appear in the expression of d V whereas the differentials 

dx° do not appear there. 

We note, in addition, that an increase inj^ by 2rr will cause the func¬ 

tion S of the preceding number to increase by 2irx°k whereas the function 

defined by Eq. (20.8) will increase by 2Tr(x°k + yJJiAk). 

We conclude from this that the function S, derived from Eq. (20.8), is 

obtained on replacing, in that of the preceding number, the constants x°k 

by x°k + y[JÏAk and the constant C2 by a certain function. 

(p(x°2,x°3,... ,x°n,A2,Av ..., An) . 

Let us now compare Eqs. (20.2) with Eqs. (20.9). We find 

dS _ dS dcp 

dAx dC2 dAx ’ 

dS _ dS dcp r— dS 

~dTk~ ~dc2 ~dl^ + ^~d^f 

whence, taking Eqs. (20.2) and (20.9) into consideration, 

wx^ = 0xwx , 
dAx 

wkyJJL = 0\WX (wk + 0kwx) , 
dAk 

from which it follows that 

Gx = 
dcp 

~dA: 

9, = 

d<P \ 

dAk ) 

dcp 

dAx 

(20.10) 

This means that we pass from Eqs. (20.2) to Eqs. (20.9) by replacing the 

quantities x°k and C2 by x°k + y[JiAk and cp and the quantities 0 by their 
values (20.10). 

Limiting Case 

215. Let us finally pass to the limiting case, namely the case in which C2 is 
equal to the maximum of [i7, ]. 

Let us note first that we can still assume that, for 

x, =x, =yx =0, 
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we have 

F _ dF _ dF _ dF _ 

4Vi </y, 
and that, consequently, the expansion ofFX,F2,... in powers of*,, x,■, and 

y i contains no terms of degree zero and no terms of the first degree other 

than terms in x2, x3, . . . , x„. 

If, indeed, this were not the case, we would carry out the change of 

variables of nos. 208 and 210, which would return us to the case in which 
this assumption holds. 

It results from this that, if the following values are assigned to the 
arbitrary constants 

x2 = X3 = • • • = = 0 (whencex° = C0 = 0) , 

C2 = C4 = • • • = C6 — 0 , 

exactly the limiting case will occur, and the function S will be such that the 

quantities dSp/dy{ have a single zero while the quantities dSp/dyi (/> 1 ) 

have a double zero for= 0. To prove this, it is sufficient to recall that, in 

the calculation of nos. 208 and 210, the change of variables led to equa¬ 

tions completely analogous to Eqs. (19.19) of no. 204 differing from these 

only by the fact that the symbols are primed and that all constants Cp are 

zero [see the discussion at Eq. ( 19.49) ]. 

Let us now assign other values, close to zero, to the constants x2, x°, 

. .., x°n. It is still possible to select C2, C4, C6,... in such a manner that C2 

is equal to the maximum of [iq ] and that, since the conditions ( 19.44) of 

no. 207 are satisfied, the functions S',, S2, . . ■, Sp remain finite. 

The values of C2, C4, C6, .. . which satisfy these conditions will be 

holomorphic functions of x2, x°3, . . . , x°n such that 

Cp =<pp(x2,x°3, ...,x°n). 

According to our above statements, these functions must vanish for 

We have thus defined a function S depending on n — 1 arbitrary constants 

v° 
a2 » ^3 > 

This function has the form 

S — /3xy\ + x2y2 + x®y3 + + x°r,yn T S , (20.11 ) 

where /?, is a constant and S ' can be expanded in sines and cosines of 

multiples of 
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This function, in addition, is holomorphic with respect to x°k, and, if one 

sets 

the derivative dS /dyx will admit of a single zero for yx = 0 while the other 

derivatives dS /dyt will admit of a double zero. 

To obtain a function S depending on n arbitrary constants, we will set 

Thus we have a function containing the n constants 

; y° v° 
✓l, ) • • • ) •A'n * 

According to our statements at the beginning of the preceding number, 

the derivatives of this function S will have the form (20.4). 

However, there is more to this. Let 

be a term of one of these derivatives brought to the form ( 20.4). I say that 

the numerator A does not depend on A. 

This has to do with the fact that the constants C4, C6,.. . do not depend 

on A. 

To demonstrate the point in question, let us agree, for abbreviating the 

notation, to say that an expression has the form (20.4') whenever it has 

the form (20.4), and that, in addition, the numerators A are independent 

of A. 

Assuming that 

dS, dSi dS2 

dyt ’ dy, ’ 

p- 

dy, 

is of the form (20.4'), I say that this must be so also for dSp/dy, . 

In fact, in Eq. (20.5) of the preceding number, the right-hand side will 

have the form (20.4'); consequently, this will also be the case for 

dSp dSp dSp 

dy2 dy3 ‘ ’ dyn 

I say that it will also be the case for 

sP-[sP]. 
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dsP d[Sp]' 
dy>\ dyx 

in other words, the derivative with respect to^, of an expression of the 
form (20.4') will again be of the form (20.4'). Let, in fact, 

- ? cos 
(co) 

sin 

be this expression where, for brevity, we used co instead of 

Its derivative is 

pa>2 + • • • + pnyn 

dA «sa -c oV) _^aa_ wy wy—1 ■«%). 
^ dyx \dyx) sin Y dyx \dyx) \dyx) sin 

(20.12) 

If A is independent of A, this will also be so for dA /dyx. Moreover, to 
within a constant factor, (dSx/dyx)2 is equal to 

A + <p2 - [Ej] . 

Its derivative 

d (dSxV 

dyx \dyj 

thus is independent of A in such a manner that expression (20.12) will 
have the form (20.4'). 

Q.E.D. 

Then, in Eq. (20.6) of the preceding number, the right-hand side will 
have the form (20.4'). Consequently, this is also the case for 

d[Sp] 
and 

dy i dy i 

Therefore, the function S will have the form 

Q.E.D. 

^ \dyxJ sin 

+ dyi + x°2y2 + x03y3+■■ 

If, in this expression, the constants 

3 V0 V0 y° 
/T, A2 , A3 , • • • > n f 

■ + xnyn (20.13) 

are made to vanish, then A will admit of a zero of order q + 2 and A x will 
admit of a zero of the roder q + 1 for yx = 0. This is necessary for dS /dyk 
to have a double zero and for dS /dyx to have a single zero. 
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After this, we must consider the following equations, analogous to 

Eqs. (20.2): 

dS 
’ 

dy, 

6,w ri 
dS 

dA 
(20.2a) 

wk + dkwl = 
dS 

dxï 

In these expressions, after differentiation, we must set 

A = x°k — 0 . 

However, it is also possible, even before differentiation, to set 

A = x°k = 0 

in the first equation of the system (20.2a), and 

4=o 

in the second equation, and 

A = 0 

in the third equation. 

The essential point here is not to cancel, before the differentiation, the 

variable with respect to which one differentiates. 

The first equation of the system (20.2a) indicates that the terms xt can 

be expanded in sines and cosines of multiples of 

y > y2, y3> • • •, yn ■ 

Let us now consider the third equation of the system (20.2a). If we set 

there A = 0, we will see that S is of the form (20.11 ); on differentiating 

Eq. ( 20.11 ), we obtain 

dS d/3\ dS' 

dx°k dx°k dx°k 

whence 

Wl6k +wk=yl-^ + yk +-^~. (20.14) 
dx. ^ dx k 

The last term on the right-hand side can be expanded in sines and cosines 
of multiples of 
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Let us next pass to the second equation of the system (20.2a). To obtain 

dS/dA, we differentiate Eq. (20.13) after having set x°k — 0. 

This yields 

dyx 

(where D is a constant), since <p2 becomes zero. 

Consequently, we have 

dS 

dA 
(W) — V,. 

, 2 \dyj sin J" 2 \dyj 

(20.15) 

After differentiation, we set A = 0. Then, for = 0, the quantity dSx/dyx 

admits of a single zero, while A admits of a zero of the order q -f 2 and A, 

of a zero of the order q + 1. 

It follows from this that the first term on the right-hand side of Eq. 

( 20.15 ) remains finite but that, in the second term, the quantity under the 

integral sign admits a simple pole for_y, = 2kn such that it can be brought 

to the form 

a 
+/0h) , 

2 sin (jZj/2 ) 

where/ (yx ) is a finite and periodic function. 

Thus the integral itself diverges logarithmically for yx — 0, yx — 2tt, 

... ; that is to say, this integral can be brought to the form 

y. 
a log tan-if>, 

4 

where ^is a function ofj^ that remains finite for all values ofj>[, while a is 

a constant. 

Thus we have 

-= a log tan — + yyl + 0 , 
dA 4 

where y is a new constant while © is a function expanded in sines and 

cosines of multiples of 

whence 

y 2> .V3> yn » 

wx6x = a log tan yi 

4 
+ yyx + © ■ (20.16) 
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It is now a question of using Eqs. (20.14) and (20.16) for findings as a 

function of w. 

Since the right-hand side of Eqs. (20.14) and (20.16) can be expanded 

in powers of V/7, let us seek the first terms of the series. 

The term independent of V/T reduces to zero on the right-hand side of 

Eq.(20.16) and to 

dx° 

on the right-hand side of Eq. (20.14). 

As for the term in yf/u, it must reduce in Eqs. (20.14) and (20.16) to, 

respectively, 

i— dS , I— dSx 
Ju- and —-. 
^ dx°k dA 

With respect to the first of these quantities, we merely remark that it 

depends only on yx but not on y2, y3,.. ■, y„ ■ 
With respect to the second of these quantities, setting 

A — x°k = 0 , 

and differentiating, we find 

dSi _ D f dyx 

dA 2 J ' 

That said, , let us consider the right-hand sides of Eqs. (20.14) and 

(20.16). 

These are n functions oïyx,y2, ■ ■ ■ ,yn ■ Their functional determinant A 

with respect to y,, y2,... ,yn is divisible by However, if one divides by 

and if, after this division, one sets fi = 0, this functional determinant 

will reduce to 

D 

2 

The expression does not vanish for any system of values ofy, since Fx never 

is infinite. 

Consequently, if is sufficiently small, A will not vanish. 

On the contrary, A may become infinite. In fact, the right-hand sides of 

Eqs. (20.14) and (20.16) become infinite for 

yx = 2kv. 

As a result, if one assigns to_y2,_y3,.. . ,yn all possible values and varies yx 

from zero to 2tt, A will not change sign. 
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For simplification, we will take 

0i = i, ek = 0, 

such that Eqs. (20.14) and (20.16) can be written as 

wk — y\ " Tyk + ■ ■ > (20.14a) 
dxk dx£ 

wx = 2 log tan — + yyx + 0 . (20.16a) 
4 

Because of the presence of the logarithmic term, a variation of from 

zero to 2tt will cause wx to vary from — oo to + oo. 

Consequently, if one assigns all possible values toj^ and varies yx from 

zero to 277, the quantities w will take all possible values. In addition, we 

have seen that A will not change sign under these conditions. 

Therefore, the y are uniform functions of w for all real values of w. In 

fact, starting from Eqs. (20.14) and (20.16) and applying the theorem of 

no. 30, one can expand the quantities^ in powers of 

wx — hx, w2 — h2, .... wn—hn, 

where hx, h2,. . ., hn are any constants, since the functional determinant 

never vanishes. 

We should add that 

y i, y2 - ^2, 

are periodic functions of 

.Vs w 3» yn - Wn 

W2, W3, . . . , Wn , 

and, indeed, when.y*. increases by 2ir, wk increases by 2n. The first equa¬ 

tion of the system (20.2a) then shows that the terms xt are also uniform 

functions of w, periodic with respect to 

Wi w„ j2, w3, . . 

When wx tends to + oo, yx tends to zero or to 2tt. We then have to deter¬ 

mine what becomes of Eqs. (20.14) and (20.16) when one sets there, for 

example, 

wx = co, >^i = 0. 

Equation (20.16) becomes illusory, and Eq. (20.14) can be written as 

dS' 
wk=yk + 

dx° 

From this one obtains y2, y3,... ,y» as functions of the n — 1 arguments 

^2> ^3» W„ 

It is obvious that yk — wk is periodic with respect to w2, w3, .. ., wn. 
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Consequently, let 

yk=wk+ yk(w2,w3, ...,wn). 

If, in the first equation of the system (20.2a), we set y, = 0, this expression 

reduces to 

x, = 0 - 

Thus, we can find a particular solution of Eqs. (20.2a) by setting 

*i =x, =yx = 0, yk=wk+vk. (20.17) 

The meaning of these equations (20.17) is evident. 

In no. 209, we found a generalization of the periodic solutions. In fact, 

we formed the invariant relations 

x\ = V, y i = £ xi=£i. 

Because of the hypothesis made at the beginning of this number, these 

invariant relations reduce here to 

*i =yi = x, =o. 

We recognize here the first three equations of Eqs. (20.17). 

These four equations (20.17) thus furnish, in a new form, the general¬ 

ization of the periodic solutions. It is obvious that x,, yt, and yk — wk are 

expressed as periodic functions of n — 1 arguments of the form 

wk = nkt + cok . 

In the particular case in which there are two degrees of freedom, only a 

single argument w2 remains. 

Then xx, x2, yt, and y2 — w2 are expressed as periodic functions of w2 

and thus also of time. This readily yields the periodic solutions, as they 

had been defined in Chap. 3. 

An interesting consequence is the fact that, if there are only two degrees 

of freedom, series (20.17) are convergent whereas they are of value only 

from the viewpoint of formal calculus as soon as the number of degrees of 

freedom exceeds two. 

216. Let us specifically investigate what happens when wu for exam¬ 

ple, is negative and very large. The corresponding values of jq will then be 

very small so that the right-hand side of Eq. (20.14) can be expanded in 

ascending powers of_y,. 

So far as Eq. (20.16a) is concerned, we will transform it as 

ew,/a = tan — eyy,/a e&/a . (20.16b) 

If a is positive, as I will suppose, to be specific, and if is negative and 

very large, then the exponential 

ew'/a 
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will be very small. The right-hand side of Eq. ( 20.16b) can be expanded in 
powers of >>,. 

Thus let us write our equations in the forms 

wk = yk + *Pk > (20.14b) 

ew'/a = if>x. (20.16c) 

The terms xp can be expanded in powers ofy, and of V/7, while each of the 
terms of the series will be periodic with respect to 

y2, y3, • • •, yn ■ 

Consequently, both sides of Eqs. (20.14a) and (20.16b) can be consid¬ 

ered as having been expanded in powers of yv yf/u, and ew'/a. 

Let us note that a can be expanded in powers of yf/u and let 

a,V/7 
be the first term of the series. 

On the other hand, the first term of the expansion of y and of 0 will be a 

term in yjjî, such that the expansion of y/a and of 0/a will start with a 

term independent of V/7. 
If, in Eqs. (20.14b) and (20.16c), we set /u = 0 they will become 

dx° 
wk =yk +-r-^y> 

dxl 
aw,/a _ dS,/a,dA 

The functional determinant of the right-hand sides of these equations, 

with respect to^, y2,... ,yn, reduces to 1 foryx — 0. 

This permits application of the theorem of no. 30. 

It follows from this that, for all values of 

w2, w3,...,wn, 

the quantities y can be expanded in powers of yf/u and of 

ew'/a. 

The coefficients of the series are functions of 

w2, w3, ..., wn . 

To ascertain the form of these functions, let us note that an increase in yk 

by 2v will cause an increase in wk by 2v. 

We conclude from this that 

y i and yk - wk 

can be expanded in series developed in powers of 



670 CELESTIAL MECHANICS 

V/z and ew,/a, 

whose coefficients are periodic functions of 

w2, w3, ..., Wn . 

The first equation of the system (20.2a) then directly demonstrates that 

the quantities jc, can be expanded in series of the same form. 

If, instead of assuming wx to be negative and very large and .y, to be 

close to zero, we had assumed w{ to be positive and very large and very 

close to 2tt, we would have arrived at the same result. However, instead of 

series proceeding in powers of 

V/z and ew,/a, 

we would then have had series proceeding in power of 

V/I and e~w'/a. 

Let us return to the case in which is negative and very large and in 

which _y, is very close to zero, and let us assume that there are only two 

degrees of freedom. 

In that event, we have only two arguments 

W\ and w2, 

and our series will proceed in powers of V/z and of ew'/a as well as in sines 

and cosines of multiples of w2. Since the arguments wl and w2 are linear 

functions of time, our series proceed in powers of V/z and of an exponential 

whose exponent is proportional to time, since the coefficients of the var¬ 

ious terms are periodic functions of time. Consequently, these do not 

differ from the series studied in Chap. 7 defining the asymptotic solutions. 

From this, a consequence is obtained which has been demonstrated in 

Chap. 7. 

If the series remain arranged in powers of V/z and of the exponential, 

they will not converge and will be of value only from the viewpoint of 

formal calculus. If the series are arranged in ascending powers of the 

exponential alone (thus combining, into a single term, all terms contain¬ 

ing the same power of exponential but differing powers of /z), the series 

will become convergent. If, conversely, this operation is performed for the 

case in which more than two degrees of freedom exist, then the series will 

not become convergent. 

217. At the beginning of no. 215, we made certain hypotheses as to the 

function F. We assumed that we had 
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for 

*i = */ =yi = 0. 

We added there that, if the function F did not satisfy these conditions, it 

would be sufficient to carry out the change of variables as indicated in nos. 
208 and 210. 

Let us thus assume that the function F does not satisfy these conditions. 

Let Xj and be the old variables and let us make the change of variables as 

given in no. 210; in addition, let x' and be the new variables. We then 
have 

xl=x\+y, y[=yx-Ç, y',=y,y 

  

(20.18) 

(see no. 210). 

With the new variables, the conclusions of the last two sections become 

applicable so that 

x[, *'k, y\, y'k-wk 

can be represented by series arranged in powers of y[/ü and of cosines and 

sines of multiples of 

whose coefficients are uniform functions of wx. These uniform functions 

can be expanded in powers of ew,/a if wl is negative and sufficiently large, 

and in powers of e~w,/a if wx is sufficiently large. 

From the relations (20.18) that connect xt andyt with x' and>>', it is 

permissible to conclude that 

xx, xk, yu yk — wk 

are still expandable in series of the same form. 

The only difference here is the fact that, for wx = — oo, the terms x\, 

xk, and_yj reduce to zero, whereas xv xk, and do not vanish. 

Setting w, — — oo, from which ew,/a = 0 follows, we find 

*i =<Pu xk=cpk, yx=<p\, yk=wk +<p’k , (20.19) 

where and cp ' represent series arranged in powers of V// and in trigono¬ 

metric terms of multiples of 

On eliminating w2, w3,...,w„ from the relations (20.19), we necessarily 

must find 

xx=V> yi=i> xk=£k, 
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i.e., the relations given in no. 209. If there are only two degrees of freedom, 

the relations (20.19) will simply represent a periodic solution (see no. 

208). 

Setting 

wx = + oo, whence e ~ w,/a = 0 , 

we similarly obtain 

*k=<Pk> y\ = <P I + 2tt, yk = wk+<p'k. 

The series studied in this chapter could be obtained directly by procedures 

analogous to those given in Chaps. 14 and 15. Despite the obvious interest 

of this topic, we cannot pursue it further since this would lead too far. We 

will restrict ourselves here to recalling that, by the change of variables 

given in no. 206, one returns to the problem of no. 134 to which the 

methods given in Chaps. 14 and 15 are directly applicable. 

Comparison with the Series of No. 127 

218. We have seen in no. 211 that the series of nos. 204 et seq. can be 

derived from those of no. 125. We propose here to see how the series of the 

present chapter can be deduced from those given in no. 127. 

Let us start by treating the simplest case, namely, that of no. 199. In this 

case, our equations (omitting the subscript 1, which has become useless) 

can be written as 

x = V C — ii cos y , 

Ow = I dy 

V C — n cos y 

(20.20) 

where 20tt denotes the real period of the integral on the right-hand side. 

These equations permit calculating x and y as functions of the argument 

w, of the constant C, and of /u. 

If we first assume that n is very small with respect to C,the terms can be 

expanded in ascending powers of /z, resulting in the series of no. 127. If, 

conversely, C is comparable to //, we will put C = C, and thus return to 
the series studied in the present chapter. 

Let us now investigate this in somewhat more detail. Equations 

(20.20) prove that x, cos y, and sin y are doubly periodic functions of Ow 

or, which comes to the same, of w. Let cox and co2 be the two periods 

(considering Ow as the independent variable). For example, cot will be 

equal to the integral on the right-hand side, taken between zero and 2tt, 

while co2 will be equal to twice this integral taken between + cos-1 C/^. 

In addition, when 6w increases by co2, the quantity y does not change 

whereas, when 6w increases by cox, the quantity^ increases by Itt. 
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If C> |/z|, then cox is real and we must use 6 = cox/2tt. In that case, x 

and y — w are periodic functions of w, with period 2v. If p, is small with 

respect to C, the terms can be expanded in powers of// (which leads to the 

series of no. 127), and each of the terms will be periodic, with period 2ir 
with respect to w. 

However, if C is of the same order of magnitude as n and if we put 

C = Cjj,, it will happen that, for one and the same value of Cx, the period 

cox and the coefficient 0 will be proportional to 1/V/i. If we then put 

e_ 

V/7 
#0 = 

Eqs. (20.20) become 

x — \jji yjCx — cos y , 

e„w = \-ÈL- (20.20a) 

VC, — cosj> 

The second of these equations no longer depends on //. We derive from 

this y — to and x/yf/u as series expanded in sines and cosines of multiples of 

w, depending on Cx but not depending on //. These are the series of the 

present chapter. 

The series obtained first, expanded in powers of /jl and analogous to 

those of no. 127, were—as is easy to demonstrate—of the following form: 

X = Jc + liC -1/Vi + n2C ~2I2(P2 + H3C _5/V3 + • • •, 

y = w + i + ^0 xt>2 + • • •, 

(20.21) 

where cp and xp are independent of both fi and C but are periodic, with 

period 2tt with respect to w. 

If we next set C = C, ju, then y and x/Vÿü, as I have said, will no longer 

depend either on Cx or on /u. 

Thus to pass from the series of no. 127 to those in this chapter, it is 

necessary to set C — Cx n and to again develop the series in ascending 

powers of //. In the particular case of interest here, the new expansions 

obtained in this manner reduce to a single term since x contains only terms 

in and since y contains only terms independent of p. 

As soon as C, is larger than 1, the quantity co, is real and x and y — w 

are periodic, with period 2tt with respect to w. However, if Cx is smaller 

than 1 then cox becomes imaginary and co2 is real. Thus, we must take 

0 = co2/2tt. Then, x and^ (but no longer y — w) are periodic, with period 

2tt with respect to w. 
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If we take w as the independent variable, a discontinuity will occur due 

to the fact that the definition of 0 changes when C, passes from a value 

larger than 1 to a value smaller than 1. This drawback can be avoided by 

taking 9wyf/u as the independent variable. 

In fact, if x and y are expressed as functions of OwyJJi and of C,, the 

expressions obtained for C, < 1 are the analytic continuation of those ob¬ 

tained for Cj > 1. 

Let us start from the series (20.21 ), i.e., from the series of no. 127, and 

let us set there C = Cxyi, so that 

-^ = ci/2 + cr1/v1 + cr3/v2+ •••, 

y = w + -^-i/> l + + ■■■ ■ 
Cl C ! 

(20.21a) 

These series are convergent if C, is sufficiently large. In this case it is 

sufficient to sum them. When the series become divergent, the functions 

x/y[/u andy can still be extended by analytic continuation. It happens that, 

as one continues to values of Cx smaller than 1, the form of these functions 

will be completely modified since the real period becomes imaginary and 

vice versa. 

Consequently, the double periodicity constitutes the explanation for 

the widely differing cases encountered in our study. The period which is 

real in the ordinary case becomes imaginary in the case of libration and 

vice versa. In the limiting case, one of the periods becomes infinite. 

However, this raises the question as to how these results can be ex¬ 

tended to the case in which F = x2 + fj,Fx, where Fx is an arbitrary func¬ 

tion depending only on_y and being periodic in_y; then Eqs. (20.20) be¬ 

come 

x = V C — fiFx , 

ew - I— 
J ^C-juFx 

Let A be the maximum of F x. 

This represents the ordinary case if 

C>A/i 

and the case of libration if 

(20.20b) 

C <Afi,. 

However, here x, cos y, and sin y are no longer elliptic functions of w. 

They are no longer uniform and doubly periodic for all real and imaginary 

values of w ( despite the fact that they naturally remain uniform for all real 
values of w). 
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The foregoing results nevertheless remain valid. 

It is sufficient to restrict ourselves to a domain D such that the imagi¬ 

nary part of Qw be sufficiently small and that, on the other hand, C be 

sufficiently close to Afi. 

If x, cosj>, and sin y are considered as functions of 6w and of C (or of 

and of C, = C /[i ), then these functions will be uniform and doubly 

periodic, provided that one does not leave the domain D. One of the per¬ 

iods is equal to the integral on the right-hand side [Eq. (20.20b) ] taken 

between 0 and 2v while the other period is equal to twice this same integral 

taken between two values ofthat render //F, equal to C. 

This is sufficient for having the conditions under which one passes 

from the ordinary case to the libration case become the same as in the 

particular case studied first. 

To facilitate extension of these results to the general case, it is possible 

to introduce the mean motion «, which we will denote here simply by n 

since we have everywhere eliminated the now useless subscript 1. 

According to the princples of no. 3, it then follows that 

_ 1 _ 2tT 

6 o)\ 

On the other hand, if n is expanded in powers of//, as had been done above, 

such that 

n = «° + /un ' + • ■ • , 

we will obtain, for // = 0, 

f dy 2 tt 
°>i = —=r = —^> 

j Vc y[C 

whence 

„°<h = Vc. 
Thus we can take n° and // as variables instead of C and //. 

In that case, series (20.21) will proceed in powers of // and of 1 /n°, 

which makes them analogous to the series considered in no. 201 which 

contained terms in 

Finally, let us pass to the general case. 

Let us consider the series of no. 127. These express the In variables xt 

and yi as functions of n arguments 

wu w2, .. ., wn 
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and of n constants of integration. For example, we will select, for the n 

integration constants, the quantities that we had previously denoted by 

«?, «°. •••> «°- 

In our series, which proceed in integral powers of pi, the small divisors 

+ m2n°2 + ••• + 

appear in the denominators. 

Let us now assume that one of the small divisors becomes very small. 

For example, let us assume that this divisor is nl0 ( since, if it were another, 

it would be impossible to carry out the change of variables of no. 202 ). Let 

us first see what the maximum exponent of n°{ in the denominator of each 

of the terms of our series will be. 

According to what we have seen in nos. 201 and 211, the expansion of S 
contains only terms in 

(n°y 

where 

q<2p — 1 . 

If we then form the equations 

x, = 
dS dS 

dx° dy> 

we will again find that the derivative dS/dyt contains only terms in 

)q. However, in the derivative dS /dx°, there also will appear terms 
in 

dx? 

dn° 
[(«?)-*] = -qpp—^(n°x)-q-' 

dx; 

i.e., terms in 

From the equations 

(«,) 0 \q + 
- (q^2p-\). 

W: - 
dS 

dx° 

we then obtain the yt as functions of wt and of or, if preferred, as 
functions of iu, and of n integration constants 

n° n° n\> n2> 

Accordingly, we see that the expansion of y will contain only terms in 
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(n°,)g+l 
(q<2p - 1) . 

Let us then substitute the resultant values of y into the equations 

x,. =-. (20.22) 
dy, 

Before the substitution, the right-hand side of Eq. (20.22) contains only 
terms in 

Let 

jjP 

<Pa O' 1^2. • • ■ >y„ ,n° ,n°2,... ,n°n ) 

be one of these terms, since <pa does not become infinite for n° = 0. After 
the substitution, we have 

Va = X - 
(«i ) 

where xp does not become infinite for «° = 0. 

The general term on the right-hand side of Eq. ( 20.22 ), after the substi¬ 

tution, will thus have the form 

(.n°x)q+h 

and it will be obvious that 

q h<*2(p A) — 1 . 

This yields the general conclusion that, in the series of no. 127, the expres¬ 

sions of x, contain only terms in 

Pp 
{n°xy 

while those of yt contain only terms in 

(«?)9+1 ’ 

where 

q<2p — 1 . 

That said, let us assume that n° is very small and of the same order of 

magnitude as V/7. Let us then put 
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/i?' = a,>/// + (XjH + a3 /a213 + * • * , 

where a represent new constants. This is what we had done in no. 211. For 

example, one can just simply put 

n°i • 

After this substitution, a term in 

(»?)’ 

is no longer of the order p in p. but of the order p — q/2. 

Let us then group those of the terms of our series that have thus become 

of the same order in pi. Each of the resultant groups will form a subseries; 

the total series will be the sum of all these subseries. 

To obtain the series of the present chapter, it is sufficient to form the 

sum of each of these subseries. 

If a, is sufficiently large, the subseries will be convergent (the main 

series naturally will remain divergent and will be of value only from the 

viewpoint of formal calculus). However, if a, is too small for having the 

subseries become convergent, one can still proceed by analytic continu¬ 

ation, which is easy to understand. 

In this manner, the function 

1 

1 + x ’ 

defined by the series 

1 — x + x2 — • • • , 

continues to exist after the series has ceased to converge. 

Let us therefore consider the sum of one of these subseries. This sum 

will first be periodic, with period 2tt, in w2, w3,. . ., wn. In addition, it will 

be a function of another argument 0lwl, uniform for the real values of this 

argument and for the values whose imaginary part is sufficiently small— 

or, in other words, as long as the argument dx w, remains in the interior of a 

certain domain containing the entire real axis. If or j varies between certain 

limits, this function, at the interior of this domain, will be uniform and 

doubly periodic, with one of the periods being real and the other imagi¬ 

nary. For a certain value of ax, one of the periods becomes infinite after 

which the real period becomes imaginary, and vice versa. 

This is the manner in which one passes from the ordinary case to the 
case of libration. 
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Extension of the Bohlin Method 

Extension to the Problem of No. 134 

219. At the beginning of Chap. 11 we explained the particular difficulties 

encountered in the three-body problem. These difficulties are due to the 

fact that all variables of the first series, i.e., the variables x,-, do not figure in 
the function F0. 

In Chaps. 11 and 13 we showed how to overcome this difficulty and 

still derive a function S' expanded in powers of ji, satisfying the Jacobi 

equation 

F=C, 

and having a form such as to have its derivatives with respect to y, be 

periodic functions of >>, . 

In addition, this function S depends on n constants of integration, for 

example, on the n quantities 

n°, n°2, . . ., «°. 

If one of the linear combinations 

+ m2n2 + • • • + mnn°n 

is very small and of the order of magnitude of V/Â we can put, as we had 

done in no. 211, 

«, — a° + a)y[/u + afa + • • 

where af are new constants, and then assume that 

mla°l + m2a°2 + • • • + mna°n = 0. 

Let us then arrange each of the terms of S in ascending powers of 4JÏ 

and let us group all terms containing like powers of as factor. Each of 

the groups of terms obtained in this manner must exhibit the same prop¬ 

erty as the function S itself, i.e., the derivatives must be periodic func¬ 

tions of y. 

Thus it can be predicted that Bohlin’s method is still applicable to cases 

in which F0 does not depend on all variables of the first series and, particu- 

679 
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larly, to the three-body problem. However, this application raises several 

delicate questions, which need be discussed in greater detail. 

220. Therefore, let us imagine that F0 does not depend on all variables 

of the first series. To show this explicitly, we will denote the variables of 

the first series by 

•*■1» -^2’ • • • > Xp, Z|, Z2, • • • , Zq, 

and the corresponding variables of the second series by 

y„y2> ■ ■ ->yP> «2, • • •, 

and then assume that F0 depends on all x, but not on z,-. 

We propose forming a function Sofy and of u which would satisfy the 

Jacobi equation 

idS dS 

\dy, ’ dut ’ 
J>,> = C, (21.1) 

where it is assumed that, on the left-hand side, the variables of the first 

series xi and z, have been replaced by the corresponding derivatives 
dS /dy, and dS /du,. 

We stipulate also that the function Sbe expandable in powers of V/7 and 

that its derivatives be periodic with respect to y and to u. 

Setting u — 0, Eq. (21.1) becomes 

F (dSo dSo 
° Wi ’ dy2 ’ ' ■ 

which indicates that S0 is of the form 

dSo\ 
dypJ 

— C0, 

*^0= x°i y\ + *2 y2 + ■ ■ ■ + x°P yP + t0, 
where T0 depends only on u. 

We put 

(21.2) 

If no linear relation with integral coefficients exists between the terms 

«°, no difficulty arises and the calculations of Chap. 11 become applicable; 

one can form the function Sq, which will contain only integral powers of ^ 

since the terms containing odd powers of y[Ji vanish. 

Therefore, let us assume that a linear relation exists between the quan¬ 
tities n° and let 

«° = 0 

be this relation. This can be assumed to be so since, in the contrary case, 
the change of variables of no. 202 could be applied. 
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Before going further, let us introduce a new notation. Let U be any 

periodic function of y depending also on u. We will denote by 

[U] 

the mean value of U considered as a function of y2, y3,. . ., yn and by 

[[U]] 

the mean value of U considered as a function of yu y2,..., y„. 

From this definition it results that [ U] is a function of yx and of u 

whereas [ [ C7] ] is a function of only u. 

Assuming that U, instead of being a periodic function ofy, is a function 

such that its derivatives are periodic and that 

U = + x°2 y2 + • • • + x°p yp + U', 

with U' being periodic and x° being constants, then we can put 

[C] = x° yx + x°2y2 + • • • + x°p yp + [ U'), 

and 

[[U]]=x01yl+x°2y2+---+x°pyp + [[U']}. 

After this, let us return to Eqs. (19.19) of no. 204. The first of these 

equations is nothing else but Eq. (21.2), which we had considered above. 

The second equation indicates that 

d^ 

dy2 dy3 ’ ’ dyn 

are constants. Without restricting the generality, we can assume that these 

constants are zero. This actually means returning to the hypotheses 

(19.25) of no. 204. 

Then, .!>! will be a function only ofjq and of u such that 

S1=[S1]. 

Let us now consider the third equation of system ( 19.19). 

The function <l>, which appears on the right-hand side, is nothing else 

but — Fv 

The second term on the left-hand side reduces to 

J_ d2F0 fdS{\2 

2 dx°2 \dyj 

since the other dSx/dyt are zero. 

On putting 

2 dx°2 
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the equation will become 

- X «° —+ (—)2 = C2-Fl. (21.3) 
dyt \dyj 

However, it is important to note that here the function F} is not known. In 

fact, this function depends on x, z, y, and u and the terms x{ must there be 

replaced by the terms x° which are known, while the terms z, must be 

replaced by 

dS0 _ dT0 

dUj du, 

which are not known. 

Let us now take the mean values of both sides with respect to y2,y3, ■ ■ ■ , 

y„. First, the terms [dS2/dyj ] reduce to constants and, without restrict¬ 

ing the generality, it can then be assumed that these constants are zero 

since this means returning to the hypotheses ( 19.26) of no. 204. 

On the other hand, 

A]2 JAV 
■dyx\ \dyj 

since St does not depend ony2, y3,... ,yn. 

Finally, it is of importance to mention that, in calculating the mean 

value of Fu one can operate as though the functions dT0/dui (which must 

here be substituted for z, ) were constants since these functions do not 
depend on^2,^3, . . . ,yn. 

Thus we obtain 

^(^)! = C2-[F,], (21.3a) 

whence 

dS±= \C2~ I^I 

dyi Y A 

Let us now take the mean-square values of both sides with respect to^j, 
so that 

TrfSV ■ 

/c2-[E,] 
LL^fJ IV ^ JJ 

If 5, is a function whose derivatives are periodic, then the left-hand side 

will reduce to a constant which we denote by h. Consequently, we must 
have 
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or 

f*2lT 

\JC2— [E,] dy{ = 2irAh. (21.4) 
Jo 

The left-hand side depends on «, and, in addition, on the derivatives 

dT0/du, that enter Fv Consequently, a partial differential equation de¬ 

fines T0. We will define this function T0 in such a manner that its deriva¬ 

tives become periodic. Then, Eq. (21.4) can be written in the form 

0 , u,j = 2nAh. (21.4a) 

Thus everything reduces to an integration of this equation (21.4a). We 

will turn to this later. Let us first assume that the integration is possible 

and let 

T0 — z° w, z2 u2 + • ‘ ‘ + z°q uq + T '0, 

be a complete solution of this equation, containing the q constants of 

integration z°. Naturally, we assume that T'0 is a function of and of the 

constants z°, periodic with respect to ut. 

After T0 has been determined in this manner, it becomes possible to 

calculate dSx/dyx and thus also 

Si-ttS',]]- 

Consequently, we can write 

s^s[ +r„ 
where S [ is a known function of yx and of u, while Tx is a still unknown 

function of u. 

Equation (21.3) will then yield 

-Xn°^T= [Fil-F» 

from which we deduce 

dS2 dS2 

dy2 ’ dy2 ’ 

Let us now consider the fourth equation of system (19.19). 

In the second term on the left-hand side, the quantities dS2/dyi are 

known except for dS2/dyv Therefore, this second term can be written as 

follows: 

P, S2-[S2]. 
dyn 

2AdS2dS1 + (t>' 

dyx dyx 

On the other hand, in Eq. ( 19.19 ) we designated the right-hand side by 
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since it was completely known. However, here this is no longer the case 

since the right-hand side depends on dSx/du, and thus also on dTx/dut 

which are unknown. It is easy to demonstrate that the right-hand side will 

have the form 

-x 
dP\ dTx 

+ 4>, 
dz, du i 

where 4> is known. 

Therefore, our equation is written as 

_ ^ n° _|_ 2a ^ dF\ dT\ 

dyi dy i dy i dz, du, 
- O. (21.5) 

It is obvious that, in dFx/dz„ the terms x, and z, must be replaced by x° 

and dT0/dUi, respectively. 

Let us take the mean values of both sides with respect to_y2, y3,... ,yn. 

As above, we can assume that the mean values of dS3/dyt (/> 1 ) are zero. 

This yields 

d[S2] dSi | ^d[Fx] dTx ^ 

dy i dyx ^ dz, du, 
(21.6) 

From this, we derive that 

^ djF^dTi 

d [^2] _ ^ dz, du, 

dy, 2AdS, 

dyx 

Both sides of this equation depend onjqand on u. The mean value of the 

left-hand side must reduce to a constant to which, without restricting the 

generality, we can assign an arbitrary value, for example, the value zero. 

Consequently, we must have 

<ï> y d t^] 
^ dzt 

dTx ‘ 

dut 

2AdS< 
dy, 

which can be written in the form 

/"•27T I 
<Uf|] dTI 

dz( du, 
dy = 4>, 

J 0 2VQ- [E,] 
(21.7) 
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or else 

I 
de dT, 

dzt du i 
= <l>. (21.7a) 

Here, 0 is a function of z, and of periodic with respect to . On 

replacing there the terms z, by dT0/dut, one obtains the left-hand side of 

Eq. (21.4a); similarly, in Eq. (21.7a) we assume that, in the derivatives 

d0/dz{, the terms z, have been replaced by dT0/dut. 

Equation (21.7a) must determine Tv We will demonstrate that its 

integration is easy if one knows how to integrate Eq. (21.4a). 

Actually, if we know how to integrate Eq. ( 21,4a), we will have defined 

a function T0 depending on u, and on q constants z° such that, if its deriva¬ 

tives in 0 are substituted for the terms z,, this function 0 will reduce to a 

constant with respect to , i.e., to a function of z° which we will call 

f?(z?,Z°„ 

On the other hand, we will put 

Z; 
dT0 . 

dut 
u° = 

dT0 

dz° 
(21.8) 

This will yield 2q relations between the 4q quantities z,, , z°, «°, in 

such a manner that we can take, as independent variables, either z, and «, 

or z° and u{ or z° and «°. 

To avoid any confusion, we will represent the derivatives by the symbol 

d if we use z, and u, or z° and «° as variables and by the symbol d if we use z° 

and «, as variables. 

In Eq. (21.7a), 0 must be considered as expressed by means of z, and 

«, (since it is only after the differentiation that z, is replaced by dTJdUj ). 

Conversely, T1 is a function of «, depending also on the integration con¬ 

stants z°. With our new notation, Eq. (21.7a) must then be written in the 

form 

v d0 dT, 
^ dzt dut 

On the other hand, we identically have 

0 = d 

and, since 0 depends only on z°, 

du i 

This equation can also be written as 
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dQ y dQ dzk _ ^ 

du( ^ dzk dui 

We have, in addition 

dT, dT, 
+ E 

dT, dzk 
= 0. 

dut du, ^ dzk du,■ 

After this, one can successively find, on transforming Eq. (21.7a), 

dQ dT v uyj U1 1 i_ V 
/V*r rli! 

dQ dT, 

Jz, dut 

or, on permuting the indices, 

dZj dzk du, 

dQ dT. 

= 0, 

y c/0 dT 1 ^ y UÜ UJ ! ^ 
^ c/z, c/«, ^ dzk dz, du, 

since 

whence 

dzk 

du. 

dz, d2T o 

du,. du, du. 

if d@ dT, d& dT,\ 

\dz, dui du, dz, 
= 0 

or, using «° and z° as variables, 

I 
dQ dTx dQ dTx \ 

O. 
,</z° c/w° du° dz° 

Since 0 reduces to 6 which does not depend on «°, we finally obtain 

I 
d9 dT, 

dz° du° 
= 4>, (21.7b) 

where 0 must be expressed as a function of the variables u° and of the 

constants of integration z°. Since the derivatives of 6 depend only on the 

constants z°, they also are constants. It follows from this that, since Eq. 

(21.7b) is an expression with constant coefficients, it can be directly inte¬ 

grated. 

The quantity 0 is periodic with respect to . It happens often that the 

form of the function T0 and of Eqs. (21.8) will be such that the terms ut 

are uniform functions of «° and vice versa. Then, the differences «, — u° 

will be periodic functions either of w, or of «°. 

Thus 0, which is periodic with respect to w, , will also be periodic with 

respect to «°. In that case, Eq. (21.7b) can be integrated in such a manner 

that the derivatives dT{/du° are periodic with respect to u°t or, what 
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amounts to the same thing, in such a .manner that the derivatives dTl/dui 

are periodic with respect to u, or else that Tx increases by a constant when 

«, increases by In. 

Since Eq. (21.7) has been integrated in this manner, Eq. (21.6) will 

yield d[S2\/dyl, so we can write 

S2 = S'+T2, 

where S 2 is a completely known function of y and u while T2 is an un¬ 

known function which depends only on u. 

Then, Eq. (21.5) can be written as 

V = 
^ dy, 

which then determines 

dS3 dS3 

dy2 ’ dy3 ’ 

and so on. 

p, S3-[S3] 
dyn 

Extension to the Three-Body Problem 

221. Everything is thus brought back to an integration of Eq. (21.4). Let 

us see what the form of this equation will be in the case of the three-body 

problem. The equation is written in the form 
r*2it 

yjC2 — [T,] dyx — 2vAh. 
Jo 

But what is the form of [T,]? 

As variables, we will select the quantities 

a,, a;, glf 

A\, Vu V'i 

defined in no. 145 [see Eq. ( 12.16) ], to which, if the three bodies do not 

move in the same plane, we must add the variables 

P’ P\ 

q, q', 

defined in Vol. I, Eqs. (1.28). 

After this, the function Twill be expanded in positive powers of^, Ë,x, 

§\,7jx, rj[,p, q,p', q' and in sines and cosines of multiples of A, and A [. A 

term in 
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COS 
( mA | -f- m A \ ) 

sin 

must contain as a factor a mononomial whose degree with respect to the 
variables r/vp,q,. . . is at least equal to \ m + m'\ and could differ from 
this only by an even number. Finally, F0 will depend only on A, and AJ. 

Let us then imagine that we have 

m 
dF0 

dA'I 
+ m' 

dF0 

d\\° 
= 0, 

where m and m' are two integers, while A” and AJ° are two constants to 
which we will equate dS0/dA, and dS0/dA \, and which consequently are 
analogous to the constants that we denoted by x° in the previous number. 
We then put 

mAl + m'A [ = yv 

For forming [E, ] it is only necessary to eliminate, in Fv all terms depend¬ 
ing on Aj or on A [ except those that depend only onyx. 

To show explicitly the degree of each term with respect to the eccen¬ 
tricities or inclinations, let us replace everywhere 

i> V» £[> V'u P, (b p\ q' 

£Vv e£'\> «7Î. ep, eg, ep', eq' 

by 

and let us account for the degree of each of the terms of Fx with respect 
to e. 

We will have 

[Fl]=R + R\ 

where R represents the set of terms that are simultaneously independent 
of A, and of A J, such that 

R=[[FlU 

and where R ' is the set of terms depending on y„ and on y, alone. 

Then, R can be expanded in powers of e2 so that 

R — Ro + e'2 Rj + €4R4 + ■ ■ ■ . 

As to R ', it is divisible by 

g\m + m'\ 

In general, we will have 
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in such a manner that we can put 

R ' = e’R ". 

Here, R0 depends only on A1,’ and on AJ° and may be considered as being a 

constant. Consequently, we can put 

C2 = R0 + k q + 

and, at the same time, 

Ah = k0 -\- e2k \, 

such that Eq. (21.4) becomes 
f*2n 

y]k o + eLkx — e1R2 - e'R " — e4R4 — • • • dyx = 2rr{k0 + e*k \ ), 
Jo 

where, on expanding the radical in powers of e, reducing, and dividing by 

Ine1, 

kx - R2 

2kn 
+ eZ = k[. 

Here, Z represents a function expandable in positive powers of e, rj, p, 
and q. 

Finally, putting 

kx — 2k0k ; = K, 

we obtain 

R2 — 2ek0Z = K. 

The function R2 is the same as that denoted by this symbol in no. 131 

( except that the symbols £ and y carry the subscript 1 ). Therefore, just as 

inno. 131, we can define the variables/?, and co, (but forming them with Ë,x 
and yx instead of with Ë, and y), and we will take as new variables, 

A,, a;, p,-, 

2. i, A j, co i » 

Then, R2 reduces to 

2A i pj + 2A2 p2 + 2A2 p2 + 2A4 p4 

( see the concluding remarks of no. 131). 

On replacing p, by dT0/dco, , we finally will have to integrate the equa¬ 

tion 

0 = R2 — 2ek0Z --- K. (21.4b) 

The left side 0 is periodic with respect to co, and can be expanded in 

powers of e; if we set there e = 0, this will reduce to R2 and no longer 
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depend on <y, but only on dT0/da>i. Consequently, we can apply the proce¬ 

dures used in no. 125. 

Thus the integration of Eq. (21.4) to which we have reduced our prob¬ 

lem is entirely feasible. 

The case in which 

i.e., the case in which the two major axes differ very little, presents special 

difficulties. 

Discussion of the Series 

222. Let us return to the notations of no. 220 and assume that we have 

determined the function S’by the procedures of that section. The problem 

is not yet completely solved. For this, it is still necessary to form the 

equations 

(21.9) 
dS 

dC2 

where 6 and 0 ' will be properly chosen functions of the constants x° and z°. 

After this, it is necessary to solve these equations to obtain x, , and «, as 

functions of x°, z°, wt, and w'. Finally, it is necessary to replace w, and w\ 

by linear functions of time whose coefficients will be properly chosen. This 

will yield the expressions of the coordinates x, y, z, u as a function of time. 

Let us first see what the form of Eqs. (21.9) will be. 

The function S, since its derivatives are periodic, can be written in the 

form 

where /? is a constant independent of the y and the u, while S ' is periodic 

with respect to y and u. The coefficients of yk(k> 1) and of ut, with 

restricting the generality, can be assumed as being equal to x°k and to z°. In 

fact, this returns us exactly to hypotheses ( 19.26) of no. 204. 
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As to P, this can be expanded in powers of yjji: 

P = Po + \If-lP | + FPi + ‘ ‘ ‘, 

where [3{) is equal to , and /?, is equal to the constant h of Eq. (21.4 ) in 
no. 220. 

Similarly, S' ' can be expanded in powers of ■Jf.i 

S' = S Ô + S' \\Jfl 4- • • • 

with 

S'o = T'0, 

Then, Eqs. (21.9) become 

dyx + T\. 

. a , dp dS' 
Wk + ekwx =yk +—-yx 

dxk dxk 

n dp , dS' 
0^\=-77ry\ + 

dC, dC, 

, , a, dp dS' 
Wl + 0lW,=ul+-y,+ 

We are thus led to take 

0k = 
dp 

dx°L. 

e =dj3_ Qt=dp_ 

1 dC2 ’ ‘ dz(! 

(21.10) 

However, a difficulty is produced by the following fact: Since /?0 = x°x 

is independent of both C2 or z°, the quantities 9X and 6 ,• vanish for u = 0 

and are divisible by V/7. Conversely, dS'/dC2, for n = 0, reduces to 

and does not vanish. 

Next, we must set 

dT Ô 

JC2 

wt =ntt-\- coii w-= n't + Co-, 

where n are determined constants while <ÿ are arbitrary constants. For 

determining «, we proceed in the following manner: 

On replacing, in F, the terms xt and z, by dS/dyt and dS/dut, this 

function F, according to the very definition of the function S, must reduce 

to a constant or, rather, to a function of the integration constants x°k, C2, 

and z°. Thus let 

F=<p(x°k,C2,z°), 
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so that 

nk + ®kn\ 

dcp 
(k> 1), 

0ini = 

n' + 6 \ni 

dcp 

~dC2’ 

dcp 

~d$' 

(21.11) 

It is obvious that the quantities n can be expanded in powers of V/7. To 

ascertain the form of the series, let us expand the function cp itself in 

powers of pc. This yields 

cp = C0 -f- pC2 + p~C4 + ■ ' ' • 

We have, in addition, 

C0 = F0(x°l,x°2,...,x°p), 

whence 

dC„ dF„ dF0 dx\ no ;io <fr? _ 

dx°k dxl dx'{ dx! dx! 

since «° is zero. 

In addition, it can be seen that 

dcp 
—— - u 
dC2 

and that the expansion of dcp /dz° starts with a term in pc1. 

The second equation of system (21.11) where the coefficient 6X is di¬ 

visible by y[p and the right-hand side by fi, indicates that the expansion of 

n, starts with a term in xf/u. Since 6 \ is also divisible by and 6 by p, 

and the right-hand by p2, the third equation of system (21.11) indicates 

that n- is divisible by p. 

Let us note, on the other hand, that Eqs. (21.10) can be considerably 

simplified. Until now, we had assumed that S and S' were expressed as 

functions of the variables y and u and of the constants x°k,C2, and z°. Let us 

now put 

13 = + yjü 

and assume, which amounts to the same thing, that S and S ' are expressed 

as functions of y and u as well as of the constants x°k, y, and z°. In this 

manner, our Eqs. (21.10) become 
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dx°x 
(“>* -yk) +-nr (“h ~^i) 

dx\ 

w. y i) = 
dS' 

dy 

W: 
dS' 

dz° 

dS' 

dx°k 

(21.10a) 

Nevertheless, it still is true that, although Eqs. (21.10) and (21.10a) 

implicitly yield our coordinates in functions of w, they can no longer be 

solved by the method given in no. 30 and that, consequently, the correla¬ 

tions between these coordinates and w are much more complicated than in 

no. 127 or in Chaps. 11 and 20. 

We will restrict ourselves to the following remark: What becomes of 

our equations in the case of fi = 0? Do they imply a contradiction? Since 

n, and n] vanish for /n = 0, the quantities wx and w\ reduce to constants 75, 

and cJ', such that we first will have 

dT'0 

Since T ’0 contains no variables other than , these equations indicate that 

the terms u, are constants. Let us pass to the second equation of the system 

(21.10a) and, since 7ox is an arbitrary constant, let us set this equal to 

ax/y[Ji where or, is a given and finite constant. The second equation then 

becomes 

dT’0 dT q 
ax=- or -= const. 

dy dy 

and, since TÔ depends only on u which are constants, this equation is 

satisfied identically. 

Let us now see what becomes of the first equation. Again, let us put 

_ ak 
cok = —— + a'k, 

yl/U 

where ak and ak are finite constants. Let us replace wx — yx by its value 

derived from the second equation and let us write the terms in 1 /yf/u as 

well as the terms independent of yf/u.This yields 

ak dx°x 
— + « + nkt-yk) +—^ 
yfc dxl 

whence 

1 dT’0 | dS[\ 

Jiï dy dy ) 

dS o = dT’0 

dx°k dx\ ’ 
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a. 
dx°x dT'0 

+---- = 0 
dx°k dy 

or 
dT'0 

a'k + nkt — yk + 
dx\ 

dy 

ds ; 

= const., 

dT'0 

dx°k dy dx°k 

The first is satisfied identically, and the second yieldsyk. 

Second Method 

223. The calculations can also be arranged differently and, instead of 

using Eq. (21.4) of no. 220, one can directly apply Eq. (21.3a), which is 

written in the form 

a{^\ =C2- [F,]. (21.3a) 
\dyxJ 

Let us return to the notations of no. 221 and let us select as variables the 

quantities 

A,, a;, pt, 

4 \, A |, co i, 

as they had been defined in no. 221. Let us see what the form of Eq. 

(21.3a) will be. 

(i) Both sides of this equation will no longer depend in an arbitrary man¬ 

ner on Aj and on A \ but only on 

mA, + m'A [ = yu 

where m and m' are integers defined in no. 221. In effect, we have obtained 

[E,] by eliminating in i7, all terms that depend on A, and on A J in a 

manner other than via the combination mAx + m'A 

(ii) The two sides also depend on A, and A\. However, these quantities 

must there be replaced by the constants A° and A;0, analogous to jc°. Thus 

A becomes a constant. 

(iii) Both sides are periodic with respect to_y, and cot. 

(iv) Both sides can be expanded in integral powers of e and in fractional 

powers ofpt, which must be replaced by dT0/dcOi. 

Thus Eq. (21.3a) can be written as 

<21'3b) 

Let us consider the expansion of H in powers of e. The term indepen¬ 
dent of e reduces to 
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Am+R 
dyj 

0» 

where R0, defined as in no. 221, is a constant that depends only on A” and 

AJ°. 
The term in e is zero (except if m + m' = + 1, a case which we will 

disregard here). 

The term in e2 reduces to 

R2 + 2A | px -\- 2A2 p2 -f- 2A3 p3 -f 2A4 p4. 

The first term that depends on is the term in 

ç\m + m'| 

The manner in which Eq. (21.3b) can be treated is as follows: Let us 

attempt to expand A, in powers of e and let 

Sx = U0 -\-€Ul-\-e2U2-\- ■■■ . 

Let us similarly expand C2 and T0 and let 

C2 = To + €Y\ + e~72 + ‘ ‘ ‘ > T0 = V0 + eVx + • • • . 

On replacing T0 by this value in R and expanding R, we obtain 

R = R ' + ^R 2 + e*R ' + • • • . 

We first find 

which demonstrates that dU0/dyx is a constant. Thus, let 

U0 = ayx, 

where a is a constant that depends on the integration constant y0. From 

this it follows that 

2aA 
dUx 

dyx 
— Yu 

which indicates that dUx/dyx again is a constant. Without restricting the 

generality, we can assume that Ux and yx are zero. 

This yields 

dU2 
2aA 

dy, +2^A'it = y2. 

This equation shows that dU2/dyx again is a constant which we can 

again consider as zero without restricting the generality; this leaves the 

following equation to be treated: 
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22 Ai 
dV0 

dcoi 
= Yi, 

which indicates that d V^/dcOj are constants that can be arbitrarily selected 

since y2 is arbitrary. 

From this, we obtain 

2£/f, d J-'- + 2 aA 'JU‘ 
da, dy i 

= r3- 

We can also assume U3 and y3 to be zero without restricting the generality, 

since 

2aA ^ + R'4=y4. 
dyx 

In addition, we will assume U4 to be zero, which leaves 

R 4 V4> 

which readily permits determining T2 since y, does not enter there. 

We can continue in this manner up to the term in e|m + m Let us put 

\m + m'\ = q, we then obtain 

2aA —2- + R q + M cosy, + Nq sin^! = y 
dyx 

Here, Mq and Nq, which depend on the co, and on V0, Vu . . . , Vq 

are known functions of <y, , can be considered as known. 

So far as R ' is concerned, we will have 

dV q — 2 

dû): 
+ Ln 

which 

where Lq is a known function of coi. 

Then, the above equation can be decomposed into two equations and 
we can write 

dU 
2 aA q 

dyx 
— M cos y ! + N sin;;,, 

2^ A, 
dV, g-2 

dco, 
= Yq 

The right-hand sides are known so that it is easy to derive from these 

equations the values of Uq and Vq _ 2. It is obvious that the derivatives of 

Vq _ 2 are periodic with respect to col. Again, without restricting the gener¬ 

ality, we can select yq in such a manner as to cause the mean value of 

Yq — Lq t° vanish. Then Vq _ 2 will itself be periodic. So far as Uq is 

concerned, it is obvious that it will be periodic with respect to;;, and coi. 



CHAPTER 21 § 223 697 

We will continue in this manner. Equating the coefficients of 
e P(p >q), we will find 

dUn dV 
2aA~r^ + 2 XA‘-T— = 7P+<t>, (21.12) 

dyx ^ dcoi 

where $ is a known function, periodic with respect toy, and co(. We will 

assume the function <£> as being expanded in a trigonometric series and 

will select yp in such a manner as to cancel the mean value of the right- 
hand side. 

We then put 

Yp + <t> = 4>' + O", 

where 9>' represents the set of terms that depend on yx, while <P" repre¬ 

sents the set of terms that do not depend on j>,, such that 

o' = [[r, + «*]]• 
Then, Eq. (21.12) will be decomposed into two expressions by writing 

dy i 

2V Ai -Vp~2 = T" . 
^ do) t 

These two equations will determine Vp_2 and Up. The resultant two 
functions will be periodic. 

Since Eq. (21.3a) of no. 220 has been integrated in this manner, Eq. 

(21.3) will yield y — [S2] from which Eqs. (21.5) and (21.6) can then 

be formed. 

We will treat Eq. (21.6) as we had treated Eq. (21.3a). Since the two 

sides of Eq. (21.6) can be expanded in powers of e, we will similarly 

expand [52] and Tu writing 

lS2\ = U'0+eU[+e1U'2 + ■■■, 

T\— Vq + eV[ + '2 + ■■■ . 

Then the coefficients of like powers of e will be equated on both sides of 

Eq. (21.6), yielding a series of equations which will permit determining, 

by recurrence, the quantities U\ and V'. 

On equating the coefficients of ep, one obtains an equation that can be 

used for determining U'p and V’p_2. This equation will have the same 

formas Eq. (21.12) except that Up and Vp_2 would be replaced thereby 

U' and Vp_2 - Consequently, this equation can be treated in exactly the 

same manner. 

After Eq. (21.6) has thus been integrated, one can continue in the same 

manner. 
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Case of Libration 

224. How can the case of libration be presented? 

Let us return to the equations of the previous section and assume that 

a=U0 = 0. 

The calculation is continued as above until one arrives at the equation 

obtained by equating the coefficients of €q. This will yield 

U,= 0 (/= 

and, if q is even, the equation in e q can be written as 

(dua/2y _ dva_2 
A -— + 2^ A,- —-—- + Lq + Mq cosyx + Nq sin^, = yq. 

V dy j / d co j 
(21.13) 

If, for abbreviation, we put 

22 A, dV, q-2 

dco, 
= X 

and if we eliminate, for the moment, the subscript q/2 of U as well as the 

subscripts q of L, M, N, and y, we obtain 

dUq/2 — Jy _ l _ x — M cos yl — N sin yx 

dy, Y A 
Vz , 

calling, for abbreviation, Z the quantity under the radical. 

The integral 

JVZr/y, 

is an elliptic integral of the second kind. One of its periods is 
T 

4Zdyx. 
Jo 

If y and X are selected in such a manner that Z is always positive, this 

period will always be real. We stipulate that it is constant and independent 

of coi. Thus we equate this period with a given constant h, yielding an 
equation 

Solving this equation for X will furnish 

x = r + 

(21.14) 
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where xp is a function of co, which can be considered as given and which is 
periodic. 

This yields 

dVa_2 
Ai —— = r + 

da>i 

which is an equation determining Vq_2, after which it is easy to derive 
Uq/2 from Eq. (21.13). 

This represents the ordinary case. 

However, it might happen that y and X are chosen in such a manner 

that Z can vanish. In this event, it is the second period of our elliptic 

integral that is real. Equating this second period to a given constant h will 

yield an equation (21.14a) analogous to Eq. (21.14). If we solve the 
equation for X, we obtain 

X =y+i/j'(a)j) 

or 

2Y,A‘dV,q 2=r+fK)> 
dcoi 

which will determine Vq_2 since xp' is known and periodic. 

This represents the case of libration. 

The limiting case will be obtained by writing that one of the periods of 

the corresponding elliptic integral of the first kind is infinite, which yields 

the following equation for determining Vq_2: 

dV 2X A,—^=Lr,-L,+JMl^Nj. 

The drawback of this manner of operating lies in the fact that the expres¬ 

sions obtained in the two cases are not an analytic continuation of each 

other. 

On equating the coefficients of eq+ ', we obtain 

d XJrn /t d XI /9 i t 

2A + 2£ A, 
dV, q - 1 

dco, 
= r9+1+<D, (21.15) 

dyx dyx 

where 4> is known and periodic. 

If, for example, we have to do with the ordinary case, we must write 

that 

; dU. 9/2+ 1 

dy, 
dyx 

is equal to a given constant h independent of coThus (by putting, for 

abbreviation, dUq/2/dyx = W) we will find 
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2 
dVq_x Jo 2AW 

= r + 
L 

2tt <t>dyx 
-h 

dco, 
nlir 

Jo 

dy i 
(21.16) 

2T1T 

This equation yields V x, and Eq. (21.15) will then furnish 

U, q/ 2 + 1 • 

The equations obtained by equating the coefficients of the other powers 

of e will have the same form as Eq. (21.15). This will be exactly the same 

for the equations obtained by equating, on both sides of Eq. (21.16), all 

coefficients of different powers of e. 

All these equations can thus be treated in precisely the same manner. 

The results would be exactly the same if q were odd; in that event, it 

would only be necessary to modify the form of the expansion of Sx and to 

write 

‘S’l — €q/2Uq/2 + C/2 + 1 Uq/2 + , + eq/2 + 2 Uq/2 + 2 + • • 

where Sx is thus expanded in odd powers of yfe. 

All results obtained since the beginning of this chapter are rather in¬ 

complete, and new studies will be necessary. These would be premature. 

Divergence of the Series 

225. We have seen in no. 212 that the series resulting from application of 

the Bohlin method generally are divergent; we have attempted to explain 

the mechanism of this divergence. It might be useful to return to this 

subject and to study in some detail a simple example which would yield a 

better understanding of this mechanism. Let 

-F = p + q2 2/i sin2 ^— /j,eq)(y)cos x, 

where (p,x; q,y) are two pairs of conjugate variables, while cp(y) is a 

periodic function of y, with period 2tt, and where n and e are two con¬ 

stants which are assumed to be very small. 

Let us then form the canonical equations 

dx _ dF _ J dy _ dF _ ^ 

dt dp ’ dt dq 

dp dF 
—/ue<p(y) sinx; 

dt dx 

dq dF 
— = = H sm.y + peep (^)cosx, 
dt dy 

(21.17) 
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whence 

d2y 
-— = 2n sin y + Ifxecp ' (j>)cos x. 
dx 

Integration of these equations is almost direct when e = 0. Let us write 

the Jacobi partial differential equation, and let 

dS 

dx 
+ sin2 — + /ue(p(y)cos x -f C, (21.18) 

where C is a constant. Let us expand S and C in powers of e and let 

S = S0 + Sx€Sie2 +•••, 
c = C0 + C(6 + C26^ -(-•••. 

For 6 = 0, Eq. (21.18) becomes 

dx 
(21.19) 

As stated above, the integration is almost immediate and, in fact, to 

obtain the complete integral of Eq. (21.19) it is sufficient to take, calling 

A0 a constant, 

dS, 

dx 

On the whole, this practically returns us, except for the notations, to 

the example treated in no. 199. The case of h > 0 corresponds to the ordi¬ 

nary case; the case of h < 0 to the case of libration; the case of h = 0 to the 

limiting case. 

Let us show explicitly the remarkable particular solutions. 

First, we have the simple solution 

x = t, p = 0, y = 0, 0 = 0, 

which is a periodic solution. Let us see what the corresponding asymptotic 

solutions will be. 

We obtain these on setting A0 = h = 0 in S0, which yields 

y Sq = —|— 2^2/7 cos ^ , 

whence 

y y 
—; tan — 
2 4 

which shows that the characteristic exponents are equal to + y]2jü. 

p = 0, q = + \l2jü sin tan = Ce± x = t, 
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Let us now calculate Sx, S2,.... 

On equating the coefficients of e, in Eq. (21.18), we find 

dSx , dS0 dS | 
— + 2 —- —- = fi<p{y)cos x + C„ 
dx ay ay 

where C, is a constant which can be assumed as zero without restriction of 

generality; in other words, 

h + sin2 — —/up(^)cos x. (21.20) 
2 dy 

Then, Sx is the real part of the function 2 defined by the equation 

(21.20a) 

We obtain this by putting 

—+ 2V5I 
dx 4 h + sin2 — = fxcp{y)e 

2 dy 

dS, 

dx 
T 2/ 2fi V 

2 = xpe,x, 

whence 

+ 2/2//+ sin2 -y = //</?. (21.20b) 

To integrate this linear equation, let us first integrate the homogeneous 
equation; it can be written as 

by putting 

whence 

4 

cap + I h + sin2 — —- = 0, 
2 dy 

a = 
2/2/7 

xfj~K exp/ — a j ^ 

V h + sin2 y- 

where AT is a constant. We establish the elliptic integral 

I * 

yielding 
V 

= u. 

h + sin2 y- 

= Ke~ au 

for the general integral of the homogeneous equation. To integrate the 
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inhomogeneous equation, we will consider AT as a function of y, which 
gives 

whence 

2V5T — e—‘ jh + sin2 — 
dy yj 2 

K = 

and, finally, 

eaucp dy I h + sin2 — = — eaucp du 
8 

xJj — e 
8 

eaucp du. 

If we put a = [3i, then P will be real and we will have 

S\ = 
f± cos(P “~x)S q> cos Pu du 

(21.21) 

+ sin(/?w — x) J* qp sin/7w du . (21.22) 

We will discuss below expressions (21.21 ) and (21.22). Let us demon¬ 

strate first how the subsequent approximations would be carried out. 

We would find 

+ 2yj2/u jh-l-sin2-^-—^ = O, (21.23) 
dx A/ 2 dy 

where d> is a known function ofy and of x, which is periodic with respect to 

x and which thus can be put in the form 

<t> = ^<pnenix, 

where « is a positive or negative integer and cpn is a known function ofy. In 

the sum of the right-hand side, the number of terms is limited. If we then 

put 

S2 = ^rPne" 

where ipn depends only on y, then the function xfdn must satisfy the differ¬ 

ential equation 

inxpn + 2yf2/u lh + sin2 ~ —p- = cpn. 
2 dy 

Since this equation has exactly the same form as Eq. (21.20b), it can be 

treated in the same manner. 
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The functions S3, S4, . . . would then be given by an equation of the 

same form as Eq. (21.23) and treated in exactly the same manner. 

This method has been used in quite a different form by Gyldén.9 

Let us now discuss expressions (21.21) and (21.22). 

Let us first consider the ordinary case in which h > 0. Since then cp(y) is 

a periodic function of y it will also be a periodic function of u whose period 

will be equal to the real period of the elliptic integral of u. Consequently, 

we can write 

cP='ZAme 
imAu 

where A is a real constant depending on the period of the integral u, while 

m is an integer. 

From this, we denve 

_imAu 

or 

a + imA 

aT -imAu 

i 1 + mA VS/7 

and finally, if pm and com are the modulus and the argument of A 

sm(mAu + x + com ) 
= ]>>A (21.24) 

1 + mA yfSju 

It is obvious that each of the terms of can be expanded in powers of 

V/i. One can attempt to carry out the expansion and then combine all 

terms that contain the same power of y[/u as factor. From the formal 

viewpoint, this will yield the expansion of S', in powers of V/7. Let 

Si = X p/2 
(21.25) 

We have 

TP + 2 = ( - Ayt&)p^mppm sin{mAu + x + com). 

This is the same result as would have been obtained with the Bohlin meth¬ 

od. In that case, S would have been expanded in powers of ^[jl and we 
would have found 

s = S0 + S \ tJJi + S 2 p + ■ • ■ + S p pp/2 + • ■ • . 

In turn, the function S' would have been expandable in ascending 

powers of e, and the coefficient of ep would have been precisely T . 



CHAPTER 21 § 225 705 

The series Tp would have been convergent. In fact, if—as we are assum¬ 

ing here—the function <p(>0is holomorphic for all real values of;;, we will 
have 

n s' kh M 
A'm < 0 » 

where k and h0 are two positive constants (h0 < 1 ), from which it follows 
that the series 

X mPPm 

converges absolutely and, a fortiori, also the series Tp + 2. 

On the other hand, series (21.24) converges while this is not so for 
series (21.25). 

To ascertain this, it is sufficient to consider a highly specific example. 

Setting 

* = w = 0’ *>m=0, Pm=Alml, 0<A<\, A= — , 
2 V8 

we obtain 

Tp + 2 = X ( — m) Pyi lml (w varying from — oo to + oo ) 

which shows that Tp + 2 is zero if p is odd, and is equal to 

2 ^ m PA m {m varying from 1 to + oo ). 

However, we obviously have 

p\Ap 
^mpAm>^m(m— 1 )• • • (m — p + 1 )A 

(1 -A)p+1 ’ 

from which, for example at A = it follows that 

Tp + 2>2{p\). 

The terms of series (21.25) are then pairwise zero, and those that 

remain are larger than the corresponding terms of the expansion 

2X<7 '-Pq+\ 

which evidently is divergent. 

The statements made above with respect to the expansion of S] obvi¬ 

ously are applicable to that of S2 and of other analogous functions. 

Practically no changes need be made in the above calculation for the 

case of h <0, i.e., for the case of libration. The only difference here is that 

the real period of the integral u no longer is 



706 CELESTIAL MECHANICS 

but 

u 0 = 
dy 

JR 

denoting by JR the radical V/z + sin2(_y/2) and putting 

fi = 2 sin ~ 'V — h . 

The quantity /l must then no longer be equal to 2v/u0 but to 2v/ux. 

226. The limiting case in which h = 0 is of greater interest. In this case, 

we have 

and, on putting 

u = f -. -dy^ = 2 log tan(y/4) , 
J sin0>/2) 

tan(j>/4) = t, 

, 2 dt 
du =-. 

t 

First, for example, let 

from which we obtain 

<p(y) = sinj>, 

whence 

ç>(y) = 
4t{ 1 -t2) 

(1 +t2)2 ’ 

é=t~2a /Z f 4?2a(l - t2)dt 

V 8 J U+'2)2 

Now, integrating by parts, we find 

f t2a{\ — t2)dt t2a+x Ç t2adt 

J (1 + t2)2 1+t2 J 1+r2 ’ 

whence 

— it 
t2adt 

1 +t2 ' 

(21.26) 

One could suggest expanding at least from the formal viewpoint, the 

function xfj in powers of V/7. However, it is preferable for this to return to 
the general case. 

When y varies from 0 to 2v, the quantity u will vary from — oo to 
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+ oo. Here, cp{y) is a function of u; let us assume that it can be represent¬ 

ed by the Fourier integral in the form 

<p = eigu6{q)dq. 

For this, since cp{y) is analytic and periodic for all real values ofy, it is 

sufficient that 

<p( 0) = 0. 

This will yield 

^ e- 
r r + oo 

a + iq) u 6{q)dq. 

This formula, in reality, contains an arbitrary constant since the integra¬ 

tion limits with respect to u are indeterminate. This constant can be dis¬ 

posed of in the following manner: 

Let us interchange the order of the integrations and let us perform the 

integration with respect to u, so that 

rf, + oo / (a + iq)u 

0{q) + iq{q)9(q) ) dq, 
a + iq 

where r/(q) is an arbitrary function of q introduced by the integration. In 

certain cases, one could first assume this function to be zero, which would 

leave 

<p=. 

+ oo (Q + iq) u 6{q)dq 

or 

=il r~* 
i J - œ 1 

» a + iq 

+ °° Jgu6(q)dq 

+ q^lfyu 

or, on denoting by p and co the modulus and the argument of 6{q), 

p sin(^w + x + co)dq 

(21.27) 

=/iL 
(21.28) 

1 + qyfSp 

where p and co are functions of q. 

However, so that Eq. ( 21.27 ) will have meaning, it is necessary that the 

integral is finite and, for that, that the function under the integral sign 

does not become infinite for q — — \/y[Sp, i.e., that 

1 
0 ~ = 0. 

Since this can generally not take place, one could replace Eq. (21.27) by 
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the following equation [which is only another way of disposing of the 

arbitrary function 77 (<7) ] : 

iP 
=-J 

+ <=° giqu _ giqu„ + a(u„ — u) 

1 + <?\/8/7 

where u0 is an arbitrary constant, from which it follows that 

6{q)dq, (21.27a) 

J+ 00 

- 
- so 1 

pdq 

+ q4 8/7 

sin(<7« + x + a>) 

sin g«0 + x + tu + 
u0-u 

yJSfl 

(21.28a) 

However, this can also be overcome in a different manner. In general, 

0{q) will be a function of q which will remain holomorphic if q is real or if 

the imaginary part of q is not too large. For example, let 

4f(l - t2) 
q> — sin y =-— . 

(1+f2)2 

Since, according to the Fourier formula, we have 

J+ 00 

-¥-e~iuqdu, 
- « 2-n¬ 

it follows, on replacing p and u as functions of t, that 

At ~2iq( 1 _ t2)dt 

2ir6(q) = —-U ,\)at . 
Jo ( 1 + t ) 

On applying, to this integral, the transformation which led to Eq. 
(21.26), we find 

2n6(q) — 8 qi 
. r t ~ 2iqdt 

Jo 1 -|- t 

ZqiTT 

si 
e 2 + e 

si 
2 

from which we finally obtain 

0{q) = 
Aqi 

qw 

e +e 

qv 

~T 

It is obvious that 6{q) ceases being holomorphic only when q is equal to 

V — 1, multiplied by an odd integer. 

Accordingly, the formula 

<P 
1 

+ co 
e'qu0(q)dq 

will remain valid when the integral is no longer taken along the real axis 
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but along a curve Cremaining above this axis but deviating so little from it 

that no singular point of 6{q) exists between this curve and the axis. 

Then Eqs. (21.27) and (21.28) will also be valid when taking the 

integrals along C; they will hold without restriction since, no matter what 

6{q) might be, the quantity under the integral sign does not become infi¬ 

nite along the integration path. 

This immediately shows an important property of the function xp de¬ 

fined by the function (21.27). Under the integral sign we have the expo¬ 

nential e‘qu. Since the imaginary part of q is positive, if u is real, positive, 

and very large the modulus of this exponential is very small. Thus for 

u = + oo, i.e., for y = 2 it, the quantities xp and 5, vanish. The integration 

path C can also be replaced by another path C ' which remains below the 

real axis without deviating much from this axis, in such a manner that no 

singular point of 6 exists between C ' and this axis. 

The integrals (21.27) and (21.28), taken along C, will yield other 

values of xp and S', which I will denote by xp' and S \ so as to distinguish 

them from the former. 

Since the imaginary part of q is negative, when u is real, negative, and 

very large, the exponential eiqu will have a very small modulus. Thus, for 

u = — oo, i.e., for y = 0, the quantities xp' and S [ vanish. 

This raises the question whether xp is equal to xp'. It is obvious that the 

quantity under the integral sign presents a singular point between the two 

integration paths C and C, which is the point 

y[8/U 

This singular point is a pole. The difference of the two integrals thus will 

be equal to 2iv, multiplied by the residue, which yields 

and, denoting by p0 and co0 the modulus and the argument of 

e ( -1/Æ), 

It is obvious that xp' is not equal to xp, unless 

= p "-Z-.»*,- o. 
V X.1T 

Let us now attempt to expand xp and xp' in powers of Jp. This yields the 

following: Let 
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P_ P_ 

*r. f = 

so that 

xfjp and xp'p 9(q)(-qyl8)p 2dq, 

integral being taken along C for xpp and along C ' for xp'p. 

However, this time, the quantity under the integral sign presents no 

singular point between C and C', from which it follows that 

Thus, despite the fact that the functions xp and xp' are not equal, their 

formal expansions in powers of yfn are identical. This is as much as saying 

that these series are not convergent. 

However, this also shows that, if // is considered an infinitesimal of the 

first order, then the difference xp — xp' will be an infinitesimal of infinite 

order such as, for example, e~ 17/i. 

In fact, in the particular case in which <p(y) = sin^, we have 

6 

which demonstrates that the difference xp — xp' and S', — S [ are of the 

same order of magnitude as 

7T 

227. Below, we will obtain the same results by simpler means; how¬ 

ever, I wished to present the results under the form given here so as to 

better understand the passage from the ordinary case to the limiting case. 

Let us now compare Eqs. (21.24) and (21.28). In the formula (21.24) 

we have a series into which the quantity mA enters. Since m is an integer, 

mA can take only certain values, which will be closer to one another the 

smaller A becomes. When h tends to zero, the period of the integral u 

increases indefinitely and A tends to zero. The values of mA steadily ap¬ 

proach more closely and, at the limit, the series is transformed into an 

integral which finally leads to Eq. (21.28). 

However, when A decreases thus in a continuous manner, it will pass 

through certain values for which a circumstance arises that requires some 
discussion. 

If — 1/(A yfsju ) becomes a whole number, one of the denominators of 
Eq. (21.24) 
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1 4- mA sfSju 

vanishes and the formula becomes illusory. In fact, one of the terms of this 

formula becomes infinite. In this case, it is easy to see that the term which 

thus becomes infinite must be replaced by 

Amue~au = l^-A.„ueimÀU (21.29) 

and we will then have 

rP = imA -|- a) u du. 

If imA -f a is not zero, the integral on the right-hand side will be equal to 

_ ( imA + a)u 

imA + a 

plus a constant which can be assumed to be zero. However, if imA + a is 

zero, this integral will be equal to u plus a constant which can be assumed 

to be zero. 

On thus substituting Eq. (21.29) in xp for the term which would be¬ 

come infinite, the function xp no longer becomes infinite but ceases being 

periodic with respect to u. 

228. Let us return to the limiting case in which h is zero and let us first 

assume that 

cp(y) = sin y. 

Then, Eq. (21.26) will yield 

Ç t2adt 

Jo 1 + t2 
+ Ct — 2a 

where C is a constant of integration. The first term can be expanded in 

ascending powers of t, provided that t is smaller than 1. This is also the 

case for the second term, since 

t2a 

1 +t2 

_ f (2a + 2n) 

I ( - !)"• 

From this we conclude, on carrying out the integration, that 

lp = ^2 £ (2n+1)( - !)"-/£ 
t2n + \ - 1)" 

2 ct -f- 2 ft -f- 1 
+ Ct — 2a 

It is also obvious that, for t — 0, the expression ip — Ct ~2a vanishes. On 

the other hand, since the real part of a is zero, the expression t ~2a does 

not vanish for t — 0. 

To have the function xp vanish for t = 0, i.e., for u = — oo, it is thus 
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necessary and sufficient to have the constant C vanish. The function de¬ 

noted by xp' in no. 226 then is equal to 

xp' — 
t 

1 +t2 

C‘ t2adt 

Jo 1 -f- t2 

Equation (21.26) can also be written in the form 

r/j' = 42fx 
t 

1 + t2 

t2adt 

1 + t2 
+ C't 2 a 

where C ' is a new constant. 

Assuming that t is larger than 1 and that we have expanded in descend¬ 

ing powers of t, it follows that 

- (2n + 1) 
( - i)" + i'2 

/-(2»-M)( _ D» ^,_2a 
+ C't 

2n -f 1 — 2a 

The first and second term vanish for t = oo, but this is not so for the third 

term. 

To have the function xfj vanish for t = oo, i.e., for « = + oo, it is neces¬ 

sary and sufficient that the constant C ' vanish. The function, denoted by xp 

in no. 226 is thus equal to 

t/j = fîjï --- + it 
1 +t2 

t2adt 

1 + t2 ' 

To have xp become equal to xp', it would thus be necessary to have 

t2adt 

1 +t2 

which, as demonstrated above, does not take place. 

Expressed more generally, let us assume that cp{y) vanishes for_y = 0, 
so that 

Here, <p vanishes for^ = 0, i.e., for t = 0, and for;; = 2v, i.e., for t = oo. 

First, then, let t be small and let us expand in powers of t\ let 

whence 
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where C is a constant of integration. So as to have this expression vanish 
for t = 0, it is necessary and sufficient that C is zero. The function xp' of no. 
226 will then be equal to 

(21.30) 

Now, let t be very large. Let us expand cp in descending powers of t and let 

so that 

cpt2a-'dt+C't 

+ C't ~2a. 

' t — 2a 

where C ' is an integration constant. So as to have this expression vanish 
for t = oo, it is necessary and sufficient that C ' is zero. The function xp of 
no. 226 thus is equal to 

1*= - Vt'-f cpt 2a- 1 dt = 
BJ 

x— O /-V 

(21.31) 
8 ^ 2a — n 

So as to have xp be equal to xp', it would be necessary that 
/■* CO A /* + OO 

cpt2a~ ldt = — xpeaudu — 0, 
Jo 2 J — oo 

i.e., that 

6{ia) = 0, 

which generally does not take place. 

Let us now expand the expressions (21.30) and (21.31) in powers of 

yffï. We then find 

which, for the formal expansion of xp', yields 

^' = X T'p^p + 2)/2, T'p=j-'^Anfnp(J^2)0. (21.32) 

Similarly, Eq. (21.31) furnishes 
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whence 

Tp^p + 2)/2, Tp=-^Bntnnp(-f^2)p. (21.32a) 

Under this form, the identity of the two expansions is not as directly 

manifest as under the form which we had given it previously. 

229. However, it is easy to pass from one to the other. 

In fact, we have JT- oo 

-¥-e~iqudu. 
- oo 2v 

We state that 6(q) is a meromorphic function of q which has no singu¬ 

larities other than poles and whose poles are equal to t/, multiplied by a 

positive or negative integer. In fact, let us write 
r oo 

2 nd{q) = qe~ 
Jo 

If the imaginary part of q is positive, the second integral will be a holomor- 

phic function of q, presenting no singularity since, for u — — oo, the 

quantities q and e ~,qu vanish. This cannot also be true for the first inte¬ 

gral. 

If, conversely, the imaginary part of q is negative, the first integral will 

be a holomorphic function of q, but this cannot be so for the second inte¬ 

gral. 

Therefore, let us study the singularities that the second integral might 

exhibit when the imaginary part of q is negative. We will assume that this 

imaginary part is larger than — n/2. Let us return to the series 

iqudu + H qe - ,qudu. 

<P='ZAntn ='ZA"e+nU/2- 

We can then write 

q = A,e + u/2 + A2e + u-h ■■■ +Ane + nu/2 + Rn, 

and as u tends to — oo, Rne~nu/2 will tend to zero. The second integral 

can then be written as 

J\ + J2 + ••• + Jn + Sn> 

where 

Jk=Ak f e(K/2-iq)“du, S„=f Rne~iqudu. 
•J — OO J — oo 

The integral JK has no meaning in itself as soon as the imaginary part of 

q becomes smaller than — K /2 and can be given a meaning only by ana¬ 

lytic continuation. We then find 
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J K — 
K 

-tq 

So far as Sn is concerned, as long as the imaginary part of q is larger 

than — n/2, this will be a function of q presenting no singularity since the 

quantity under the integral sign vanishes for u = oo. 

This demonstrates that the second integral is a meromorphic function 

of q, admitting as poles 

q = —i— (K a positive integer) 

with the residues 

iAfc- 

One can similarly see that the first integral is a meromorphic function of q, 

admitting as poles 

with the residues 

(K positive integer) 

Therefore, the poles of 0(q) are 

q 

with the respective residues 

when using the upper sign and 

when using the lower sign. 

Let us then return to Eq. (21.27) and assume that the integral is taken 

along the curve C. 

Let us construct a circle K, having the origin as center and (2m + 1 ) /4 

as radius where m is very large. Let Kx be the sector of this circle located 

above the curve C. Let C, be the segment of the curve C which is within the 

circle K. 

The two arcs C, and AT, will form a closed contour while the integral 

(21.27), taken along this contour, will be equal to 2in multiplied by the 

-iBK. 

Bk_ 

2 iir ’ 

Ak_ 

2 iv 
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sum of the residues relative to the poles interior to the contour, i.e., to the 

sum of the m first terms of series (21.31). 

We can demonstrate that integral (21.27), taken along Kx, tends to 

zero when m increases indefinitely. The calculation can be carried out 

without difficulty but is useless since we know in advance that series 

(21.31) is convergent. 

The integral taken along Cx tends to ip\ thus, ip is equal to the sum of 

series (21.31 ). 

This returns us to series (21.30) as well as to series (21.32) and 

(21.32a). 

The above statements are sufficient to understand how one can pass 

from the series in no. 226 to those in no. 228. 

230. We can now propose to connect the series in no. 228 with those in 

Chap. 7. 

It has been shown in no. 225 that, when e — 0, the equations admit of a 

simple periodic solution 

x = t, p = y = q — 0 

with the characteristic exponents + and that the corresponding 

asymptotic solutions will be 

p = 0, q= ± V2/7 sin -y , tan -y = Ce ± , x = t. 

The third of these equations can also be written as 

cot = Cë^ 
4 

or 

tan = Cé 
4 

depending on whether the upper or lower sign is used. 

Since the characteristic exponents are not zero, the principles of Chaps. 

3 and 4 show that, for small values of e, a periodic solution will again exist. 

We again will have x = t, while p, y, and q will be functions of t and of e, 

expandable in ascending powers of e, vanishing with e, and periodic with 

respect to t, with period 2it. 

Similarly, the characteristic exponents, which are equal but of opposite 

sign and which are denoted by +13, can be expanded in ascending powers 

of e ( see Chap. 4 ) ; /3 will reduce to + y[2/ü for € — 0. 

For small values of e, two series of asymptotic solutions will also exist, 

which are presented in the following form: For the first series, we have 
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x = t, p = rjv q = t/2, cot ~~ = r)3, (21.33) 
4 

where r/,, r]2, and tj3 are series that can be expanded in powers of Ce~p' 

and whose coefficients are periodic in t. 

For the second series, we obtain 

y 
x = t, p = ij\, q — r/'2, tan — = iq'p, (21.33a) 

4 

where 2, and rj3 are series expandable in powers of Ce + p‘ and whose 
coefficients are periodic in t. 

If we now consider these quantities as functions of e, then no. 106 will 

show that the six functions 77 can be expanded in ascending powers of e. 

If we consider these as functions of p, no. 104 will show that each of the 

terms of the six functions tj will have a coefficient of the form 

N_ 

n ’ 
where A is a polynomial expanded in ascending powers of Jp and /?, while 

I! is a product of factors of the form 

mV — 1 + n/3, 

where m and n are positive or negative integers. 

As we have seen in no. 108, N/Yl can be expanded in powers of 

however, the expansion generally is purely formal since the characteristic 

exponents vanish for p. = 0. 

Let us now transform the expressions (21.33) and (21.33a). Let us 

begin by replacing t everywhere by x. Let us then solve the equation 

y 
COt-= 7), 

4 

for C, from which we find 

Ce0x = Ç. 

Noting that, for e = 0, rj3 reduces to Ce Px we will find that £ can be 

expanded in powers of e and of cot(_y/4) and that its coefficients are 

periodic in x. 

Let us substitute £ for Ce Px in 77, and rj2; then, 77, and tj2 will become 

functions of x and of y, and the expression 

rj\dx + iq2dy 

will be an exact differential dS. We will integrate this differential, obtain¬ 

ing a certain function S which exhibits the following properties: 

(i) Its derivatives are periodic with respect to x. 
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(ii) It can be expanded in powers of e and of cot(j>/4). 

(iii) An arbitrary term of 

dS , dS 
-= rj | or of Vi 
dx dy 

will be composed of the cosine or sine of a multiple of x, multiplied by a 

power of cotfy/4), by a power of e, and by a coefficient having the form 

where A can be expanded in powers of e, of V/V, and of/? and where II is a 

product of factors of the form 

mV — 1 + n/3. 

(iv) The expression A/U can be expanded in powers of e and of yf/ü. 

Consequently, this is true also for S'. However, whereas the expansion of S' 

in powers of e is convergent, the expansion in powers of yfji has value only 

from the formal viewpoint. 

We could have operated similarly on the expression (21.33a) and 

would then have obtained a function S ' completely analogous to the func¬ 

tion S, with the only difference that, instead of being expanded in powers 

of e and of cot(_y/4), it would have been expanded in powers of e and of 

tan(.y/4). 

We have stated that S (and S') can be expanded in powers of e; there¬ 

fore, let 

s = s0 + s,£ + s2e~ + ■■■• 

Then Sj is nothing else than the real part of xp eIX, and xp is presented in 

the form of a series arranged in powers of cot(>>/4), i.e., in descending 

powers of the variable which was denoted by t in no. 228. 

This expansion is nothing else but series (21.31). 

Let us see what becomes of the expressions A /II in this transformation. 

The quantity A can be expanded in powers of e. Furthermore, since /3 

can also be expanded in powers of e, so can 

1 

mV — 1 + «/? 
and the first term of the series will be 

1 

mV — 1 + «V^a 

Let us thus assume that we have an expression A/W in which the first 
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term of the expansion of N in powers of e reduces to (e/z/2) Bn and in 

which the product n reduces to a single factor 

V - 1 - np. 

Then, the expansion of N /II will have, as first term, 

efi Bn _ ^ //7 Bn 

2 V - 1 - ny[2fi Y 8 2a — n 

This explains the presence in the series (21.31) the presence of the 
coefficient 

la — n 

Similarly, 5 ' can be expanded in powers of e, which yields 

S' = Si +s;6+ •••. 

Here, S' J is the real part of ip'elx, while xp' is presented in the form of a series 

arranged in powers of t and being nothing else but series (21.30). 

231 The functions S and S’ ' present themselves in the form of series. 

The expansion of S in powers of cot(_y/4) is convergent only if jz is close to 

277. The expansion of S' ', proceeding in powers of tan(_y/4), is convergent 

only iï y is close to zero. However, one can define by analytic continuation 

S’ and S ' for all values of y. Thus, these functions can be “continued” in 

such a manner that they both will be defined for values of y between _y0 and 

yu with and_y, themselves between zero and 2tt. 

This raises the question as to whether, in the region where both are 

defined, the functions S' and S' might be equal. The question must be 

answered in the negative. Actually, if we had identically 

S — S', 

then the terms of the convergent series of S and S ' in powers of e would be 

equal and one would have specifically 

S\ — S !, 

and, consequently, 

— ip'. 

However, we have demonstrated in the preceding numbers that ^ is not 

equal to xp'. 

Thus S is not equal to S '. From this an important consequence can be 

drawn. We know that S’ and S ' can be formally expanded in powers of yf/ü; 

let 
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S — T0 + T \-JJi + T2 fi + ■ ' 
: (21.34) 

S' = Tq -f- T[ijji + T'2 //+’■' • 

These series can be obtained either by the methods given in nos. 207-210 

or by starting from series (21.33) and (21.33a), expanding them subse¬ 

quently in powers of yjji (see no. 108) and then treating them as I did in 

the preceding number. 

The functions Tif for y close to 2-jt, can be expanded in powers of e and 

ofcot (y/4 ), while the functions T\, foreclose to zero, can be expanded in 

powers of e and of tan(y/4). This property is characteristic. The function 

S is actually the only function expandable in powers of € and of cot (y/4) 

and satisfying Eq. (21.18). Similarly, S ' is the only function expandable in 

powers of e and of tan (y/4 ) and satisfying Eq. (21.18). 

On the other hand, we have shown in nos. 207-210 that the functions 

T, can be given the form of series arranged in sines and cosines of multiples 

ofy/2. Consequently, these can be expanded simultaneously in powers of 

€ and cot (y/4 ) for y close to 2tt in powers of e and tan (y/4 ) for y close to 
zero. 

Hence, we have 

T =T'. 
I l 

Thus, if series (21.34) were convergent, we would have 

S=S'. 

This means that the series (21.34) diverge. 

Therefore, the series in no. 108, from which these can be derived, also 
will not converge. 

(See Vol. I, no. 109, paragraph 4ff., and Vol. II, no. 212, paragraph 
30.) 

232. Above we have always assumed that cp(y) vanishes for y = 0. 

This restriction has no essential significance. If cp(0) did not vanish and 

were equal, for example, to A0, it would be sufficient to add to the series 
(21.30) and (21.31) a term 

and to add the same constant to the integrals (21.27) that define ^ and xfj'. 

We have discussed this example at great length; however, the example 

not only made it possible to demonstrate the divergence of the series of 

nos. 108 and 207 but offered also other advantages. 
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First, the example shows the mechanism by which one can pass from 

series analogous to those in no. 225 to series analogous to those given in 

no. 104, by using intermediary as the series in nos. 226 and 228. 

Second, the singularities mentioned in the above discussion represent a 

first indication of the existence of periodic solutions that are of the second 

kind and doubly asymptotic, which will be discussed in a later volume. 
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Arnol’d, those for the second volume are by M. V. Alekseev, and those for 

the third volume are by G. A. Merman; they were translated and excerpt¬ 

ed into English by Julian V. Barbour. 

E7 
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Notes on Part 2 

Rl. This argument is not entirely accurate. In fact, the construction of 

the functions Sp by the method presented above is possible only if there is 

no commensurability between the frequencies «° = — dF0/dxSince x° 

for which the frequencies are commensurable are everywhere densely dis¬ 

tributed, the use of the derivatives dSp/dx^ in the change of variables 

(9.8) is incorrect. This difficulty can be avoided as follows. 

Let x* be fixed in such a way that the corresponding frequencies n* 

— nt(xf) are incommensurable. We set x,■— x* + ^ and instead of 

(9.5) consider the equation 

(/K* /A* \ 
X* + -T— + -— ;ylt...,yn ) = C*. (9.5*) 

ày i dyn ) 

We seek the functions S * and C * in the form 

S* = i°yl + ---+g°m yH+pSt*+ £ S*, 
p = 2 

CO 

C*=F0(xf) + ^ C*, (9.4*) 
P = 1 

where Sf* is periodic in^, and S* and C* are forms of degree p'm/u and 

Ç°i with coefficients periodic inyt. For their determination, we obtain the 
equtions 

_ dS** dS ** 
■■■+<—-= Fl(xf,yJ)-C f, 

dy1 dyn 

* dS* dS* 
n*~j•••+«*= <!>*-C*, (9.7*) 

fyi dyn 

which can be solved in the same way as Eqs. (9.7). The divisors 

+ • • • + m„n* that appear in the coefficients of the Fourier series are by 

assumption nonzero. Thus, the terms of the series (9.4*) are properly 

defined (for a suitable choice of the nf, the Fourier series converge; see 
Chap. 13), but the series themselves are still formal in nature. 

Since the formal series can be differentiated with respect to £°, the 
change of variables 
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is defined from the point of view of formal analysis and gives us the series 

Xi=x? + i°+ £ 
p— > 

oo 

y, = w* + X y?lp)(ij>wT,fi), (9.3*) 
P = l 

where x*(p) and y*(p) are forms of degree p in p, £ 50),...,£ |0) with coeffi¬ 

cients periodic in//. The series ( 9.3* ) determine the solution of the system 

of equations (9.2), but this solution has a formal nature not only in the 

sense of Chap. 8, i.e., with respect to the small parameter //, but also with 

respect to Ë, 

R2. What is meant is for all right-hand sides. On the other hand, Poin- 

caré’s conclusion that this system is solvable is based on the remark made 

in §126, and does not require verification of the algebraic conditions of 

compatibility. Such verification would be rather cumbersome, and this is 

the difficulty in the direct proof of applicability of Lindstedt’s method that 

Poincaré discusses above. 

R3. We recall that, in accordance with the formulas of §8, G and 6 are 

even functions of the eccentricities and inclinations. 

R4. One can show that in the three-body problem the constant A4 is 

identically equal to zero, a result due to the existence of the area integral. 

Thus, all the constructions of §132 (like all the constructions of the fol¬ 

lowing chapters based on the method of this section) can be applied only 

for the planar problem. 

R5. Here and below, it must be borne in mind that the function F is 

expanded in powers of ^ô”. Therefore, the Hamilton-Jacobi equation con¬ 

tains not only integral powers of the derivatives dF /do, but also half¬ 

integral powers (although, as Poincaré emphasizes several times, the low¬ 

est terms are linear with respect to these derivaties). The same is true of 

the expansions in powers of Cl and V. This circumstance makes the meth¬ 

od unsuitable for small p, i.e., for small eccentricities. Poincaré gives an 

analysis of this case in Chap. 12. 

This difficulty does not arise if to solve the original system of § 131 one 

uses Birkhoffs method (Dynamical Systems). This method reduces to the 

construction of a formal canonical change of variables by which the Ham¬ 

iltonian R is reduced to the form R(£2 + (£')2,...,q2 + {q')2). A system 

with such a Hamiltonian can be readily integrated. 

R6. The method proposed by Poincaré in Chap. 12 cannot be directly 

extended to the «-body problem with n > 3. However, the difficulty that it 
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overcomes can be avoided in problems of a very general type by the follow¬ 

ing device. 

Let L = (Lu...,Ln ),£ = ), V = (Vi>->Vn ),<P= (‘Pv-’Vm ) 
be canonical variables and the Hamiltonian have the form 

F — F0{L) +HAL&7J) +nFl{L,£,y,<p), 

m 

f= X fï2'(L)(êl + vl) 
k - 1 

where Fx is 27T-periodic in q> with zero mean value. To such a form the 

planar «-body problem can, for example, be reduced. 

We make the canonical transformation 

(L,£,rj,(p)^(L',£',r]',(p') 

in accordance with the formulas 

r r, , as , .as 
L = L +//—-, cp =cp+n—- 

ocp oL 

t , as , ^ as 
dr) d§ 

where 5 satisfies the equation 

X n‘T— + F^L&ri,?) = 0, 
/= 1 °<Pi 

It is readily noted that in the new variables the Hamiltonian takes the 

form 

F(L,Ç,V,<p)=F'{L',Ç', 77>') 

= F'0 (L ') +/jf'{L',£', 77') +ti2F\{L',£',r1',<p'). 

Here,/' contains in general terms of first degree in £ ' and 77'. Similarly, 

after / steps we arrive at a Hamiltonian in which the term that depends on 

<7?(/) has order Ignoring the terms of this order, we obtain an “aver¬ 

aged” system that differs from the systems of § 131 only by the presence of 

terms of first degree in £(/) and rjU). These terms can be readily eliminated 

by a change of variables linear in £U) and t]U). After this, the averaged 

system can be solved by BirkhofFs method. Modifying as in Note R13 the 

method of successive approximation, one can here too avoid the appear¬ 

ance of everywhere discontinuous functions. 

R7. Series with small denominators of the type of the series (13.3) that 

Poincaré considers arise in many problems of mathematics. As an exam- 



RUSSIAN ENDNOTES Ell 

pie, we mention the problem of the reduction to normal form of a system 

of ordinary differential equations in the neighborhood of a singular point. 

The difficulties that are associated here with the presence of small divisors 

were overcome for the first time by C. L. Siegel, “Über die Normalform 

analytischer Differentialgleichungen in der Nàhe einer Gleichgewichtslo- 

sung,” Nachr. Akad. Wiss. Gottingen. Math.-Phys. Kl. Math.-Phys.- 

Chem. Abt. 1952, 21-30 (1952). Another example is the study of the 

behavior of solutions of differential equations on a torus [A. M. Kolmo¬ 

gorov, “On dynamical systems with integral invariant on a torus,” Dokl. 

Akad. Nauk SSSR 93 (5) (1953); V. I. Arnol’d, “On mappings of the 

circle onto itself,” Izd. Akad. Nauk SSSR, Mat. 25 ( 1 ) ( 1961 ); see also 

Kolmogorov’s paper at the Mathematical Congress at Amsterdam]. 

A common feature of all these investigations is the use of arithmetic 

arguments. Roughly speaking, the bulk of the irrational numbers are not 

well approximated by rationals, and therefore the small denominators are 

“not too small.” On the other hand, the irrationals that can be unusually 

well approximated by rationals enable one to construct examples of diver¬ 

gent series of the type (13.3) even for analytic perturbations. 

R8. If Lindstedt’s series ( 13.3) or ( 13.8) were to converge uniformly 

for x° varying in a certain interval, Eqs. (13.8) would determine a folia¬ 

tion of the phase space into «-dimensional tori, and the equations wt — ntt 

+ coi would determine a uniform rotation of the angle coordinates on 

these tori. For independent frequencies «,, the corresponding motion 

would be conditionally periodic. This is indeed the situation for ju = 0. 

The “resonance tori,” on which 2m,«, = 0 for certain integers mi, then 

decompose into tori of a lower number of dimensions. It is found that for 

iu^0 the resonance tori cease to exist, and the greater part of the tori of 

lower dimension of which they are made up breaks up completely, and 

only a finite number of such tori continue to exist in the perturbed system, 

forming an invariant manifold of dimension less than « that may be either 

stable or unstable. In the case of two degrees of freedom, these manifolds 

are periodic solutions. Merman (G. A. Merman, “Almost periodic solu¬ 

tions and divergence of the Lindstedt series in the restricted planar circu¬ 

lar three-body problem,” Proceedings of the Institute of Theoretical As¬ 

tronomy, No. 8, 1961 ) has given the corresponding arguments for the case 

of the Lindstedt series in the restricted three-body problem. 

The proof of the existence of “zones of instability” and the analysis of 

their structure in the general case has been considered in the papers of 

Moser [J. Moser, “On the theory of quasi-periodic motion,” SIAM Re¬ 

view ( 1966); J. Moser, “Convergent series expansions for quasi-periodic 

motions,” Math. Ann. 169, 136-176 ( 1967) ] and independently by V. K. 

Mel’nikov [ “On some cases of persistance of conditionally periodic mo¬ 

tions after a small change of the Hamiltonian,” Dokl. Akad. Nauk SSSR 
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165 (6), 1245-1248 ( 1965); “On a family of conditionally periodic solu¬ 

tions of a Hamiltonian system,” ibid. 181 (3), 546-549 ( 1965) ]. In one 

model problem Arnol’d [V. I. Arnol’d, “On the instability of dynamical 

systems with many degrees of freedom,” Dokl. Akad. Nauk SSSR 156 
( 1 ), 9-12 ( 1964) ] has shown that for more than 2 degrees of freedom 

instability zones not only exist but that the trajectories can travel along 

them arbitrarily far. 

R9. At this point, Poincaré’s arguments contain a lacuna that was 

pointed out by Merman in his article on “Almost periodic solutions...” 

cited in the previous note. Let a>(p) = nx/n2 and co{0) be irrational. In 

accordance with Poincaré’s argument, we mus take ap0 sufficiently small 

for co(p0) = p/q to be rational. The function co(p) is analytic and, with¬ 

out loss of generality, we can assume that co'( 0)^0. But then 

\p0\>G \co{p0) — <y(0)| = C 
P 

q 
co( 0) 

for almost all irrational co(0). At the same time, the periodic T of the 

doubly infinite family of periodic solutions obtained from the Lindstedt 

series will be equal to lirq. Thus, for the validity of the results of §42 we 

must know that the solution 

x, ( t;x°,£0,, p ), yt{ t;x°,(o,, p ) 

can be expanded in powers of p, and, moreover, when t varies over an 

interval of length of order q the radius of convergence of these series must 

be not less than \/q2. For estimating the radius of convergence, Poincaré 

has at his disposal only the majorizing estimatep0~e~ LT = e ~2LlTq, but 

this is certainly inadequate. 

R10. Thus, Poincaré does not in fact have a proof of divergence of the 

Lindstedt series for fixed x°. In the desire to fill this lacuna, two quite 

different cases must be borne in mind. In analyzing the Lindstedt series, 

Poincaré devotes particular attention to the possibility of an arbitrary 

choice of the coefficients in the expansion of the frequencies nt{p) in 

powers of p (beginning with the second term). If the Lindstedt series 

converge and it is assumed for simplicity that the number of degrees of 

freedom is 2, then the frequency ratio a = nl(p)/n2(p) is an analytic 

function of p, in general nonconstant. 

Thus, we obtain the following picture. The two-dimensional torus with 

cyclic coordinates wl and w2 can be embedded by means of Eqs. (13.8) in 

the phase space and is thus a two-dimensional invariant manifold. The 

fundamental system of differential equations induces on our torus a sys¬ 

tem that depends analytically on the parameter p. The corresponding 

rotation number a (equal to the ratio of the frequencies) is also an analyt¬ 

ic function of p. Such a situation is very exceptional, since it follows from 
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the work of Arnol’d cited above that the dependence on the coefficients is 

not, in general, analytic. Therefore, in this case too the Lindstedt series 

cannot be assumed to converge. 

Quite different is the case of constant frequencies, and considerable 

progess in these problems has been achieved in the work of Kolmogorov, 

Arnol’d, and Moser. To understand the essence of the methods that they 

have employed, we return to the beginning of § 148 and pose this question: 

Do there exist functions of the form ( 13.8), not necessarily analytic in //, 

that, the substitution w, — n,t + 5, having been made, determine a solu¬ 

tion of the Hamilton equations for at least a fairly large set (if not all) of 

the x°? 

To answer this question, Kolmogorov proposed the use of a method of 

the type of Newton’s method (method of tangents). This involves giving 

up the use of the expansions in powers of /x characteristic of the small- 

parameter method and the construction of the functions ( 13.8) by succes¬ 

sive approximations. Note that such an idea distinguishes Newcomb’s 

method from Lindstedt’s method. However, the convergence of expan¬ 

sions “from the point of view of a geometer,” to use Poincaré’s words, was 

of little interest to Newcomb, and Poincare himself assessed Newcomb’s 

method as equivalent to Lindstedt’s, in the divergence of whose series he 

was convinced. 

Suppose the Hamiltonian has the form 

F=F0(x,) +Fl(xi,yi), 

where the perturbation Fl has the order //, and suppose frequencies n° 

= {dFç/dx, ) (x°) are incommensurable in a sufficiently strong sense. 

More precisely, suppose that for all integers mi not simultaneously equal 

to zero 

I mxn\ + "• + m„n„|> 
K 

(|m,| + ••• + \mn\) 
n + 1 

It is helpful to note that the points («?,...,«° ) in the «-dimensional space 

for which such an inequality holds for at least one K form a set whose 

complement has a Lebesgue measure equal to zero. 

By a suitable canonical transformation defined in the neighborhood of 

the «-dimensional torus x, = x°, the Hamiltonian can be transformed to 

the form 

F=F'0(xi) + F\{x„yt), 

in which the perturbation F \ now has the order //2. After « steps, this 

perturbation will have the order//2". The resulting “superconvergence,” 

which is characteristic of methods of successive approximation of the 
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Newton type, make it possible to overcome the influence of the small 

divisors that arise in each step when the necessary canonical transforma¬ 

tion is chosen. 

Applying this method, Kolmogorov (A. N. Kolmogorov, “On the in¬ 

variance of conditionally periodic motions when there is a small change of 

the Hamiltonian,” Dokl. Akad. Nauk SSSR 98 (4) ( 1954); V. I. Arnol’d, 

“Proof of a theorem of A. N. Kolmogorov on the invariance of quasi- 

periodic motions under small perturbations of the Hamiltonian,” Usp. 
Mat. Nauk 18 (5) (1963) [Russian Math. Surveys 18, 9 ( 1963) ]) proved 

that in the absence of inherent degeneracy, i.e., if the Hessian of the Ham¬ 

iltonian is nonzero, the answer to the question posed above is in the affir¬ 

mative. For fixed x° and fi, functions of the form (13.8) determine in the 

phase space an invariant torus provided the frequencies are “strongly 

incommensurable,” and the motion on this invariant torus is conditional¬ 

ly periodic. 

The invariant tori do not fill the complete phase space, but the measure 

of the set complementary to them tends to zero with fi. The complemen¬ 

tary set is filled with the remains of the disrupted “resonance tori,” on 

which the frequencies satisfied a relation of the form 'ln°imi = 0 for ^ = 0. 

The procedure of the method of successive approximation of Newton 

type is not related to the dependence of the Hamiltonian on the small 

parameter fi. But if F depends on ^ analytically, this dependence does 

persist in the limit. Therefore, the functions of the form (13.8) by means 

of which the invariant tori with conditionally periodic motion are deter¬ 

mined must also depend on /i analytically. This means that for a suitable 

choice of x°, for which the frequencies are “strongly incommensurable,” 

i.e., satisfy the inequality written down above, the Lindstedt series must 

converge if we choose the coefficients in the expansions of «, (ju) equal to 

zero beginning with the second. In the circle mapping problem, conver¬ 

gence of the series analogous to the Lindstedt series was proved by Ar- 

nol’d [Izv. Akad. Nauk SSSR, Mat. 25 ( 1 ) ( 1961 ) ]. Later, Moser proved 

the same thing for the Lindstedt series themselves [Math. Ann. 169, 136— 

176 ( 1967) ]. These results were obtained by comparing the perturbation 

theory series with what Newton’s method gives. As yet, a direct proof of 

convergence of the Lindstedt series based on estimation of the coefficients 

has not been found. 

In applications of Kolmogorov’s theorem, the cases in which the num¬ 

ber of degrees of freedom is equal to two or is greater than two differ 

significantly. In the first case, the isoenergy manifold has dimension 3, 

and the two-dimensional invariant tori separate it. Therefore, paths that 

begin in a “gap” between two invariant tori remain forever in a bounded 

region of the phase space, i.e., the corresponding motion will be stable in 



RUSSIAN ENDNOTES E15 

the sense of Lagrange. For periodic solutions belonging to the stable (el¬ 

liptic in the sense of Birkhoff) type, the same arguments make it possible 

to establish Lyapunov stability. See, for example, A. M. Leontovich, “On 

the stability of Lagrangian periodic solutions of the restricted three-body 

problem,” Dokl. Akad. Nauk SSSR 143 (3) (1962). 

Such arguments do not apply if the number of degrees of freedom is 

greater than 2, since in this case the «-dimensional tori do not separate the 

(2n — 1 )-dimensional isoenergy manifold. The instability zones which 

arise at the places where the frequencies n, = dFQ/dx, are connected by 

linear relations with integral coefficients are joined to each other, and 

paths can pass through them arbitrarily far. This was shown by Arnol’d in 

one model example (see Note R8), and the mechanism used by Arnol’d 

for the proof has a general nature. The presence of the conditionally peri¬ 

odic motions on the invariant tori is probably complemented by unstable 

motions in the gaps between them. One cannot rule out, for example, the 

existence of trajectories that are everywhere dense in a certain region of 

the phase space, etc. 

Kolmogorov’s theorem is also invalid when applied to many problems 

of celestial mechanics. The problem is that when fi = 0 one usually has 

degeneracy, i.e., the Hamiltonian F0(x,) depends on only some of the 

variables x,, and therefore there is always a resonance relation between 

the frequencies. Such a difficulty is also encountered in the construction of 

the Lindstedt series ( see § 134), and Poincaré overcomes it by adding to F0 

the result of averaging Fx over the “fast” variables. 

A similar device was used by Arnol’d. In his paper “Small denomina¬ 

tors and the problem of the stability of motion in classical and celestial 

mechanics” [Usp. Mat. Nauk 18 (6) ( 1963) ] he showed that results and 

analogous to Kolmogorov’s theorem can also be obtained in the presence 

of degeneracy. In particular, Arnol’d showed that for the three-body and 

many-body problems the measure of the set of initial conditions generat¬ 

ing conditionally periodic motions is positive. Although this result does 

not signify stability of the solar system (it follows from what was said 

above that such stability is evidently impossible in the Lyapunov sense), it 

does make stability “fairly probable.” 

Both Kolmogorov and Arnol’d were studying analytic Hamiltonian 

systems. In a series of studies, Moser [ “A new technique for the construc¬ 

tion of solutions of nonlinear differential equations,” Proc. Natl. Acad. 

Sci. U.S.A. 47, 1824—1831 ( 1961 ); “On invariant curves of area-preserv¬ 

ing mappings of an annulus,” Nachr. Akad. Wiss. Gôttinger Math.-Phys. 

Kl. II, 1-20 ( 1962); “A rapidly convergent iteration method and nonlin¬ 

ear differential equation,” Ann. Scuola Norm. Sup. Pisa (3) 20, 265-315, 

499-535] showed that analogous results can also be obtained for suffi¬ 

ciently smooth systems and perturbations. 
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Numerous applications of the Kolmogorov-Arnol’d-Moser methods 

can be found in the already quoted studies, and also in a paper of Arnol’d 

[“Problems of the Motion of Artificial Celestial Bodies,” Izd. Akad. 

Nauk SSSR, Moscow ( 1963 ) ]. 

We also mention some results relating to investigation of the neighbor¬ 

hood of an equilibrium position. Siegel [C. L. Siegel, “Über die Existenz 

einer Normalform analytischer Hamiltonscher Differentialgleichunge in 

der Nàhe einer Gleichgewichtslosung,” Math. Ann. 128, 144-170 

( 1954) ] showed that for the convergence of the Birkhoff series, which are 

related to the Lindstedt series, the Hamiltonian must satisfy a countable 

number of conditions on its coefficients. See also: S. Miyahara, “On the 

existence of the normal form in the neighborhood of an equilibrium point 

of analytical Hamiltonian differential equations,” Publ. Astr. Soc. Jpn. 14 
(3) (1960); H. Rüssmann, “Über die Normalform analytischer Hamil¬ 

tonscher Differential-Gleichungen in der Nàhe einer Gleichgewichtslo- 

sung,” Math. Ann. 169, 55-72 (1967). 

The problem of the convergence and divergence of the formal series 

that reduce an analytic system of differential equations to the (not neces¬ 

sarily Hamiltonian) normal form was considered by Bryuno [A. D. 

Bryuno, “Normal form of differential equations,” Dokl. Akad. Nauk 

SSSR 157 (6) ( 1964); “On the convergence of transformations of differ¬ 

ential equations to normal form,” Dokl. Akad. Nauk 165 (5) (1965); 

“On the divergence of transformations of differential equations to normal 

form,” Dokl. Akad. Nauk SSSR 174 (5) ( 1967); “On the formal stability 

of Hamiltonian systems,” Mat. Zametki 1 (3) ( 1967) ]. 

Littlewood considered asymptotic series by means of which one can 

represent the solution of the three-body problem in the neighborhood of 

the Lagrangian equilateral triangle, and obtained for their Ath term an 

estimate of the order A2log3/2(A-f 1)^6^ for A of order 1/Vf|ln|e||3/4. 

This enabled him to conclude that by perturbing the initial conditions by 

an amount of order e we obtain perturbations of the solutions having 

order e over a time interval of order exp[ ( l/Ve) |lne|3/4]. 

For the considered problem, the number of degrees of freedom is 2 and 

a similar result over an infinite interval can be obtained by topological 

arguments. However, Littlewood’s method is apparently also valid in 

higher dimensions, and this could be helpful. 

Rll. It is not clear what Poincaré has in mind when speaking about an 

infinitely large number of arguments. In the expansion for /it written 

down above, all arguments will be multiples of one argument, whereas in 

the Lindstedt series the arguments are integral combinations of at least n 

fundamental arguments. 
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R12. Note that in these formulas the sine and cosine have been inter¬ 

changed compared with the formulas in §131 and §137. 

R13. This equation is now usually known as the Mathieu equation. Its 

solutions have been well studied [see, for example, M. J. O. Strutt, La- 

mésche-Mathieusche-und verwandte Funktionen in Physik and Technik, 

Berlin ( 1932) ]. The instability of solutions of differential equations due 

to a periodic variation of their parameters is called “parametric reso¬ 

nance." See the monograph of Bogolyubov and Mitropol’skii quoted 

above and also: J. J. Stoker, Nonlinear Vibrations in Mechanical and 

Electrical Systems, New York ( 1950). A deep investigation of parametric 

resonance phenomena has been made by Kreïn [M. G. Krem, “The basic 

propostions of the theory of/l-zones of instability of a canonical system of 

linear differential equations with periodic coefficients,” in: Collection in 

Memory of A. A. Andronov [in Russian], Moscow (1955), pp. 113— 
498], 

R14. Indeed, using the periodicity of xfi and if>x, we obtain 

M)=~- [F(t + 2ir)-F(t)] 
2u 

and 

^,(0==-!- [F(t)-F(t-2ir)]. 
2,17 

The coefficients of Eq. (17.1) are periodic, so that if F(t) is a solution 

F(t + 2ir) will be too and, therefore, as well. Replacing in the sec¬ 

ond identity t by — t and using the parity of F, we find that ipx is odd. 

R15. Poincaré here evidently gives an incorrect reference, since he has 

in mind Hadamard’s paper: “Sur les fonctions entières de la forme (z),” 

C. R. Acad. Sci. 114, 1053 (1892). Hadamard proves there the following 

theorem: If an entire function is to have order zero, the coefficients cn of 

its Taylor expansion must satisfy the condition 

|c„|<*r(!+,r, 

where k is a constant, /x > 1. 

R16. The study of systems of differential equations in the neighbor¬ 

hood of an invariant manifold of a more complicated nature than a sta¬ 

tionary point or a periodic solution has only just begun. We mention here 

the papers: E. G. Belaga, “On the reducibility of a system of ordinary 

differential equations in the neighborhood of a conditionally periodic mo¬ 

tion,” Dokl. Akad. Nauk SSSR 143 (2) (1962); N. N. Bogolyubov and 

Yu. A. Mitropol’skiï, “The method of integral manifolds in nonlinear 

mechanics,” in: Proc. International Symposium on Nonlinear Oscilla- 
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tions, Izd. Akad. Nauk USSR, Kiev ( 1963); J. Moser [Proc. Natl. Acad. 

Sci. U.S.A. 47, 1824—1831 ( 1961 ) ]; A. M. Samoilenko, “On the reducibi- 

lity of a system of ordinary differential equations in the neighborhood of a 

smooth toroidal manifold,” Izv. Akad. Nauk SSSR, Ser. Mat. 30, 1047— 

1072 (1966); “On the reducibility of a system of ordinary differential 

equations in the neighborhood of a smooth integral manifold,” Ukr. Mat. 

Zh. 18 (6), 41-65 (1966). 

I should like to express my gratitude to V. I. Arnol’d, V. A. Brumberg, 

I. A. Krasinskiï, G. A. Merman, M. S. Petrovskaya, and the Russian 

translator of Vol. 2 of the Les Methods nouvelles de la Mécanique céleste, 

Yu. A. Danilov, for pointing out numerous misprints in the French origi¬ 

nal. 

I am also indebted to G. A. Krasnikov for his notes Nos. Rl, R4, R5, 
R6 

V. M. Alekseev 
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Bruns’ Method, 534 

Bruns’ Theorem, 133, 528 

C 

Calculus of Variations, 146 

Canonical Coordinates or Variables, 119, 2, 

A8 

(See also Symplectic Coordinates) 

Canonical Equations, 123,179, 2, 8, 10, 22, 23, 

191, 225, 345, 347, 354, 361, 362, 378, 

384, 395, 410, 411, 570, 700, 806, 822, 

890, 895, 942, 981, 983, 1047, 1072 

(See also Hamiltonian Systems) 

Canonical Form, 119,127,4, 6, 7, 16, 170, 303, 

342, 347-354, 364, 377, 378, 389, 225, 

170, 570, 572, 609, 896, 943, 983, 1050 

Canonical Transformation, 125,126,127,128, 

A8, A12 

Cauchy’s Method, 35 

Cauchy’s Theorem, 38, 43 

Cauchy’s Theory of Characteristics, 125 

Center, 138 

Chaos, 112,152, 160 

Characteristic, 137 

(See also trajectory) 

Characteristic Exponents and Multipliers, 

148, 149, 131, 143-190, 275, 279, 282, 

284, 291, 296, 403, 701, 765, 775, 845, 

884, 900-916, 938, 1004, 1009, 1018- 

1025 

(See also Floquet Multipliers) 

Closing Lemma, 144, A3 

Completely Integrable Systems, 129, 130, 2 

Conjugate 

Points and Times, 156, 954 

Variables, 119, 10, 206, 209, 378, 380, 387, 

224, 365, 411 

Consequents, 149, 852, 877-892, 1052, 1053 

(See also Poincaré Map) 

Convergents, 396, 397 

Copenhagen Problem, 122 

Cremona Mapping, A5 

D 

Darboux’s Method, 220, 228, 258 

Darwin’s Orbits, 157, 1029 

Delaunay Elements, 131, A4 

(See also Kepler Elements, Action-Angle 

Variables) 

XXV 
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Delaunay’s Method, 586, 590, 607 

Diophantine Properties, 173, 176 

Doubly Asymptotic Solution, 158, 721, 1055, 

1058, 1060, 1063, 1065, 1072 

(See also Homoclinic Points) 

Dynamical Systems Theory, 17, 188 

E 

Eccentricity, 5, 15, 21, 214, 215, 216, 254, 

267-274, 349, 350, 368, 369, 375, 378, 

380, 381, 385, 386, 423, A7 

Elliptic Solution, 151 

Ephemerides, 136, 171, 243 

Equations of Dynamics, 119, 2, 131, 157, 328, 

760, 890, 904, 910, 922, 924 

Equations of Motion, 119, 423, 436, 506, 575, 

786 

Equations of Variation, 148, 131-134, 143, 

157, 735, 738, 760, 762, 765, 971, A17 

Equilibrium, 137 

Ergodic Theory, 185, 189, A18 

Euler’s Problem, 122 

Euler’s Second Lunar Theory, 121 

Euler’s Solution, 143 

Euler-Lagrange Equations, 126 

Euler-Poincaré Characteristic, A3 

Evection, 133, 495, 560 

Exchange of Stability, 154, 1027, 1030 

F 

First Jacobi Theorem, 6, 334 

Floquet Multipliers, 148, 149 

(See Characteristic Multipliers) 

Floquet’s Theorem, 148 

Flow, 137 

Flowbox, 138 

Focus 

Hamiltonian, 958 

Kinetic, 952, 1014 

Maupertuis, 156, 958, 965 

Ordinary, 1013 

Pointed, 1014, 1016, 1017 

Singular, 1014 

Taloned, 1014, 1016, 1017 

Force Function, 120, 17 

(See also Potential Energy) 

Fourier Series, 145, 166, 172, A6 

(See also Trigonometric Series) 

Frequencies 

(See also Mean Motions) 

Commensurable, 130, A6 

Incommensurable, 172, Al 1 

G 

Gaussian Constant 

(See Gravitational Constant) 

General Problem of Dynamics, 123, 133, 165, 

22, 86 

Generating Function, 127-28, 155 

Generating Solution, 148, 152, 131, 154 

Gyldén’s Equation, 511 

Gyldén’s Method, 114, 165, 342, 490, 491, 

493, 531, 581, 329 

Gyldén’s Theorem, 528 

Gravitational Constant, 120, 11 

H 

Hadamard’s Theorem, 545, 550 

Hamilton-Jacobi Equation, 128,131,170,173, 

A7 

(See also Jacobi’s Equation) 

Hamilton-Jacobi Theory, 125,131,165,170, 8 

(See also Jacobi’s Method) 

Hamiltonian Function, 119,129,130,156,170, 

173, A8 

Nondegenerate Hamiltonian Function, 131 

Hamiltonian Systems, 119, 123, 158, 179, 2 

(See also Canonical Equations) 

Hamilton's Principle, 951 

Hansen’s Method, 114 

Helmholtz’s Theory of Vortices, 725 

Heteroclonic Points (or Solutions), 158, 159, 

160, 1055, 1061, 1062, 1066, 1071, 1072, 

1077 

(See also Asymptotic Solutions and Dou¬ 

bly Asymptotic Solutions) 

Hill’s Equation, 122, 82 

Hill’s Lunar Theory, 121, 133 

Hill’s Method, 539 

Hill’s Theorem, 528 

Homoclinic Points (or Solutions), 112, 156— 

59, 1055, 1057, 1061, 1072 

(See also Aymptotic Solutions and Doubly 

Asymptotic Solutions) 

Horseshoe Map, 160 

(See also Birkhoff-Smale Theorem) 

Hyperbolic Solution, 151 
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I 

Implicit Functions, 145, 52 

Integral Invariants, 178, 179, 343, 723, 727, 

734, 736, 737, 745, 754, 760, 761, 762, 

765, 771, 772, 775, 779, 786, 788, 849, 

877, 878, 889, 892, 1047, A17 

Integrals, 129, 2, 23, 24, 150, 191-219, 267, 

270, 343, A5 

First Integrals, 129, 173, 760 

Integrals in Involution, 129 

Formal Integrals, 133 

Invariant Curves, 880, 888, 889 

Invariant Relations, 33, 343, 668, 768, 770, 

804 

Invariant 

Algebraic, 836 

Independent, 776 

Integral (See Integral Invariants) 

Quadratic, 826, 836, 840 

Absolute, 731, 764, 788 

Relative, 729, 731, 734, 763 

J 

Jacobi Bracket (See Poisson Bracket), 219 

Jacobi’s Equation, 679, 701 

Jacobi Integral, 121,154,157, 862, 1045 

Jacobi’s Method, 1, 8, 528, 652 

Jacobi's Theorem, 528, 791 

K 

KAM Theorem, 135, 139,176,177, Al 1, A14 

Kepler Elements, 131, 12-16, 1045 

(See also Delaunay Elements and Action- 

Angle Variables) 

Kepler Problem, 117, 138, 144 

Keplerian Motion, 117, 160, 11, 77, 95, 209, 

355, 448, 490, 507, 575 

Kepler’s Laws, 117, 118, 125, A2 

Kinetic Energy, 119, 450 

King Oscar’s Prize, 110—113, 136, 159 

Kolmogorov-Arnold-Moser Theorem 

(See KAM Theorem) 

Kronecker Index, 146, 58 

L 

Lagrange Points, 143 

Lagrange Stability, 164, 847 

Lagrange’s Equations, 492, 947 

Lagrange’s Theorem, 407, 408, 848 

Lagrangian Function, 126, 156 

Lagrange Formula, 400 

Lagrangian Method, 344, 346 

Lamé Equation, 532, 533 

Last Multiplier, 758 

Libration, 617, 650, 656, 674, 678, 701, 705 

Limit Cycle, 140 

Lindstedt Series, 166,175, 395, 646, 1063, A9- 

A11, A14, A20 

Lindstedt’s Method, 173, 175, 328-330, 343, 

363, 535, 646, A7, A14 

Lindstedt’s Theorem, 528 

Line of Nodes, 132, 133, 355 

Loop Orbits, 121, 86, 1019, 1021 

Lyapunov Exponents, 152 

(See also Characteristic Exponents) 

M 

Maupertuis Principle, 156, 946,956, 957, 969, 

1041 

( See also Principle of Stationary Isoenerge- 

tic Action) 

Mean Motions, 130, 167, 12, 267, 494, 802, 

813, 820, 821, 871, 1031 

(See also Frequencies) 

Commensurable Mean Motions, 130, 167 

Melnikov’s Method, 160 

Moon of Maximum Lunation, 121, 83 

Moons Without Quadrature, 129 

N 

N-Body Problem, 110, 118,119,142,192, 425, 

A7 

Newcomb Series, 1063 

Newcomb’s Method, 176, 328, 329, 344, 493, 

581, 646 

Newton’s Laws, 110, 117, 118, 120, 126, 135, 

136, 342, 343, 355, 356, 508, 575 

Nonwandering Point, 178 

O 

Osculatory Orbits, 12, 207, 221, 223, 226 
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P 

Pallas’ Inequality, 266 

Perigee of the Moon, 534 

Perihelia, 132, 16, 133, 355 

Period Doubling Bifurcation, 155 

Periodic Solutions, 142-148,153-157, 61-130, 

131, 141, 143, 149, 151, 153, 157, 179, 

401, 403, 582, 630, 880, 884, 893, 937, 

941,960,963,980,981, 1012,1031, 1037, 

1049, 1059, A20 

Classifications, 146, 147 

Elliptic and Hyperbolic, 151 

First Sort or Type, 146, 76, 388, 444 

Second Sort or Type, 147, 76, 112, 446 

Third Sort or Type, 147, 76, 117, 446 

First Genus or Kind, 900, 981, 1006, 1008, 

1009, 1031 

Second Genus or Kind, 155, 721, 922, 934, 

981, 1004, 1012, 1020, 1031 

First Category, 156, 974, 976, 980 

Second Category, 156, 965, 966, 968, 980 

Second Species, 147, 1037 

Perturbation Theory, 163, 5 

Perturbing Function, 114, 29, 206, 214—223, 

228, 265, 347, 493 

Phase Portrait, 137 

Phase Space, 119 

Picard’s Theorem, 511, 531 

Polhode, 209 

Poincaré’s Method, 134, 144 

Poincaré Elements, 125, 20 

Poincaré Recurrence Theorem, 178, 180 

Poincaré Section and Map, 139, 148, 149, 150 

Poincaré Set, 133 

Poincaré’s Last Geometric Theorem, 185-87 

Poincaré Lemma, 145 

Poincaré’s Problem, 122 

Poincaré-Bendixson Theorem, 140 

Poincaré-Hopf Theorem, 139 

Poincaré-Lyapunov Theorem, 150 

Poinsot Motion, 209, 210 

Poisson Bracket, 129, 7 

(See also Jacobi Bracket) 

Poisson Stability, 164, 847, A18, A19 

Poisson’s Theorem, 136, 407, 761 

Principle of Least Action, 126, 155, 942, 1012 

Principle of Stationary Isoenergetic Action, 

156 

(See Maupertuis’ Principle) 

Problem of Small Eccentricities, 177 

Problem of Two Fixed Centers, 122, 4, A2 

(See also Euler’s Problem) 

Puiseux Series, 146 

Q 

Quadrature, 124, 354 

Qualitative Theory, 18, 136-39 

Quasi-Periodic Solutions, 131, 175 

Quantity of Motion, 119, 3 

R 

Reduced Time, 508 

Resonance, 131, 175, 1008, 1009 

Riemann Surface, 233, 242, 245, 252 

S 

Saddle 

Point, 138, 151 

Connection, 158 

Second Jacobi Theorem, 7 

Secular Terms, 164, 165, 167, 175, 347, 350, 

405, 407, 560-562 

Mixed vs Pure, 405, 407 

Secular Variation, 347, 392 

Semi-Vis Viva, 119, 3 

(See also Kinetic Energy) 

Sensitive Dependence on Initial Conditions, 

152 

Séparatrices, 158 

Singular Points, 17, 54, 232-274, 1012 

Admissible, 234 

Algebraic, 146, 54 

First or Second Type, 236 

Small Divisors, 167, 173, 242, 644, 650, A9 

Stable Manifold, 153, 158, 160 

Stability, 136, 151, 164, 847, 848, 866, 868, 

961, 963, 966, 971, 974, 1022 

Lagrange Stability, 164, 847, A13 

Linear Stability, 151-53 

Poisson Stability, 164, 178, 847, 848, 866, 

868 

Structural Stability, 153 

Stirling’s Series, 171, 283, 311, 314, 318 

Strongly Incommensurable Frequencies, 172, 

173, 175, A12 

Subharmonic Bifurcation, 155 

Sundman’s Series, 124, 125 

Symbolic Dynamics, 160 

Symplectic Coordinates, 125, 189 

(See Canonical Coordinates) 

Symplectic Geometry, 174, 189 
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T U 

Theorem of the Maxima, 57 

Three-Body Problem, 19, Ill, 113, 114, 118, 

121,123,133,134,135,144,153,155,159, 

161, 171, 172, 177, 3, 17, 26, 46, 75, 112, 

117, 178, 205, 219, 355, 362, 374, 378, 

380, 387, 394, 407, 423, 431, 438, 468, 

490, 679, 768, 868, 871, 874, 895, 925, 

1059, 1061, A2, A19 

Planar, 120, 112, 365, 387,490 

Restricted, Ill, 120-22, 134, 154, 157, 160, 

180, 840 

Topological Conjugacy, 139 

Topological Dynamics, 188 

Trajectory, 137, 890, 1012 

(See also Characteristic) 

Trigonometric Series, 135, 164, 172, 48-52, 

354, 409, 457, 559, 567, 588 

True Anomaly, 220, 493 

Unstable Manifold, 153, 156, 160 

V 

Variation (Gyldén’s), 134,495, 575 

Variational Equations 

(See Equations of Variation) 

Variation Orbit, 121 

Vis-Viva Integral, 120, 3 

Von Zeipel’s Method, 177 

W 

Weirstrass' Method, 157 
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