3-15-18. George Howard Darwin to H. Poincaré

Aug. 3. 1901

Newnham Grange–Cambridge

Dear Monsieur Poincaré,

Since I wrote last I see that the method of my last letter gives less than I hoped for.11See Darwin to Poincaré, 31.07.1901 (§ 3-15-17). This I will explain. If

align_baseline"> Since I aresult neededcathJr/iv>

Since I Proceed (oasin letter gives l,ass="ltx_note ltx_role_footnote">1<3pan class="ltx_note_outer">1S3pan clo Poincaré, 31.07. href="darwin19010731.html" title="" class="ltx_ref ltx_href">3-15-17). This I ble id="Sx1.Ex1" clasGs2"ltx_equation ltx_eqngroupgn_ceer_pnter"_table">

Since I C¯e Th"suript"atet ltxlcar="Sx1.Ex1.m1" p7ss3"ltx_Math" alttext="r=a_{1}\\rho a(e\mu^{2}-e^{2}\mu^{4})pe=isfaeμ Th"suript"alid="od-e Th"suripmo>⁢μ Th"suript"alid=/"alid="oborretchms:falscla)e Th"suript"atet (youplain perceivhe methodl eEs sufficigNa) &_we getosurfate densityble id="Sx1.Ex1" class=="ltx_equation ltx_eqn_table"> Since I Exactlyoasin letter god o on gy lost in =istort (oth oSince I Td o on gy lost in exan>d (oth oSince I Add (otogether_(2), (3), (4), (5), (6)/se id="Sx1.Ex1" class=5"ltx_equation ltx_eqn_table"> Since I Td omosect_st ion tiao="Sx1.Ex1.m1" p7ss7"ltx_Math" alttext="r=a_{1}\Ape=isfA Th"suript"atet. For od osphere /se id="Sx1.Ex1" class=7"ltx_equation ltx_eqn_table"> Since I For od o align_baseline"> Since I From (8) a Co(9)/se id="Sx1.Ex1" clasGs4"ltx_equation ltx_eqngroupgn_ceer_pnter"_table"> align_baseline"> Since I From (7) a Co(10)/se id="Sx1.Ex1" class24"ltx_equation ltx_eqn_table"> align_baseline"> align_baseline"> align_baseline">
r=a Th"subd="o>⁢[ T"od+e Th"subd="o>⁢( T"n>3e m> Th"eft d="o>-μ Th"suript"alid="o>)Since I l eod ofirr gap="dx/p>arod osurfate unalt t Ix_eqn_="Sx1.Ex1.m1" p3ss="ltx_Math" alttext="r=a_{1}\\omegape=isfω

Since I wupposeood on_{1gap="dx/p>arbeble id="Sx1.Ex1" class2"ltx_equation ltx_eqn_table">

r Th"subd="o>=a Th"subd="o>⁢[ T"od+e Th"subd="o>⁢( T"n>3e m> Th"eft d="o>-μ Th"suript"alid="o>)f𝔓 Th"subd="o>⁢μg𝔓 Th"subd="o>⁢μSince I where_="Sx1.Ex1.m1" p4ss="ltx_Math" alttext="r=a_{1}\fpe=isffge TmnS2e m> Th"subsuript"atet.will eEscarbesolv1d by ma (o="Sx1.Ex1.m1" p4ss4"ltx_Math" alttext="r=a_{1}\E+left "y7)2}A\omega^{2}pe=isf+ T"n>2e m> Th"eft d="o>⁢Aω Th"suript"alid=t"alid=/latetborx_eqnary, where_="Sx1.Ex1.m1" p4ss5"ltx_Math" alttext="r=a_{1}\Epe=isfEA1<2pan class="ltx_note_outer">1S2pan clThecartal on gy st od syst m Esc="Sx1.Ex1.m1" p4ss7"ltx_Math" alttext="r=a_{1}\E+left "y7)2}A\omega^{2}pe=isf+ T"n>2e m> Th"eft d="o>⁢Aω Th"suript"alid=t"alid=/latet, " inc, 31.07.’scaated, ="Sx1.Ex1.m1" p4ss8"ltx_Math" alttext="r=a_{1}\U+left "y7)2}J\omega^{2}pe=isf+ T"n>2e m> Th"eft d="o>⁢Jω Th"suript"alid=t"alid=/latet This I wIf w o>fgE Th"suript"atet a Co="Sx1.Ex1.m1" p4ss13"ltx_Math" alttext="r=a_{1}\g^{2}pe=isf Th"suript"atet a Coare_negteriSx1.< m tx_eqn_cell mph">ex hypood si;hod ir "190ribu_eqnscar="Sx1.Ex1.m1" p4ss14"ltx_Math" alttext="r=a_{1}\Ape=isfAnil asbe (oharmonics_st " alts 4 & 6. Heote w omay aswaligorxrtXML omitt (o="Sx1.Ex1.m1" p4ss15"ltx_Math" alttext="r=a_{1}\fpe=isffg

Since I wupposeood nod osurfate arbeble id="Sx1.Ex1" class3"ltx_equation ltx_eqn_table">

=a T"od-eμ Th"suript"alid=/"alid="oborretchms:falscla)Since I where_od o="Sx1.Ex1.m1" p5ss="ltx_Math" alttext="r=a_{1}\epe=isfeod osame asod o="Sx1.Ex1.m1" p5ss2"ltx_Math" alttext="r=a_{1}\epe=isfee

Since I If w owrit o="Sx1.Ex1.m1" p6ss="ltx_Math" alttext="r=a_{1}\M=left "47)p}\pi\rho a^{3}_{0}pe=isf= T"n>3e m> Th"eft d="o>⁢πρa T"n>3e m> Th"subsuript"alid=t"alid=/latetbasod om_Ma_st od iv c, it Escensycarshligodetble id="Sx1.Ex1" clasGs="ltx_equation ltx_eqngroupgn_ceer_pnter"_table">

a T"n>3e m> Th"subsuript"atetd class="ltx_eqn_cell="ln_right"> cell ltx_eqnid="Sx1.Ex1.m1" cl4ss2"ltx_Math" alttext="r=a_{1}\\=isf=a Th"sup> T"od-e5e m> Th"eft d=/"order>e Th"suript"alid=/"alid="od- T"n>7e m> Th"eft d=/"order>e Th"suript"alid=/"alid="oborretchms:falscla) ="ob"Sx1varia-08-itghtc"ostp cltor="src="d  a Th"suript"alid=/"atetd class="ltx_eqn_cell="ln_right"> cell ltx_eqnid="Sx1.Ex1.m1" cl5ss2"ltx_Math" alttext="r=a_{1}\\=isf7}e^{3}\span ),{}pe=isf=a T"n>5e m> Th"subsup> T"od+ T"n>3e m> Th"eft d=/"order>e T"n>2e m> Th"suript"eft d=/"order>e Th"suript"alid="od+ T"alid="n cla"nS3< m> T"n>4< m> Th"sup>7e m> Th"alid=/"eft d=/"order>e Th"suript"alid=/"alid="oa) Thclass/tras/tiv clas/t
="i>E Th"subd=/"atetd class="ltx_eqn_cell="ln_right"> cell ltx_eqnid="Sx1.Ex1.m1" cl6ss2"ltx_Math" alttext="r=a_{1}\\=isf= T"n>15e m> Th"eft d=/"order>π Th"suripmo>⁢ρ Th"suripmo>⁢a Th"suript"alid=/"alid=t"atetd class="ltx_eqn_cell ltx_align_ceer_padleft"> Thclass/tras/tiv clas="lEx1.m1" cl7"ltx_equation ltx_eqn_table"> align_baseline"> ="i>E Th"subd=/"atetd class="ltx_eqn_cell="ln_right"> cell ltx_eqnid="Sx1.Ex1.m1" cl7ss2"ltx_Math" alttext="r=a_{1}\\=isf= T"n>3e m> Th"eft d=/"order>πρ T"o>⁢a Th"suript"alid="od-r Th"suript"alid="oborretchms:falscla)r Th"suripmo>⁢ρ𝑑r𝑑μ𝑑φ align_baseline"> cell ltx_eqnid="Sx1.Ex1.m1" cl8ss2"ltx_Math" alttext="r=a_{1}\\=isf= T"o>⁢πρ Th"surip/"alid="nS3< m> Th"eft d=/"order>a Th"suripmo>⁢[r Th"sup>a Th"sup>5e m> Th"eft d=mo>⁢r Th"sup>a Th"suript"eft d=/"alid=t"alid="od]raμ𝑑φ align_baseline"> cell ltx_eqnid="Sx1.Ex1.m1" cl9ss2"ltx_Math" alttext="r=a_{1}\\=isf= T"o>⁢πρ Th"surip/"alid="nS3< m> Th"eft d=/"order>a Th"suripmo>⁢ T"o>⁢eμ Th"suript"alid="od-e Th"suripmo>⁢μ Th"suript"alid="od-e Th"sup>μ Th"suript"alid=t"alid="oborretchms:falscla)μ𝑑φ cell ltx_eqnid="Sx1.Ex1.m1" cl10ss2"ltx_Math" alttext="r=a_{1}\\=isf7}e^{3}\span ){}pe=isf= T"n>15e m> Th"eft d=/"order>π Th"suripmo>⁢ρ Th"suripmo>⁢a Th"sup> T"n>3e m> Th"eft d=/"order>e2e m> Th"eft d=/"order>e Th"suript"alid="od+ T"alid="nS2< m> T"o>⋅7e m> Th"alid=/"eft d=/"order>e Th"suript"alid=/"alid="oa) Thclass/tras/tiv clas/t
ρa[ T"n>3e m> Th"eft d="o>⁢e5e m> Th"eft d=mo>⁢e Th"suript"alid="od-e- T"n>7e m> Th"eft d=mo>⁢e Th"suript"alid=/"alid="oa) T"n>3e m> Th"eft d="o>-μ Th"suript"alid="o>)Since I Fi Cood olost on gy st odl ebyood oustxlcf my la&_we getble id="Sx1.Ex1" class=2"ltx_equation ltx_eqn_table">
3\cd">5}e^{2}-% left "1297)3\cd">5\cd">7}e^{3}\span ){}pe=isfE Th"sub>= T"n>15e m> Th"eft d=mo>⁢π Th"suripmo>⁢ρ Th"suripmo>⁢a Th"sup> T"alid="nS2< m> T"o>⋅3< m> T"o>⋅5e m> Th"alid=/"eft d=mo>⁢e Th"suript"alid="od- T"alid="nS3< m> T"o>⋅5e m> T"o>⋅7e m> Th"alid=/"eft d=mo>⁢e Th"suript"alid=/"alid="oa) Thclass/trass/t
5\cd">7}e^{3}% lspan ){}pe=isfE Th"subd="o>= T"n>15e m> Th"eft d=mo>⁢π Th"suripmo>⁢ρ Th"suripmo>⁢a Th"sup> T"alid="nS4< m> T"o>⋅5e m> T"o>⋅7e m> Th"alid=/"eft d=mo>⁢e Th"suript"alid="oa) Thclass/trass/t
7}e^{3}\span ){}pe=isfE Th"subd="o>= T"n>15e m> Th"eft d=mo>⁢π Th"suripmo>⁢ρ Th"suripmo>⁢a Th"sup> T"alid="nS4< m> T"o>⋅7e m> Th"alid=/"eft d=mo>⁢e Th"suript"alid=/"alid="oa) Thclass/trass/t
5}e^{% 2}-left "26}{5\cd">7}e^{3}\span )pe=isfE= T"n>15e m> Th"eft d=mo>⁢π Th"suripmo>⁢ρ Th"suripmo>⁢a Th"sup> T"od- T"n>3e m> Th"eft d="o>⁢e5e m> Th"alid=/"eft d=mo>⁢e Th"suript"alid=t"alid="od- T"alid="nS5e m> T"o>⋅7e m> Th"alid=/"eft d=mo>⁢e Th"suript"alid=/"alid="oa)Since I Introduc (o="Sx1.Ex1.m1" p7ss6"ltx_Math" alttext="r=a_{1}\a_{0}pe=isfa Th"subd=t"atet from (1)/se id="Sx1.Ex1" class=6"ltx_equation ltx_eqn_table">
5}e^{2}-% left "1367)p^{47\cd">5\cd">7}e^{3}\span ){}pe=isfE= T"n>15e m> Th"eft d=mo>⁢π Th"suripmo>⁢ρ Th"suripmo>⁢a T"n>5e m> Th"subsup> T"od- T"alid="o cla"nS3< m> T"n>2e m> Th"surip"o>⋅5e m> Th"alid=/"eft d=mo>⁢e Th"suript"alid="od- T"alid="o cla"nS3< m> T"n>4< m> Th"sup>5e m> T"o>⋅7e m> Th"alid=/"eft d=mo>⁢e Th"suript"alid=/"alid="oa) Thclass/trass/t
A Th"subd="o>= T"n>15e m> Th"eft d=mo>⁢πρa Th"suript"alid=mo>= T"alid="nS2< m> T"o>⁢πρ T"n>15e m> Th"eft d=mo>⁢π Th"suripmo>⁢ρ Th"suripmo>⁢a Th"suript"alid=mo>) Thclass/trass/t
="i>A Th"subd=/"atetd class="ltx_eqn_cell="ln_right"> cell ltx_eqnid="Sx1.Ex1.m1" cl18ss2"ltx_Math" alttext="r=a_{1}\\=isf=ρr Th"suripmo>⁢ T"od-μ Th"suript"alid="oborretchms:falscla)r Th"suripmo>⁢𝑑r𝑑μ𝑑φ align_baseline"> cell ltx_eqnid="Sx1.Ex1.m1" cl19ss2"ltx_Math" alttext="r=a_{1}\\=isf= T"n>5e m> Th"eft d=/"order>ρa Th"suripmo>⁢[r Th"sup>a Th"sup>ra T"od-μ Th"suript"alid="oborretchms:falscla)𝑑μ𝑑φ align_baseline"> cell ltx_eqnid="Sx1.Ex1.m1" cl20ss2"ltx_Math" alttext="r=a_{1}\\=isf= T"n>5e m> Th"eft d=/"order>ρa Th"suripmo>⁢eμ Th"surip"od- T"od+ T"o>⁢eμ Th"suript"alid=/"alid="od+ T"o>⁢e<"o>⁢μ Th"suript"alid=t"alid="oborretchms:falscla)μ𝑑φ cell ltx_eqnid="Sx1.Ex1.m1" cl21ss2"ltx_Math" alttext="r=a_{1}\\=isf= T"n>15e m> Th"eft d=/"order>πρa Th"sup>e7e m> Th"eft d=/"order>e Th"suript"alid=/"alid="od) Thclass/tras/tiv clas/t
A cell ltx_eqnid="Sx1.Ex1.m1" cl22ss2"ltx_Math" alttext="r=a_{1}\\=isf= T"alid="nS2< m> T"o>⁢πρ T"n>15e m> Th"eft d=/"order>π Th"suripmo>⁢ρ Th"suripmo>⁢a Th"sup> T"od-e7e m> Th"eft d=/"order>e Th"suript"alid=/"alid="od) A cell ltx_eqnid="Sx1.Ex1.m1" cl23ss2"ltx_Math" alttext="r=a_{1}\\=isf7}e^{2}\span ){}pe=isf= T"alid="nS2< m> T"o>⁢πρ T"n>15e m> Th"eft d=/"order>π Th"suripmo>⁢ρ Th"suripmo>⁢a T"n>5e m> Th"subsup> T"od+ T"n>3e m> Th"eft d=/"order>e T"n>2e m> Th"surip"o>⋅7e m> Th"alid=/"eft d=/"order>e Th"suript"alid=/"alid="od) Thclass/tras/tiv clas/t
5}e^{2}-left "1367)p^{47\cd">5\cd">7}e^{3}+left "\omega^{2}}{% 4\pi\rho+e_{1}\1+left "27)p}e+left "267)p^{2}\cd">7}e^{2}\span )pe=isfE+ T"n>2e m> Th"eft d="o>⁢Aω Th"suript"alid=t"alid="alid="eft d="nSe6< m> T"n>15e m> Th"eft d=mo>⁢π Th"suripmo>⁢ρ Th"suripmo>⁢a T"n>5e m> Th"subsup>= T"od- T"alid="o cla"nS3< m> T"n>2e m> Th"surip"o>⋅5e m> Th"alid=/"eft d=mo>⁢e Th"suript"alid="od- T"alid="o cla"nS3< m> T"n>4< m> Th"sup>5e m> T"o>⋅7e m> Th"alid=/"eft d=mo>⁢e Th"suript"alid=/"alid="oa+ω Th"surip"alid="nS4< m> T"o>⁢πρ T"od+ T"n>3e m> Th"eft d=mo>⁢e T"n>2e m> Th"surip"o>⋅7e m> Th"alid=/"eft d=mo>⁢e Th"suript"alid=/"alid="od)Since I Mak (othisgorx_eqnary for varia_eqnscof ="Sx1.Ex1.m1" p7ss9"ltx_Math" alttext="r=a_{1}\fpe=isfe
left "27)p}\_{1}\1+left "26}{3% \cd">7}e\span )pe=isfω Th"surip"alid="nS4< m> T"o>⁢πρ T"n>3e m> Th"eft d=/"order> T"od+ T"alid="nS3< m> T"o>⋅7e m> Th"alid=/"eft d=/"order>e cell ltx_eqnid="Sx1.Ex1.m1" cl25ss2"ltx_Math" alttext="r=a_{1}\\=isf5}e+left "1367)p^{37\cd">5\cd">7}e^{2}pe=isf= T"alid="o cla"nS3< m> T"n>2e m> Th"surip"o>⋅5e m> Th"alid=/"eft d=/"order>e T"n>3e m> Th"sup>5e m> T"o>⋅7e m> Th"alid=/"eft d=/"order>e Th"suript"alid=/"alid=t"alid=t"atetd class="ltx_eqn_cell ltx_align_ceer_padleft"> align_baseline"> ="ob"Sx1varia-08-itghtc"ostp cltor="src="d  ω Th"surip"alid="nS2< m> T"o>⁢πρ cell ltx_eqnid="Sx1.Ex1.m1" cl26ss2"ltx_Math" alttext="r=a_{1}\\=isf5}l_{1}\e-left "37)7}e^{2}\span ).pe=isf= T"alid="nS3< m> T"o>⋅5e m> Th"alid=/"eft d=/"order>e- T"n>7e m> Th"eft d=/"order>e Th"suript"alid=/"alid="od)Since I Tdl eEs="rle methEs="ttad "Sx1.from thisgf my l, but I wa-0carshli methEthEs=span &_for odethpurposeoI must fi Cowdeth="Sx1.Ex1.m1" p7ss=0"ltx_Math" alttext="r=a_{1}\fpe=isfewe knligodet od oresult (ofigurehEs="n aliipsoid. If I write_="Sx1.Ex1.m1" p7ss=="ltx_Math" alttext="r=a_{1}\e^{\prime}pe=isfe1<4pan class="ltx_note_outer">1S4pan clIn o Poincaré, 31.07., 31.07..htm href="darwin19010731.html" title="" class="ltx_ref ltx_href">3-15-17)., ="Sx1.Ex1.m1" p7ss=3"ltx_Math" alttext="r=a_{1}\epe=isfe1d half od osltxre_st aliipsoid ecadlericity;ost o ltx_eqn (A> This I ble id="Sx1.Ex1" clasx27"ltx_equation ltx_eqn_table">
3\cd">5}e^{\prime 2% }+l_{1}\e^{\prime}+left "57)7}e^{\prime 2}\span )\_{1}\left "y7)p}-\mu^{2}% lspan )+left "37)2}e^{\prime 2}\sigma_{4}\span ]pe=isfr=a T"od- T"n>3e m> Th"eft d="o>⁢e T"alid="nS2< m> T"o>⋅3< m> T"o>⋅5e m> Th"alid=/"eft d=mo>⁢e2e m> Th"alid=/"suript"alid=/"alid="oa+e T"n>7e m> Th"eft d=mo>⁢e2e m> Th"alid=/"suript"alid=/"alid="oa) T"n>3e m> Th"eft d="o>-μ Th"suript"alid="o>) T"n>2e m> Th"eft d=mo>⁢e2e m> Th"alid=/"suripmo>⁢="i>σ Th"subd=t"alid=t"alid="od]Since I IfoI putble id="Sx1.Ex1" clasGx6"ltx_equation ltx_eqngroupgn_ceer_pnter"_table">
a cell ltx_eqnid="Sx1.Ex1.m1" cl28ss2"ltx_Math" alttext="r=a_{1}\\=isf5\cd">7}e^{\prime 2}\span )pe=isf=a T"od- T"alid="nS2< m> T"o>⋅5e m> T"o>⋅7e m> Th"alid=/"eft d=/"order>e2e m> Th"alid=/"suript"alid=/"alid="oa) align_baseline"> e cell ltx_eqnid="Sx1.Ex1.m1" cl29ss2"ltx_Math" alttext="r=a_{1}\\=isf=e T"n>7e m> Th"eft d=/"order>e2e m> Th"alid=/"suript"alid=/"alid=t"alid=t"atetd class="ltx_eqn_cell ltx_align_ceer_padleft"> td> < order="white-is ce:normal;"ltolis I="5">thisgfay be writup a clas/trass="lEx1.m1" cl3="ltx_equation ltx_eqn_table"> align_baseline"> r cell ltx_eqnid="Sx1.Ex1.m1" cl31ss2"ltx_Math" alttext="r=a_{1}\\=isf=a( T"od-eμ Th"suript"alid=/lalid="od+ T"n>2e m> Th"eft d=/"order>e Th"suripmo>⁢="i>σ Th"subd=t"alid=t"alid="od)Since I a Coodl eEs=od oform wix1.whichoI have worked.Since I Ifo="Sx1.Ex1.m1" p9ss="ltx_Math" alttext="r=a_{1}\\etape=isfηe T"n>2e m> Th"eft d=mo>⁢η Th"suript"alid=/"alid=t"atet. Heote
7}\eta^{4}.pe=isfe= T"n>2e m> Th"eft d=mo>⁢η Th"suript"alid="od+ T"alid="nS4< m> T"o>⋅7e m> Th"alid=/"eft d=mo>⁢η Th"suript"alid=/"alid=t"alid=mod.Since I Heote
5}l_{1}\\eta^{2}+left "17)7}\eta^{% 4}\span ).pe=isfω Th"surip"alid="nS2< m> T"o>⁢πρ5e m> Th"alid=/"eft d=mo>⁢η Th"surip"od+ T"n>7e m> Th"eft d=mo>⁢η Th"suript"alid=/"alid="od)Since I NligI have proved (tho’gI cann">refer youpar"ny book_for ode_result)godet
ω Th"surip"alid="nS2< m> T"o>⁢πρ T"od-η Th"suript"alid=/"sqrtd="o>⁢ T"ib"Sx1varia-08-normal"d∞n!η T"o>⁢nn T"o>⁢nn<"od- T/"alid="oborretchms:falscla)! Th"suripmo>⁢ T"alid="alid="nS2< m> T"o>⁢nSince I Tak (oth ofirr gowo eftms st odl eseries we haveass="ltx_note ltx_role_footnote">1<5pan class="ltx_note_outer">1S5pan clCf. Thomson &_Tait’soformula (1879span, ref=771> This I ble id="Sx1.Ex1" clasGx7"ltx_equation ltx_eqngroupgn_ceer_pnter"_table">
ω Th"surip"alid="nS2< m> T"o>⁢πρ cell ltx_eqnid="Sx1.Ex1.m1" cl35ss2"ltx_Math" alttext="r=a_{1}\\=isf5}leta^{2}+left "2\cd">3% }{5\cd">7}\eta^{4}\span )pe=isf= T"od-η Th"suript"alid=/"sqrtd="o>⁢( T"alid="nS3< m> T"o>⋅5e m> Th"alid=/"eft d=/"order>η Th"suript"alid="od+ T"o>⋅3< m> T/"alid="alid="nS5e m> T"o>⋅7e m> Th"alid=/"eft d=/"order>η Th"suript"alid=/"alid="od) align_baseline"> cell ltx_eqnid="Sx1.Ex1.m1" cl36ss2"ltx_Math" alttext="r=a_{1}\\=isf5}leta^{2}e_{1}\1-left "1}"2}\eta^{2}espan )% \_{1}\1+left "97)2\cd">7}\eta^{2}espan )pe=isf= T"alid="nS3< m> T"o>⋅5e m> Th"alid=/"eft d=/"order>η Th"surip"o>⁢( T"od- T"n>2e m> Th"eft d=/"order>η Th"suript"alid=/"alid="oa) T"od+ T"alid="nS2< m> T"o>⋅7e m> Th"alid=/"eft d=/"order>η Th"suript"alid=/"alid="od) align_baseline"> cell ltx_eqnid="Sx1.Ex1.m1" cl37ss2"ltx_Math" alttext="r=a_{1}\\=isf5}l_{1}\\eta^{2}+left "17)7}\eta^{4}\span ).pe=isf= T"alid="nS3< m> T"o>⋅5e m> Th"alid=/"eft d=/"order>η Th"surip"od+ T"n>7e m> Th"eft d=/"order>η Th"suript"alid=/"alid="od)Since I Thus ode_resulteEs=correct.Since I It appea s hliever odethunless ode_approximx_eqn_c="lbe_tarried as farOas ="Sx1.Ex1.m1" p10ss="ltx_Math" alttext="r=a_{1}\e^{4}pe=isf Th"suript"atetetherehEs=no way_st deeftmin (owdethmean (oEs=oolbe attribu>1d ool="Sx1.Ex1.m1" p10ss2"ltx_Math" alttext="r=a_{1}\epe=isfeSince I In_took (oover odehEnvestigx_eqn,oI see odeth="Sx1.Ex1.m1" p1ass="ltx_Math" alttext="r=a_{1}\Etnc+pe=isf="i>E Th"subd=/latet,h="Sx1.Ex1.m1" p1ass2"ltx_Math" alttext="r=a_{1}\Etn2}pe=isf="i>E Th"subd=/latet,h="Sx1.Ex1.m1" p1ass3"ltx_Math" alttext="r=a_{1}\Etn3}pe=isf="i>E Th"subd=/latet a C ="Sx1.Ex1.m1" p1ass4"ltx_Math" alttext="r=a_{1}\Ape=isfAe1<6pan class="ltx_note_outer">1S6pan clVaria-0: “c=" be_found_ass="ltx_text ltx__{1e_fooulem_sspa">as farOasThis I ="Sx1.Ex1.m1" p1ass6"ltx_Math" alttext="r=a_{1}\e^{4}pe=isf Th"suript"atet” This I but I do n">see hli ="Sx1.Ex1.m1" p1ass7"ltx_Math" alttext="r=a_{1}\E_{4}pe=isf="i>E Th"subd=t"atet a C ="Sx1.Ex1.m1" p1ass8"ltx_Math" alttext="r=a_{1}\E_{5}pe=isf="i>E Th"subd=t"atet c="lbe_found_morehexactly.Since I I=conclud1.from thisgodet od oapplicx_eqn_of od osimilarOf my l oolod pea woulCoodalig_olnpan qn_th ofurther_approximx_eqn_oolitsofigure, but woulCoe "Sx1.us=ooldeeftmine_whether_or n">th opea corresponds argrex_er_or less m[osect] of l[osectum] a Coso absolpanlyldeeftmine th oquestiqn_of stsurehwhether_or n">I sh"rlehave th opx_eeote=ooltarry_sut od o normous=labour_of od oEnvestigx_eqn. I wish I=coulCosee my way_oolmorehaccurx_eldeeftminx_eqn_of od ofigure.Since I Td oass="ltx_text ltx__{1e_foofimp_teeThis I in.whichoI fi Comy Since I I=feel=quite_ash"m1d oolhave trouSx1d youpbyOod s o normous=lves ls, " CoI doubthwhether_youpwirlehave th opx_eeote=oolrexCoodem.Since I I=remain, Yourspvery srcly,Since I G. H. o PoinSince I ass="ltx_text ltx__{1e_foofALS 6p. Collecteqn_p cticulière, Paris 75017.This I ble idiv id="Sx1.p3" class=8"ltx_equationp class="ltx_p">Since I ass="ltx_text ltx__{1< order="fTime-stW. Thomson a CoP. G. Tait (1879)/span> ="ss="ltx_text ltxbibblockid=ss="ltx_text ltx__{1e_foobib__clas">Trex_ese qn_Natural Philosophy/span> . /span> ="ss="ltx_text ltxbibblockid=ss="ltx_text ltx__{1e_foobib_editeqn">2Coediteqn/span> , oass="ltx_text ltx__{1e_foobib_publishn clCambridge University_Press/span> , ass="ltx_text ltx__{1e_foobib_placeclCambridge/span> . /span> ="ss="ltx_text ltxbibblockidExs lnal Links: ass="ltx_text ltx__{1e_foobib_linkscladarwin19http://www.archive.org/orream/trex_eseonnatur010107goog#page/n10/mode/2up"" class="ltx_ref ltx_href">3-bib_exs lnal">Linkspan ="span> ="ss="ltx_text ltxbibblockf">3-bib_citedclCit1d by: adarwin19#class9"l class=/a>).<8. George Howard o PoincarH. , 31.07."ltx_ref ltx_hre">ass="ltx_text ltx__{1e_foohre__clas">/a>).<8. ass="ltx_text ltxhref">3-15-17 ="/li ="/uld="/secteqnd"Sx1.tx_text ltxhdft="bouts="lpropertms:dceftms:subject"ltosup c="sceeotific correspondeote, Henri , 31.07.">div id="Sx1.tx_text ltxhdft="bouts="lresource="http://crex_evecommons.org/htcenses/by-nd/4.0/"lpropertms:cc:htcencecldiv id=="/ cticr ss=iv id=""> adarwin19http://www.univ-na-0es.fr/w"r=er-sclScott A. W"r=erbla et="r.,oeds., Henri , 31.07. Pap ls, Doc. /a>).<8, http://henrip, 31.0epap ls.univ-na-0es.fr/chp/__{1/010731.html803itle=.="ltx_p">Since I adarwin19../../corresphp/I aimg src19../../imxges/hpp-itos.jpgt="r=="HPP"pwidth="25"l/ bla   adarwin19http://henrip, 31.0epap ls.univ-na-0es.fr/corresphp/I Henri , 31.07. Pap ls: Correspondeote-Variabla  adarel>Sitcense"arwin19http://crex_evecommons.org/htcenses/by-nd/4.0/" aimg "r=="Crex_eve Commons License"aorder="border-width:0" src19https://htcensebuttons.net/l/by-nd/4.0/80x15.png"l/ bla  adarwin19../../contact.phpclContactspan <64,iVBORw0KGgoAAAANSUhEUgAAAAsAAAAOCAYAAAD5YeaVAAAAAXNSR0IArs4c6QAAAAZiS0dEAP8A/wD/oL2nkwAAAAlwSFlzAAALEwAACxMBAJqcGAAAAAd0SU1FB9wKExQZLWTEaOUAAAAddEVYdENvbW1lbnQAQ3JlYXRlZCB3aXRoIFRoZSBHSU1Q72QlbgAAAdpJREFUKM9tkL+L2nAARz9fPZNCKFapUn8kyI0e4iRHSR1Kb8ng0lJw6FYHFwv2LwhOpcWxTjeUunYqOmqd6hEoRDhtDWdA8ApRYsSUCDHNt5ul13vz4w0vWCgUnnEc975arX6ORqN3VqtVZbfbTQC4uEHANM3jSqXymFI6yWazP2KxWAXAL9zCUa1Wy2tXVxheKA9YNoR8Pt+aTqe4FVVVvz05O6MBhqUIBGk8Hn8HAOVy+T+XLJfLS4ZhTiRJgqIoVBRFIoric47jPnmeB1mW/9rr9ZpSSn3Lsmir1fJZlqWlUonKsvwWwD8ymc/nXwVBeLjf7xEKhdBut9Hr9WgmkyGEkJwsy5eHG5vN5g0AKIoCAEgkEkin0wQAfN9/cXPdheu6P33fBwB4ngcAcByHJpPJl+fn54mD3Gg0NrquXxeLRQAAwzAYj8cwTZPwPH9/sVg8PXweDAauqqr2cDjEer1GJBLBZDJBs9mE4zjwfZ85lAGg2+06hmGgXq+j3+/DsixYlgVN03a9Xu8jgCNCyIegIAgx13Vfd7vdu+FweG8YRkjXdWy329+dTgeSJD3ieZ7RNO0VAXAPwDEAO5VKndi2fWrb9jWl9Esul6PZbDY9Go1OZ7PZ9z/lyuD3OozU2wAAAABJRU5ErkJggg==t="r=="[LOGO]" bla s=iv id