4-65-3. H. Poincaré à Salvatore Pincherle
Paris, le 15 juin 1882
Monsieur le Professeur,
Je vous remercie beaucoup de votre intéressante lettre et des aperçus nouveaux et ingénieux qu’elle renferme.11endnote: 1 Poincaré replies here to Pincherle’s letter of 10 June, 1882 (§ 4-65-2). C’est bien ainsi, ce me semble, qu’il convient d’exposer la théorie générale des fonctions si l’on veut bien faire comprendre le véritable sens des problèmes qu’on a à traiter.
Le problème qui consiste à reconnaître, d’après les coefficients d’un développement en séries de puissances, quelles sont les propriétés de la fonction représentée par ce développement est loin d’être résolu, comme vous le faites fort bien remarquer et il y a encore beaucoup à faire dans ce sens.
Vous citez le cas des séries récurrentes et des séries hypergéométriques; je pense que vous comprenez sous ce dernier nom, non seulement la série de Gauss, mais toutes les séries représentant des intégrales d’équations différentielles linéaires à coefficients rationnels; il y a en effet entre coefficients consécutifs d’une pareille série (tout à fait analogue à la série de Gauss) une relation linéaire de récurrence dans laquelle entre le rang du premier de ces coefficients. Voilà donc une condition qui permet de reconnaître d’après la loi des coefficients si la série satisfait à une équation linéaire; et par conséquent si elle représente une fonction algébrique.
Il y a aussi des cas où la loi des coefficients montre immédiatement quel est le champ de validité de la fonction; je ne parle pas seulement ici du cas simple des séries convergentes dans tous le plan; mais des séries telles que celles-ci
où représente la somme des puissances ièmes des diviseurs de . On voit immédiatement en effet que le champ de validité est le cercle de rayon 1 et de centre 0.
Je passe au second de vos problèmes: étant donné un développement en série, ou un produit infini, ou une fraction continue, reconnaître si ce développement représente une fonction analytique. Le cas du produit infini se ramène aisément à celui de la série traité par Weierstrass; il suffit de passer aux logarithmes. Quant au cas des fractions continues, je ne crois pas qu’il ait été approfondi comme il mériterait de l’être.
Il est encore une autre classe de problèmes qui sont un peu différents de ceux dont vous parlez, ce sont ceux qui se rattachent à l’aehnliche Abbildung d’un contour sur une autre et au principe de Dirichlet.22endnote: 2 The terminology of “ähnlich Abbildung” was employed by Schwarz in this context; see, for example, Schwarz (1869, 119–120). While Schwarz described several cases of what would later be termed one-to-one mapping, Poincaré did not see it that way, and expressed his view to Mittag-Leffler; see Poincaré to Mittag-Leffler, 27 July, 1882 (§ 1-1-18).
Malheureusement beaucoup de ces problèmes ont été traités sans une rigueur suffisante, mais on en trouve une solution rigoureuse dans les Monatsberichte de l’Académie de Berlin, octobre 1870, page 767 et suivantes, dans un mémoire de M. Schwarz.33endnote: 3 Schwarz 1870; 1890, 144–171.
Oserais-je vous demander un service, ce serait de me dire ce que c’est que la Revue Universelle qui se publie à Voltri; est-ce un journal auquel un géomètre ait intérêt à s’abonner.44endnote: 4 Voltri is a town located 17 km west of Genoa. Poincaré is probably referring to the fortnightly Rivista universale, pubblicazione periodica: religione, filosofia, politica, storia, scienze, economia sociale, letteratura, belle arti, bibliografia, published in Genoa and Florence from 1866. The journal was unknown to Pincherle, at least under the title and site of publication supplied by Poincaré; see Pincherle to Poincaré, 22 June 1882 (§ 4-65-4).
Veuillez agréer, Monsieur le Professeur, l’assurance de ma considération la plus distinguée.
Poincaré
ALSX 2p. Archives Henri Poincaré. Published by Dugac (1989, 215–216).
Time-stamp: "12.12.2023 12:22"
Notes
- 1 Poincaré replies here to Pincherle’s letter of 10 June, 1882 (§ 4-65-2).
- 2 The terminology of “ähnlich Abbildung” was employed by Schwarz in this context; see, for example, Schwarz (1869, 119–120). While Schwarz described several cases of what would later be termed one-to-one mapping, Poincaré did not see it that way, and expressed his view to Mittag-Leffler; see Poincaré to Mittag-Leffler, 27 July, 1882 (§ 1-1-18).
- 3 Schwarz 1870; 1890, 144–171.
- 4 Voltri is a town located 17 km west of Genoa. Poincaré is probably referring to the fortnightly Rivista universale, pubblicazione periodica: religione, filosofia, politica, storia, scienze, economia sociale, letteratura, belle arti, bibliografia, published in Genoa and Florence from 1866. The journal was unknown to Pincherle, at least under the title and site of publication supplied by Poincaré; see Pincherle to Poincaré, 22 June 1882 (§ 4-65-4).
Références
- Henri Poincaré, la correspondance avec des mathématiciens (de J à Z). Cahiers du séminaire d’histoire des mathématiques 10, pp. 83–229. link1 Cited by: 4-65-3. H. Poincaré à Salvatore Pincherle.
- Ueber einige Abbildungsaufgaben. Journal für die reine und angewandte Mathematik 70, pp. 105–120. link1 Cited by: endnote 2.
- Ueber die Integration der partiellen Differentialgleichung unter vorgeschriebenen Grenz- und Unstetigkeitsbedingungen. Monatsberichte der königliche Akademie der Wissenschaften zu Berlin, pp. 767–795. link1 Cited by: endnote 3.
- Gesammelte mathematische Abhandlungen von H. A. Schwarz, Volume 2. Springer, Berlin. link1 Cited by: endnote 3.