3-49-1. Gaëtan Blum à H. Poincaré

Paris, le 3 janvier 1910

Société astronomique de France
Fondée en 1887, reconnue d’utilité publique en 1897

Monsieur et Cher Collègue,11endnote: 1 Gaëtan Blum (1876–1945) was an assistant secretary of the Astronomical Society of France (SAF), and in this capacity, he informed Poincaré of the upcoming meeting of the administrative council. Blum’s mundane, impersonal correspondence, penned as a blue carbon copy on SAF letterhead, is of scientific interest in that Poincaré made use of the bifolium’s three blank pages to investigate the dynamics of a rotating ellipsoidal fluid mass, perhaps in relation to a paper on this topic he published in September, 1910, on a rotating ellipsoidal fluid mass contained in a rigid envelope; see Poincaré (1910), reed. Julia and Petiau (1952, 481–514), and Lamb (1916, 694). On Blum’s career, see Véron et al. (2016) and the entry in Wikipédia.

J’ai l’honneur de vous informer que l’Ordre du Jour de la Séance du Conseil du 5 Janvier, 8h148^{\text{h}}\frac{1}{4}, sera le suivant :

«   Examen de modifications à apporter au projet de statuts votés par le Conseil dans sa dernière réunion   ».

Veuillez agréer, Monsieur et Cher Collègue, mes bien sincères salutations.

L’un des Secrétaires Adjoints,

G Blum


Eq. de Helmholtz

u=r1bayq1caz+ryqz\displaystyle u=r_{1}\sqrt{\frac{b}{a}}y-q_{1}\sqrt{\frac{c}{a}}z+ry-qz
dudydvdz=r1(ba+ab)+2rabc=1\displaystyle\frac{du}{dy}-\frac{dv}{dz}=r_{1}\left(\sqrt{\frac{b}{a}}+\sqrt{% \frac{a}{b}}\right)+2r\qquad abc=1

integr. de Helm[holtz] grand cercle =rab(dudydvdz)=r1(1a+1b)+2rab=\frac{r}{\sqrt{ab}}\left(\frac{du}{dy}-\frac{dv}{dz}\right)=r_{1}\left(\frac{% 1}{a}+\frac{1}{b}\right)+\frac{2r}{\sqrt{ab}}

fact. const. près 4d15abc\frac{4d}{15\sqrt{abc}}; A1r1+A1r=dTdp1A_{1}r_{1}+A_{1}^{\prime}r=\frac{dT}{dp_{1}}

Vecteur de Helmholtz dTdp1dTdq1dTdr1\quad\frac{dT}{dp_{1}}\quad\frac{dT}{dq_{1}}\quad\frac{dT}{dr_{1}}

invar. lié à la sph[ère] fictive.

dTdp1\displaystyle\frac{dT}{dp_{1}} =\displaystyle= r1dTdq1q1dTdr1\displaystyle r_{1}\frac{dT}{dq_{1}}-q_{1}\frac{dT}{dr_{1}}
vitesse vitesse
absolue d’entraînement

axes fixes; axes mobiles; sphère fictive ax2=1\sum ax^{2}=1

λ\lambda, μ\mu, ν\nu, ρ\rho ori. axes mobiles axes fixes;22endnote: 2 Variant: “axes fixes; sphère fictive”.

λ1\lambda_{1}, μ1\mu_{1}, ν1\nu_{1}, ρ1\rho_{1} ori. sphères fict[ives] axes mobiles; (sphère fictive moléc[ules] inv liées)

***

pp, qq, rr; p1p_{1}, q1q_{1}, r1r_{1} diff. entre les deux cas proj. sur axes mobiles.

***

ddtdTdλdTdλ+dUdλ=kλ;ddtdTdλdTdλ1=k1λ1;λ2=λ12=1\displaystyle\frac{d}{dt}\frac{dT}{d\lambda^{\prime}}-\frac{dT}{d\lambda}+% \frac{dU}{d\lambda}=k\lambda;\frac{d}{dt}\frac{dT}{d\lambda^{\prime}}-\frac{dT% }{d\lambda_{1}}=k_{1}\lambda_{1};\sum\lambda^{2}=\sum\lambda_{1}^{2}=1
12p=μλ+λμρν+νρ12p1=μ1λ1+λ1μ1ρ1ν1+ν1ρ1)pourquoi à l’envers\displaystyle\left.\begin{aligned} \frac{1}{2}p&=-\mu\lambda^{\prime}+\lambda% \mu^{\prime}-\rho\nu^{\prime}+\nu\rho^{\prime}\\ \frac{1}{2}p_{1}&=-\mu_{1}\lambda_{1}^{\prime}+\lambda_{1}\mu_{1}^{\prime}-% \rho_{1}\nu_{1}^{\prime}+\nu_{1}\rho_{1}^{\prime}\end{aligned}\right)\qquad% \text{pourquoi à l'envers}

***

T=T2+T1+T0;T2=12Ap2;T0=12A1p12\displaystyle T=T_{2}+T_{1}+T_{0};T_{2}=\frac{1}{2}\sum Ap^{2};T_{0}=\frac{1}{% 2}\sum A_{1}p_{1}^{2}
T1=Pp=A1pp1;A1=A1\displaystyle T_{1}=\sum Pp=\sum A_{1}^{\prime}pp_{1};A_{1}=A_{1}^{\prime}

***

ddtdTdp+rdTdqqdTdr=L;ddtdTdp1r1dTdq1+q1dTdr1=0\frac{d}{dt}\frac{dT}{dp}+r\frac{dT}{dq}-q\frac{dT}{dr}=-L;\frac{d}{dt}\frac{% dT}{dp_{1}}-r_{1}\frac{dT}{dq_{1}}+q_{1}\frac{dT}{dr_{1}}=0

***

Xi(f)\displaystyle X_{i}(f) =Xiμdfdxμ;XiXkXkXi=ciksXs\displaystyle=\sum X_{i}^{\mu}\frac{df}{dx_{\mu}};\quad X_{i}X_{k}-X_{k}X_{i}=% \sum c_{iks}X_{s}
X(f)\displaystyle X(f) =zdfdyydfdz;XYYX=Z\displaystyle=z\frac{df}{dy}-y\frac{df}{dz};\quad XY-YX=Z
Y(f)\displaystyle Y(f) =xdfdzzdfdx;YZZY=X\displaystyle=x\frac{df}{dz}-z\frac{df}{dx};\quad YZ-ZY=X
Z(f)\displaystyle Z(f) =ydfdxxdfdy;ZXXZ=Y\displaystyle=y\frac{df}{dx}-x\frac{df}{dy};\quad ZX-XZ=Y

***

dxμdv=ηρXρμ;δxμ=ωρXρμ\displaystyle\frac{dx_{\mu}}{dv}=\sum\eta_{\rho}X_{\rho}^{\mu};\delta x_{\mu}=% \sum\omega_{\rho}X_{\rho}^{\mu}
(dTdxdUdx)δx=Ωiωi\displaystyle\sum\left(\frac{dT}{dx}-\frac{dU}{dx}\right)\delta x=\sum\Omega_{% i}\omega_{i}
ddtdTdηj=cjkidTdηiηk+Ωj\displaystyle\frac{d}{dt}\frac{dT}{d\eta_{j}}=\sum c_{jki}\frac{dT}{d\eta_{i}}% \eta_{k}+\Omega_{j}

***

rot. pp, qq, rr, rot. p1p_{1}, q1q_{1}, r1r_{1}; une [???] à l’autre.

signif. des c¯\underline{c}; inversion; signif. des Ω\Omega.

***

Eq. des Aires.

Vecteur des moments dTdp\frac{dT}{dp}, dTdq\frac{dT}{dq}, dTdr\frac{dT}{dr}; vitesse relative de aa

ddtdTdp\displaystyle\frac{d}{dt}\frac{dT}{dp} +\displaystyle+ rdTdqqdTdr\displaystyle r\frac{dT}{dq}-q\frac{dT}{dr} =\displaystyle= L\displaystyle-L
vitesse vitesse vitesse
relative " d’entraînement absolue.

ellipticity 126000.365\frac{1}{26000.365} 1300\frac{1}{300} préc[ession] 3 nut[ations]

***

Mouvements simples

ax2=1,aux=0\displaystyle\sum ax^{2}=1,\sum aux=0 dudx=0;x=xa,y=yb,z=zc\displaystyle\qquad\sum\frac{du}{dx}=0;x^{\prime}=x\sqrt{a},y^{\prime}=y\sqrt{% b},z^{\prime}=z\sqrt{c}
u=rbayqcaz;\displaystyle u=r\sqrt{\frac{b}{a}}y-q\sqrt{\frac{c}{a}}z; dudydvdx=r(ba+ab)\displaystyle\qquad\frac{du}{dy}-\frac{dv}{dx}=r\left(\sqrt{\frac{b}{a}}+\sqrt% {\frac{a}{b}}\right)
v=pcbzrabx;\displaystyle v=p\sqrt{\frac{c}{b}}z-r\sqrt{\frac{a}{b}}x; dvdzdwdy=p(cb+bc)\displaystyle\qquad\frac{dv}{dz}-\frac{dw}{dy}=p\left(\sqrt{\frac{c}{b}}+\sqrt% {\frac{b}{c}}\right) (1)
w=qacxpbcy;\displaystyle w=q\sqrt{\frac{a}{c}}x-p\sqrt{\frac{b}{c}}y; dwdxdudz=q(ac+ca)\displaystyle\qquad\frac{dw}{dx}-\frac{du}{dz}=q\left(\sqrt{\frac{a}{c}}+\sqrt% {\frac{c}{a}}\right)

***

mouvements simples se combinent comme rotations, invariant a(x1x2)2\sum a(x_{1}-x_{2})^{2}

***

Conservation des mouvements simples.

Th. de Helmholtz. (udx+vdy+wdz)=\int(udx+vdy+wdz)= fonc[tion] lin[éaire] de x𝑑x\int xdx, y𝑑x\int ydx, x𝑑y\int xdy; etc. y𝑑x=x𝑑y\quad\int ydx=-\int xdy

Récipr. dudydvdx=\frac{du}{dy}-\frac{dv}{dx}= const. — sol[ution] (1); sol[ution] unique, car si deux sol[utions] uu=dφdxu-u^{\prime}=\frac{d\varphi}{dx}, vv=dφdyv-v^{\prime}=\frac{d\varphi}{dy}, ww=dφdzw-w^{\prime}=\frac{d\varphi}{dz}; Δφ=0\Delta\varphi=0, dφdu=0\frac{d\varphi}{du}=0

***

x=x+udtx^{\prime}=x+udt; x𝑑x\int x^{\prime}dx^{\prime}, y𝑑x\int y^{\prime}dx^{\prime}, \cdots fonctions linéaires de x𝑑x\int xdx etc.

***

Extension à l’ellipsoïde mobile volume constant.

dudydvdx=const.,u=rbayqcaz+dφdx\displaystyle\frac{du}{dy}-\frac{dv}{dx}=\text{const.},u=r\sqrt{\frac{b}{a}}y-% q\sqrt{\frac{c}{a}}z+\frac{d\varphi}{dx}
ax2=1,ax2=1+2ψdt;a(x+udt)2=1+2ψdt\displaystyle\sum ax^{2}=1,\sum ax^{2}=1+2\psi dt;\sum a(x+udt)^{2}=1+2\psi dt
aux=ψ;axdφdx=ψ;φ=0,vol.=const.\displaystyle\sum aux=\psi;\sum ax\frac{d\varphi}{dx}=\psi;\triangle\varphi=0,% \text{vol.}=\text{const.}

***

Force vive. ellipsoïde immobile.

TT polyn[ôme] 2d degré p,q,r¯\underline{p,q,r}; symétrie pas de terme en pqpq; si r¯=0\underline{r}=0, changer qq en q-q et yy en y-y, c’est changer uu et ww en u-u et w-w.

q=r=0;d=1,p=1;u=0;2T=(v2+w2)𝑑x𝑑y𝑑z\displaystyle q=r=0;d=1,p=1;u=0;2T=\int(v^{2}+w^{2})dxdydz
=1abc(v2b+w2c)𝑑x𝑑y𝑑z=1abc(y2c+x2b)𝑑x𝑑y𝑑z\displaystyle=\frac{1}{\sqrt{abc}}\int\left(\frac{v^{\prime 2}}{b}+\frac{w^{% \prime 2}}{c}\right)dx^{\prime}dy^{\prime}dz^{\prime}=\frac{1}{\sqrt{abc}}\int% \left(\frac{y^{\prime 2}}{c}+\frac{x^{\prime 2}}{b}\right)dx^{\prime}dy^{% \prime}dz^{\prime}
y2𝑑x𝑑y𝑑z=4π15;2T=4π151abc(1b+1c)\displaystyle\int y^{\prime 2}dx^{\prime}dy^{\prime}dz^{\prime}=\frac{4\pi}{15% };2T=\frac{4\pi}{15}\frac{1}{\sqrt{abc}}\left(\frac{1}{b}+\frac{1}{c}\right)
T=12Ap2;A=4π15dabc(1b+1c);ordabc=1.\displaystyle T=\frac{1}{2}\sum Ap^{2};A=\frac{4\pi}{15}\frac{d}{\sqrt{abc}}% \left(\frac{1}{b}+\frac{1}{c}\right);\text{ord}\;abc=1.
(vzwy)𝑑x𝑑y𝑑z=1abcvzwybc𝑑x𝑑y𝑑z=8π15pdabc1bc\displaystyle\int(vz-wy)dxdydz=\frac{1}{\sqrt{abc}}\int\frac{v^{\prime}z^{% \prime}-w^{\prime}y^{\prime}}{\sqrt{bc}}dx^{\prime}dy^{\prime}dz^{\prime}=% \frac{8\pi}{15}\frac{pd}{\sqrt{abc}}\frac{1}{\sqrt{bc}}
Ap,Bq,Cr;A=8π15dabc1bc;A sensi[blement]=A.\displaystyle A^{\prime}p,B^{\prime}q,C^{\prime}r;A^{\prime}=\frac{8\pi}{15}% \frac{d}{\sqrt{abc}}\frac{1}{\sqrt{bc};}\quad A^{\prime}\text{ sensi[blement]}% =A.

ALS 1p + calculs 3p. Collection particulière, Paris 75017.

Time-stamp: "31.07.2025 21:06"

Notes

  • 1 Gaëtan Blum (1876–1945) was an assistant secretary of the Astronomical Society of France (SAF), and in this capacity, he informed Poincaré of the upcoming meeting of the administrative council. Blum’s mundane, impersonal correspondence, penned as a blue carbon copy on SAF letterhead, is of scientific interest in that Poincaré made use of the bifolium’s three blank pages to investigate the dynamics of a rotating ellipsoidal fluid mass, perhaps in relation to a paper on this topic he published in September, 1910, on a rotating ellipsoidal fluid mass contained in a rigid envelope; see Poincaré (1910), reed. Julia and Petiau (1952, 481–514), and Lamb (1916, 694). On Blum’s career, see Véron et al. (2016) and the entry in Wikipédia.
  • 2 Variant: “axes fixes; sphère fictive”.

Références

  • G. Julia and G. Petiau (Eds.) (1952) Oeuvres d’Henri Poincaré, Volume 8. Gauthier-Villars, Paris. External Links: Link Cited by: endnote 1.
  • H. Lamb (1916) Hydrodynamics. Cambridge University Press, Cambridge. External Links: Link Cited by: endnote 1.
  • H. Poincaré (1910) Sur la précession des corps déformables. Bulletin astronomique 27, pp. 321–356. External Links: Link Cited by: endnote 1.
  • P. Véron, M. Véron, and S. Ilovaisky (2016) Dictionnaire des astronomes français (1850–1950). Unpublished typescript, St. Michel l’Observatoire. External Links: Link Cited by: endnote 1.