4-36-28. Giovanni Battista Guccia à H. Poincaré
PALERME, 25/11/1905
redazione dei rendiconti del circolo matematico di palermo
30, via Ruggiero Settimo, 30.
Mon cher ami,
Ce matin, la Rédaction des “RENDICONTI” vous a envoyé les épreuves de votre très important mémoire sur la Dynamique de l’Électron.11endnote: 1 Poincaré (1906). J’ajoute ces quelques lignes pour vous prier personnellement, bien vivement, de vouloir bien faire attention à la correction ! Vous savez combien je tiens à ce que vous soyez imprimé absolument sans fautes. Veuillez donc faire attention aux formules. Aussi, j’attire votre attention sur les endroits suivants :
1° Le titre du mémoire de Lorentz et celui du recueil où il est publié, sont-ils exacts ? (Malheureusement, nous ne possédons pas ce recueil).22endnote: 2 Poincaré’s paper acknowledged the article by Lorentz in which he proposed the transformations that Poincaré named the “transformations de Lorentz”, and for which he set out the Lie algebra; see Lorentz (1904).
2° Carte N° 5, ligne 12. Veuillez relire la phrase : “En effet la condition de continuité, etc.”33endnote: 3 The phrase in question occurs on page 135, line 7 of the printed memoir, where Poincaré observes that Maxwell’s vacuum equations (Poincaré’s (1)) are form-invariant with respect to the Lorentz transformations, and affirms that these equations follow in part from the constraint on continuity and his modified transformation properties for vector and scalar potentials (6), along with those of the fields (8). Poincaré’s manuscript expresses this thought as follows: “Notre transformation n’altère pas les équations (1). En effet la condition de continuité, les équations (6) et (8) nous fournissent déjà quelques unes des équations (1) (sauf l’accentuation des lettres).” (Poincaré, “Sur la dynamique de l’électron”, manuscript, p. 7, Archives, Circolo matematico di Palermo) The corrected proofs show that Poincaré sought to placate Guccia by inserting the two words “ainsi que”, such that his phrase reads: “En effet la condition de continuité, ainsi que les équations (6) et (8) nous fournissent déjà quelques-unes des équations (1) (sauf l’accentuation des lettres)” (corrected proofs, p. 5, Archives, Circolo matematico di Palermo; Poincaré 1906, 135).
3° Même carte, formule 11bis. Est-ce exact le facteur dans l’équation de [missing formula]? Ou bien faut-il écrire [missing formula]?44endnote: 4 Poincaré’s manuscript is inconsistent at this point, as Guccia observes. For the three transformations (11bis), Poincaré included a common factor , which he inverted (correctly) to , but only for two of the three transformations (manuscript, p. 8, Archives, Circolo matematico di Palermo). On the proofs, Poincaré corrected his mistake (corrected proofs, p. 5, Archives, Circolo matematico di Palermo). The printed version (Poincaré, 1906, 136) correctly reflects the latter change.
Enfin, veuillez, sans vous presser, lire attentivement toutes les épreuves. De mon côté, je les verrai encore.
Lorsque vous aurez terminé, veuillez me les renvoyer avec le “bon-à-tirer” et veuillez me renvoyer en même temps le manuscrit.55endnote: 5 Poincaré appears to have done as Guccia asked, since both the manuscript and the corrected proofs are in the Circolo archives. In his response to this letter, Poincaré requested he be sent a second copy of the (uncorrected) proofs, which he wanted to give to Paul Langevin; see Poincaré to Guccia, 30 November, 1905 (§ 4-36-29).
Merci infiniment.
À la hâte, meilleures amitiés de votre
TLX 1p. Archives, Circolo Matematico di Palermo.
Time-stamp: "22.08.2023 17:21"
Notes
- 1 Poincaré (1906).
- 2 Poincaré’s paper acknowledged the article by Lorentz in which he proposed the transformations that Poincaré named the “transformations de Lorentz”, and for which he set out the Lie algebra; see Lorentz (1904).
- 3 The phrase in question occurs on page 135, line 7 of the printed memoir, where Poincaré observes that Maxwell’s vacuum equations (Poincaré’s (1)) are form-invariant with respect to the Lorentz transformations, and affirms that these equations follow in part from the constraint on continuity and his modified transformation properties for vector and scalar potentials (6), along with those of the fields (8). Poincaré’s manuscript expresses this thought as follows: “Notre transformation n’altère pas les équations (1). En effet la condition de continuité, les équations (6) et (8) nous fournissent déjà quelques unes des équations (1) (sauf l’accentuation des lettres).” (Poincaré, “Sur la dynamique de l’électron”, manuscript, p. 7, Archives, Circolo matematico di Palermo) The corrected proofs show that Poincaré sought to placate Guccia by inserting the two words “ainsi que”, such that his phrase reads: “En effet la condition de continuité, ainsi que les équations (6) et (8) nous fournissent déjà quelques-unes des équations (1) (sauf l’accentuation des lettres)” (corrected proofs, p. 5, Archives, Circolo matematico di Palermo; Poincaré 1906, 135).
- 4 Poincaré’s manuscript is inconsistent at this point, as Guccia observes. For the three transformations (11bis), Poincaré included a common factor , which he inverted (correctly) to , but only for two of the three transformations (manuscript, p. 8, Archives, Circolo matematico di Palermo). On the proofs, Poincaré corrected his mistake (corrected proofs, p. 5, Archives, Circolo matematico di Palermo). The printed version (Poincaré, 1906, 136) correctly reflects the latter change.
- 5 Poincaré appears to have done as Guccia asked, since both the manuscript and the corrected proofs are in the Circolo archives. In his response to this letter, Poincaré requested he be sent a second copy of the (uncorrected) proofs, which he wanted to give to Paul Langevin; see Poincaré to Guccia, 30 November, 1905 (§ 4-36-29).
Références
- Electromagnetic phenomena in a system moving with any velocity less than that of light. Proceedings of the Section of Sciences, Koninklijke Akademie van Wetenschappen te Amsterdam 6, pp. 809–831. link1 Cited by: endnote 2.
- Sur la dynamique de l’électron. Rendiconti del Circolo matematico di Palermo 21, pp. 129–176. link1, link2 Cited by: endnote 1, endnote 3, endnote 4.